Chain-Selective Isotopic Labeling of the Heterodimeric Type III Secretion Chaperone, Scc4:Scc1, Reveals the Total Structural Rearrangement of the Chlamydia trachomatis Bi-Functional Protein, Scc4
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. General Protocols
2.3. Protein Expression and Purification
2.4. NMR Analysis
2.5. On-Column Association of 15N-Scc4 and His6-Scc1
2.6. Renatured-Association of Scc4 and His6-Scc1 with Chain Selective Labeling
3. Results and Discussion
3.1. Crowded NMR Spectra of In Vivo-Associated, 15N-labeled Scc4:Scc1 Complexes
3.2. On-Column-Associated Scc4:Scc1 Is Less Stable Than the In Vivo-Associated Complex
3.3. Purified Scc1-FLAG Interacts Weakly with Purified 15N-Scc4 Inducing Global Changes
3.4. Renatured, Chain-Selectively Labeled Scc4:His6-Scc1 Complexes Are Stable and Have In-Vivo-Like Structure
3.5. Different Structures for Scc4′s Different Functions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Center of Disease Control and Prevention: Chlamydia Statistics. Available online: www.cdc.gov/std/chlamydia/stats.htm (accessed on 28 August 2020).
- World Health Organization: Trachoma. Available online: https://www.who.int/health-topics/trachoma (accessed on 28 August 2020).
- Kleba, B.; Stephens, R.S. Chlamydial Effector Proteins Localized to the Host Cell Cytoplasmic Compartment. Infect. Immun. 2008, 76, 4842–4850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elwell, C.; Mirrashidi, K.; Engel, J. Chlamydia cell biology and pathogenesis. Nat. Rev. Genet. 2016, 14, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.M.; Bauler, L.D.; Lam, J.; Hackstadt, T. Expression and Localization of Predicted Inclusion Membrane Proteins in Chlamydia trachomatis. Infect. Immun. 2015, 83, 4710–4718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelrahman, Y.M.; Belland, R.J. The chlamydial developmental cycle: Figure 1. FEMS Microbiol. Rev. 2005, 29, 949–959. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Cong, Y.; Plano, G.V.; Rao, X.; Gisclair, L.N.; Bartra, S.S.; Macnaughtan, M.A.; Shen, L. Context-Dependent Action of Scc4 Reinforces Control of the Type III Secretion System. J. Bacteriol. 2020, 202. [Google Scholar] [CrossRef]
- Spaeth, K.E.; Chen, Y.-S.; Valdivia, R.H. The Chlamydia Type III Secretion System C-ring Engages a Chaperone-Effector Protein Complex. PLOS Pathog. 2009, 5, e1000579. [Google Scholar] [CrossRef]
- Silva-Herzog, E.; Joseph, S.S.; Avery, A.K.; Coba, J.A.; Wolf, K.; Fields, K.A.; Plano, G.V. Scc1 (CP0432) and Scc4 (CP0033) Function as a Type III Secretion Chaperone for CopN of Chlamydia pneumoniae. J. Bacteriol. 2011, 193, 3490–3496. [Google Scholar] [CrossRef] [Green Version]
- Fields, K.A.; Hackstadt, T. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol. Microbiol. 2002, 38, 1048–1060. [Google Scholar] [CrossRef]
- Leighton, T.L. Characterization of CopN (Cpn0324) the Putative Type III Secretion System Plug Protein of Chlamydia Pneumoniae. Master’s Thesis, McMasters University, Hamilton, ON, Canada, 2012. [Google Scholar]
- Mueller, K.E.; Plano, G.V.; Fields, K.A. New Frontiers in Type III Secretion Biology: the Chlamydia Perspective. Infect. Immun. 2013, 82, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Archuleta, T.L.; Du, Y.; English, C.A.; Lory, S.; Lesser, C.; Ohi, M.D.; Ohi, R.; Spiller, B.W. TheChlamydiaEffector Chlamydial Outer Protein N (CopN) Sequesters Tubulin and Prevents Microtubule Assembly. J. Biol. Chem. 2011, 286, 33992–33998. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Lesser, C.F.; Lory, S. The essential role of the CopN protein in Chlamydia pneumoniae intracellular growth. Nat. Cell Biol. 2008, 456, 112–115. [Google Scholar] [CrossRef] [Green Version]
- Rao, X.; Deighan, P.; Hua, Z.; Hu, X.; Wang, J.; Luo, M.; Liang, Y.; Zhong, G.; Hochschild, A.; Eshen, L.; et al. A regulator from Chlamydia trachomatis modulates the activity of RNA polymerase through direct interaction with the subunit and the primary subunit. Genes Dev. 2009, 23, 1818–1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Macnaughtan, M.A.; Frohlich, K.M.; Cong, Y.; Goodwin, O.Y.; Chou, C.-W.; Lecour, L.; Krup, K.; Luo, M.; Worthylake, D.K. Multipart Chaperone-Effector Recognition in the Type III Secretion System ofChlamydia trachomatis. J. Biol. Chem. 2015, 290, 28141–28155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Frohlich, K.M.; Buckner, L.; Quayle, A.J.; Luo, M.; Feng, X.; Beatty, W.; Hua, Z.; Rao, X.; Lewis, M.E.; et al. Altered protein secretion of Chlamydia trachomatis in persistently infected human endocervical epithelial cells. Microbiol. 2011, 157, 2759–2771. [Google Scholar] [CrossRef] [Green Version]
- Ukwaththage, T.O.; Tonelli, M.; Macnaughtan, M.A. Backbone and sidechain resonance assignments and secondary structure of Scc4 from Chlamydia trachomatis. Biomol. NMR Assignments 2020, 14, 301–307. [Google Scholar] [CrossRef]
- Simplaceanu, V.; Lukin, J.A.; Fang, T.-Y.; Zou, M.; Ho, N.T.; Ho, C. Chain-Selective Isotopic Labeling for NMR Studies of Large Multimeric Proteins: Application to Hemoglobin. Biophys. J. 2000, 79, 1146–1154. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Kalodimos, C.G. Structures of Large Protein Complexes Determined by Nuclear Magnetic Resonance Spectroscopy. Annu. Rev. Biophys. 2017, 46, 317–336. [Google Scholar] [CrossRef]
- Fields, K.A.; Fischer, E.R.; Mead, D.J.; Hackstadt, T. Analysis of Putative Chlamydia trachomatis Chaperones Scc2 and Scc3 and Their Use in the Identification of Type III Secretion Substrates. J. Bacteriol. 2005, 187, 6466–6478. [Google Scholar] [CrossRef] [Green Version]
- Ukwaththage, T.O.S.; Goodwin, O.Y.; Songok, A.C.; Tafaro, A.M.; Shen, L.; Macnaughtan, M.A. Purification of Tag-Free Chlamydia trachomatis Scc4 for Structural Studies Using Sarkosyl-Assisted on-Column Complex Dissociation. Biochem. 2019, 58, 4284–4292. [Google Scholar] [CrossRef] [PubMed]
- Williamson, M.P. Using chemical shift perturbation to characterise ligand binding. Prog. Nucl. Magn. Reson. Spectrosc. 2013, 73, 1–16. [Google Scholar] [CrossRef]
- Songok, A.C. NMR structural investigation of Chlamydial protein complex and lysine glycomimetic for drug design. PhD Thesis, Louisiana State University, Baton Rouge, LA, USA, 2018. [Google Scholar]
- Gershenson, A.; Gierasch, L.M. Protein folding in the cell: challenges and progress. Curr. Opin. Struct. Biol. 2011, 21, 32–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Kelley, L.; Mezulis, S.; Yates, C.M.; Wass, M.N.; E Sternberg, M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [Green Version]
- Schubot, F.D.; Jackson, M.W.; Penrose, K.J.; Cherry, S.; Tropea, J.E.; Plano, G.V.; Waugh, D.S. Three-dimensional Structure of a Macromolecular Assembly that Regulates Type III Secretion in Yersinia pestis. J. Mol. Biol. 2005, 346, 1147–1161. [Google Scholar] [CrossRef] [PubMed]
- Pedrini, B.; Serrano, P.; Mohanty, B.; Geralt, M.; Wüthrich, K. NMR-Profiles of Protein Solutions. Biopolymers 2013, 99, 825–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ukwaththage, T.O.; Keane, S.M.; Shen, L.; Macnaughtan, M.A. Chain-Selective Isotopic Labeling of the Heterodimeric Type III Secretion Chaperone, Scc4:Scc1, Reveals the Total Structural Rearrangement of the Chlamydia trachomatis Bi-Functional Protein, Scc4. Biomolecules 2020, 10, 1480. https://doi.org/10.3390/biom10111480
Ukwaththage TO, Keane SM, Shen L, Macnaughtan MA. Chain-Selective Isotopic Labeling of the Heterodimeric Type III Secretion Chaperone, Scc4:Scc1, Reveals the Total Structural Rearrangement of the Chlamydia trachomatis Bi-Functional Protein, Scc4. Biomolecules. 2020; 10(11):1480. https://doi.org/10.3390/biom10111480
Chicago/Turabian StyleUkwaththage, Thilini O., Samantha M. Keane, Li Shen, and Megan A. Macnaughtan. 2020. "Chain-Selective Isotopic Labeling of the Heterodimeric Type III Secretion Chaperone, Scc4:Scc1, Reveals the Total Structural Rearrangement of the Chlamydia trachomatis Bi-Functional Protein, Scc4" Biomolecules 10, no. 11: 1480. https://doi.org/10.3390/biom10111480
APA StyleUkwaththage, T. O., Keane, S. M., Shen, L., & Macnaughtan, M. A. (2020). Chain-Selective Isotopic Labeling of the Heterodimeric Type III Secretion Chaperone, Scc4:Scc1, Reveals the Total Structural Rearrangement of the Chlamydia trachomatis Bi-Functional Protein, Scc4. Biomolecules, 10(11), 1480. https://doi.org/10.3390/biom10111480