Heavy Metals Detection in Zeolites Using the LIBS Method
Abstract
:1. Introduction
2. Experimental
2.1. LIBS Apparatus
2.2. Zeolite Samples Preparation
3. Results
3.1. Qualitative Analysis
3.2. Diagnostics of Laser-Induced Plasma
3.3. Influence of the Ne and Te Fluctuation on the Plasma Composition
3.4. Calibration Curves
3.4.1. Copper
3.4.2. Cadmium
3.4.3. Lead
3.4.4. Cobalt
3.4.5. Chromium
3.5. Limits of Detection
4. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Meier, W.M. Zeolites and zeolite-like materials. Pure Appl. Chem. 1986, 58, 1323–1328. [Google Scholar] [CrossRef]
- Weitkamp, J. Zeolites and catalysis. Solid State Ionics 2000, 131, 175–188. [Google Scholar] [CrossRef]
- Jehlička, J.; Vandenabeele, P.; Edwards, H.G.M. Discrimination of zeolites and beryllium containing silicates using portable Raman spectroscometric equipment with near-infrared excitation. Spectrochim. Acta Part A 2012, 86, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Querol, X.; Moreno, N.; Uman, J.C.; Juan, R.; Hernandez, S.; Fernandez-Pereira, C.; Ayora, C.; Janssen, M.; García-Martínez, J.; Linares-Solano, A.; et al. Application of zeolitic material synthesised from fly ash to the decontamination of waste water and flue gas. J. Chem. Technol. Biotechnol. 2002, 77, 292–298. [Google Scholar] [CrossRef]
- Motsi, T.; Rowson, N.A.; Simmons, M.J.H. Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process. 2009, 92, 42–48. [Google Scholar] [CrossRef]
- Ferreira, L.; Fonseca, A.M.; Botelho, G.; Almeida-Aguiar, C.; Neves, I.C. Antimicrobial activity of faujasite zeolites doped with silver. Microporous Microporous Mat. 2012, 160, 126–132. [Google Scholar] [CrossRef]
- Pitcher, S.K.; Slade, R.C.T.; Ward, N.I. Heavy metal removal from motorway storm water using zeolites. Sci. Total. Environ. 2004, 334–335, 161–166. [Google Scholar] [CrossRef]
- Shi, W.; Shao, H.; Li, H.; Shao, M.; Du, S. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. J. Hazard. Mater. 2009, 170, 1–6. [Google Scholar] [CrossRef]
- Horňáčková, M.; Grolmusová, Z.; Horňáček, M.; Rakovský, J.; Hudec, P.; Veis, P. Calibration analysis of zeolites by laser induced breakdown spectroscopy. Spectrochim. Acta B 2012, 74, 119–123. [Google Scholar] [CrossRef]
- Horňáčková, M.; Horňáček, M.; Rakovský, J.; Hudec, P.; Veis, P. Determination of Si/Al molar ratios in microporous zeolites using calibration-free laser induced breakdown spectroscopy. Spectrochim. Acta B 2013, 88, 69–74. [Google Scholar] [CrossRef]
- Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; et al. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry. Spectrochim. Acta B 2009, 64, 67–73. [Google Scholar] [CrossRef]
- Manzoor, S.; Moncayo, S.; Navarro-Villoslada, F.; Ayala, J.A.; Izquierdo-Hornillos, R.; Manuel de Villena, F.J.; Caceres, J.O. Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks. Talanta 2014, 121, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Dell’Aglio, M.; De Giacomo, A.; Gaudiuso, R.; De Pascale, O.; Senesi, G.S.; Longo, S. Laser Induced Breakdown Spectroscopy applications to meteorites: Chemical analysis and composition profiles. Geochim. Cosmochim. Acta 2010, 74, 7329–7339. [Google Scholar] [CrossRef]
- Kiros, A.; Lazic, V.; Gigante, G.E.; Gholap, A.V. Analysis of rock samples collected from rock hewn churches of Lalibela, Ethiopia using laser-induced breakdown spectroscopy. J. Archaeol. Sci. 2013, 40, 2570–2578. [Google Scholar] [CrossRef]
- Haider, A.F.M.Y.; Ullah, M.H.; Khan, Z.H.; Kabir, F.; Abedin, K.M. Detection of trace amount of arsenic in groundwater by laser-induced breakdown spectroscopy and adsorption. Opt. Laser Technol. 2014, 56, 299–303. [Google Scholar] [CrossRef]
- Sobral, H.; Sanginés, R.; Trujillo-Vázquez, A. Detection of trace elements in ice and water by laser-induced breakdown spectroscopy. Spectrochim. Acta B 2012, 78, 62–66. [Google Scholar] [CrossRef]
- Järvinen, S.T.; Saarela, J.; Toivonen, J. Detection of zinc and lead in water using evaporative preconcentration and single-particle laser-induced breakdown spectroscopy. Spectrochim. Acta B 2013, 86, 55–59. [Google Scholar] [CrossRef]
- Gondal, M.A.; Hussain, T. Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy. Talanta 2007, 71, 73–80. [Google Scholar] [CrossRef]
- Senesi, G.S.; Dell’Aglio, M.; Gaudiuso, R.; De Giacomo, A.; Zaccone, C.; De Pascale, O.; Miano, T.M.; Capitelli, M. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium. Environ. Res. 2009, 109, 413–420. [Google Scholar] [CrossRef]
- Camacho, J.J.; Vrabel, J.; Manzoor, S.; Pérez-Arribas, L.V.; Díaz, D.; Caceres, J.O. Spatiotemporal diagnostics of laser induced plasma of potassium gallosilicate zeolite. J. Anal. At. Spectrom 2019, 34, 1247–1255. [Google Scholar] [CrossRef]
- Bocková, J.; Tian, Y.; Yin, H.; Delepine-Gilon, N.; Chen, Y.; Veis, P.; Yu, J. Determination of Metal Elements in Wine Using Laser-Induced Breakdown Spectroscopy (LIBS). Appl. Spectrosc. 2017, 71, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bocková, J.; Marín-Roldán, A.; Yu, J.; Veis, P. Potential use of surface-assisted LIBS for determination of strontium in wines. Appl. Optics 2018, 57, 8272–8278. [Google Scholar] [CrossRef] [PubMed]
- Rakovský, J.; Krištof, J.; Čermák, P.; Kociánová, M.; Veis, P. Measurement of echelle spectrometer spectral response in UV. In Proceedings of Contributed Papers Part II: Physics of Plasma and Ionized Media, 20th Annual Student Conference WDS’ 11, Prague, Czech Republic, 31 May–3 June 2011; Šafránková, J., Pavlu, J., Eds.; Matfyzpress: Prague, Czech Republic, 2011; pp. 257–262. [Google Scholar]
- Gigosos, M.A.; González, M.A.; Cardenoso, V. Computer simulated Balmer-alpha, -beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics. Spectrochim. Acta B 2003, 58, 1489–1504. [Google Scholar] [CrossRef]
- Aguilera, J.A.; Aragón, C. Multi-element Saha–Boltzmann and Boltzmann plots in laser-induced plasmas. Spectrochim. Acta B 2007, 62, 378–385. [Google Scholar] [CrossRef]
- Cristoforetti, G.; De Giacomo, A.; Dell’Aglio, M.; Legnaioli, S.; Tognoni, E.; Palleschi, V.; Omenetto, N. Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion. Spectrochim. Acta B 2010, 65, 86–95. [Google Scholar] [CrossRef]
- Praher, B.; Palleschi, V.; Viskup, R.; Heitz, J.; Pedarnig, J.D. Calibration free laser-induced breakdown spectroscopy of oxide materials. Spectrochim. Acta B 2010, 65, 671–679. [Google Scholar] [CrossRef]
- Rauschenbach, I.; Lazic, V.; Pavlov, S.G.; Hübers, H.W.; Jessberger, E.K. Laser induced breakdown spectroscopy on soils and rocks: Influence of the sample temperature, moisture and roughness. Spectrochim. Acta B 2008, 63, 1205–1215. [Google Scholar] [CrossRef]
- Ma, Q.L.; Motto-Ros, V.; Lei, W.Q.; Boueri, M.; Zheng, L.J.; Zeng, H.P.; Bar-Matthews, M.; Ayalon, A.; Panczer, G.; Yu, J. Multi-elemental mapping of a speleothem using laser-induced breakdown spectroscopy. Spectrochim. Acta B 2010, 65, 707–714. [Google Scholar] [CrossRef]
- Lasheras, R.J.; Bello-Gálvez, C.; Anzano, J.M. Quantitative analysis of oxide materials by laser-induced breakdown spectroscopy with argon as an internal standard. Spectrochim. Acta B 2013, 82, 65–70. [Google Scholar] [CrossRef]
- Elhassan, A.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Salvetti, A.; Tognoni, E.; Ingo, G.; Harith, M.A. LIBS Calibration Curves and Determination of Limits of Detection (LOD) in Single and Double Pulse Configuration for Quantitative LIBS Analysis of Bronzes. In Strategies for Saving Our Cultural Heritage, Cairo, Egypt, 25 February–1 March 2007; Argyropoulos, V., Hein, A., Harith, M.A., Eds.; TEI of Athens: Athens, Greece, 2007; pp. 72–77. [Google Scholar]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (version 5.1). National Institute of Standards and Technology, Gaithersburg, MD; 2013. Available online: http://physics.nist.gov/asd (accessed on 21 March 2019).
- Kurucz, R.L.; Bell, B. Kurucz CD-ROM No. 23. Atomic Line Data; Smithsonian Astrophysical Observatory: Cambridge, MA, USA, 1995. [Google Scholar]
- Garcimunon, M.; Díaz Pace, D.M.; Bertuccelli, G. Laser-induced breakdown spectroscopy for quantitative analysis of copper in algae. Opt. Laser Technol. 2013, 47, 26–30. [Google Scholar] [CrossRef]
- Liu, Y.; Bousquet, B.; Baudelet, M.; Richardson, M. Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy. Spectrochim. Acta B 2012, 73, 89–92. [Google Scholar] [CrossRef][Green Version]
- Rai, N.K.; Rai, A.K. LIBS—An efficient approach for the determination of Cr in industrial wastewater. J. Hazard. Mater. 2008, 150, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Miziolek, A.W.; Palleschi, V.; Schechter, I. Laser Induced Breakdown Spectroscopy: Fundamental and Application; Cambridge University Press: New York, NY, USA, 2006; ISBN 978-0-511-24529-9. [Google Scholar]
- Hilbk-Kortenbruck, F.; Noll, R.; Wintjens, P.; Falk, H.; Becker, C. Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence. Spectrochim. Acta B 2001, 56, 933–945. [Google Scholar] [CrossRef]
- Fichet, P.; Mauchien, P.; Wagner, J.F.; Moulin, C. Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy. Anal. Chim Acta 2001, 429, 269–278. [Google Scholar] [CrossRef]
- Gondal, M.A.; Hussain, T.; Yamani, Z.H.; Baig, M.A. On-line monitoring of remediation process of chromium polluted soil using LIBS. J. Hazard. Mater. 2009, 163, 1265–1271. [Google Scholar] [CrossRef] [PubMed]
- Xiu, J.; Motto-Ros, V.; Panczer, G.; Zheng, R.; Yu, J. Feasibility of wear metal analysis in oils with parts per million and sub-parts per million sensitivities using laser-induced breakdown spectroscopy of thin oil layer on metallic target. Spectrochim. Acta B 2014, 91, 24–30. [Google Scholar] [CrossRef]
- Mohamed, W.T.Y. Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera. Opt Laser Technol. 2008, 40, 30–38. [Google Scholar] [CrossRef]
- Ismail, M.A.; Imam, H.; Elhassan, A.; Youniss, W.T.; Harith, M.A. LIBS limit of detection and plasma parameters of some elements in two different metallic matrices. J. Anal. At. Spectrom. 2004, 19, 489–494. [Google Scholar] [CrossRef]
- Burakov, V.S.; Tarasenko, N.V.; Nedelko, M.I.; Kononov, V.A.; Vasilev, N.N.; Isakov, S.N. Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy. Spectrochim. Acta B 2009, 64, 141–146. [Google Scholar] [CrossRef]
- Cunat, J.; Fortes, F.J.; Laserna, J.J. Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyser. Anal. Chim. Acta 2009, 633, 38–42. [Google Scholar] [CrossRef]
- Samek, O.; Beddows, D.C.S.; Telle, H.H.; Kaiser, J.; Liska, M.; Caceres, J.O.; Gonzales Urena, A. Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples. Spectrochim. Acta B 2001, 56, 865–875. [Google Scholar] [CrossRef]
- Novotný, K.; Staňková, A.; Häkkänen, H.; Korppi-Tommola, J.; Otruba, V.; Kanický, V. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy. Spectrochim. Acta B 2007, 62, 1567–1574. [Google Scholar] [CrossRef]
- Lazarek, L.; Antonczak, A.J.; Wójcik, M.R.; Drzymala, J.; Abramski, K.M. Evaluation of the laser-induced breakdown spectroscopy technique for determination of the chemical composition of copper concentrates. Spectrochim. Acta B 2014, 97, 74–78. [Google Scholar] [CrossRef]
Surface Area (m2/g) | Volume of Micropores (cm3/g) | Pore Diameter (nm) | Acidity (mmol/g) |
---|---|---|---|
748 | 0.32 | 1.9–2.2 | 1.75 |
Element | Ionization Energy (eV) |
---|---|
Si | 8.1517 |
Al | 5.9858 |
Cu | 7.7264 |
Cd | 8.9938 |
Pb | 7.4167 |
Co | 7.881 |
Cr | 6.7765 |
Mg | 7.6462 |
Ca | 6.1132 |
Element | λ (nm) | Aki (s−1) | Ei (eV) | Ek (eV) |
---|---|---|---|---|
Si I | 243.52 | 4.43 × 107 | 0.781 | 5.871 |
Si I | 252.85 | 9.04 × 107 | 0.028 | 4.929 |
Si I | 390.55 | 1.33 × 107 | 1.908 | 5.082 |
Cu I | 515.32 | 6.00 × 107 | 3.786 | 6.192 |
Cu I | 521.82 | 7.50 × 107 | 3.817 | 6.192 |
Cu I | 324.75 | 1.39 × 108 | 0 | 3.817 |
Cd I | 508.58 | 5.06 × 107 | 3.946 | 6.384 |
Pb I | 283.31 | 5.92 × 107 | 0 | 4.375 |
Pb I | 368.34 | 1.70 × 108 | 0.969 | 4.335 |
Pb I | 405.78 | 9.10 × 107 | 1.321 | 4.375 |
Cr I | 301.52 | 1.63 × 108 | 0.961 | 5.072 |
Cr I | 301.37 | 8.30 × 107 | 0.968 | 5.081 |
Cr II | 297.19 | 2.00 × 108 | 3.768 | 7.939 |
Cr II | 312.50 | 8.19 × 107 | 2.455 | 6.421 |
Cr II | 320.92 | 6.81 × 107 | 2.544 | 6.407 |
Co I | 350.23 | 8.00 × 107 | 0.432 | 3.971 |
Co I | 350.63 | 8.20 × 107 | 0.514 | 4.049 |
Co I | 351.26 | 1.00 × 108 | 0.582 | 4.11 |
Co II | 258.72 | 1.19 × 108 | 1.328 | 6.118 |
Co II | 258.22 | 1.40 × 108 | 1.404 | 6.204 |
Co II | 236.38 | 2.10 × 108 | 0.499 | 5.743 |
Co II | 239.74 | 2.40 × 108 | 1.217 | 6.387 |
Al I | 305.71 | 7.50 × 107 | 3.613 | 7.668 |
Al II | 281.62 | 3.83 × 108 | 7.421 | 11.822 |
Mg II | 280.27 | 2.57 × 108 | 0 | 4.422 |
Ca II | 393.37 | 1.47 × 108 | 0 | 3.151 |
Calibration Curve | Line Type | Line Wavelength (nm) | Sensitivity (wt.% −1) | R2 | LOD (ppm) |
---|---|---|---|---|---|
Cu I/Si I | neutral | 324.75 | 1.262 | 0.995 | |
Cu I/Si I | 2 neutral lines | 515.32; 521.82 | 0.05 | 0.997 | |
Cu I | neutral | 324.75 | 111327 | 0.956 | 14.4 |
Cd I/Si I | neutral | 508.58 | 1.745 | 0.995 | |
Cd II | ionic | 226.5 | 20.821 | 0.986 | 190.7 |
Pb I/Si I | 3 neutral lines | 283.31; 368.34; 405.78 | 0.174 | 0.999 | |
Pb I | neutral | 405.78 | 150.86 | 0.937 | 62.6 |
Co I/Si I | 3 neutral lines | 350.23; 350.63; 351.26 | 1.66 | 0.993 | |
Co II/Mg II + Ca II | 4 ionic lines | 236.38; 239.74; 258.22; 258.72 | 1.638 | 0.998 | |
Co I | neutral | 348.94 | 154.49 | 0.974 | 18.5 |
Cr I/Al I | 2 neutral lines | 301.37; 301.52 | 1.634 | 0.997 | |
Cr II/Al II | 3 ionic lines | 297.19; 312.5; 320.92 | 1.776 | 0.999 | |
Cr I | neutral | 425.43 | 2462253 | 0.994 | 16.4 |
Element | Line (nm) | Matrix | LOD | Ref. |
---|---|---|---|---|
Cd I | 228.80 | soil | 6 μg/g | [36] |
Cd II | 214.44 | ice | 1.4 mg/L | [16] |
Cd II | 214.44 | water | 7.1 mg/L | [16] |
Cd II | 226.50 | zeolite | 190.7 ppm | this research |
Cr I | 425.22 | steel | 24 ppm | [37] |
Cr I | 425.43 | soil | 2.5 μg/g | [38] |
Cr I | 425.43 | water | 10 μg/mL | [39] |
Cr I | 425.43 | soil | 2 mg/kg | [40] |
Cr I | 425.43 | oil | 20 μg/mL | [39] |
Cr I | 425.43 | soil | 8 ppm | [37] |
Cr II | 267.72 | steel | 6 ppm | [37] |
Cr II | 283.56 | water | 30 ppm | [36] |
Cr II | 283.56 | oil | 0.4 μg/mL | [39] |
Cr II | 283.56 | water | 100 ppb | [37] |
Cr II | 284.33 | water | 42 ppm | [36] |
Cr II | 267.72 | ice | 1.4 mg/L | [16] |
Cr II | 267.72 | water | 10.5 mg/L | [16] |
Cr I | 360.53 | oil | 10.59 μg/g | [41] |
Cr I | 425.43 | zeolite | 16.4 ppm | this research |
Cu I | 324.75 | Al alloy | 10 ppm | [37] |
Cu I | 324.75 | Al alloy | 17.49 ppm | [42] |
Cu I | 324.75 | ice | 2.3 mg/L | [16] |
Cu I | 324.75 | oil | 5 μg/mL | [39] |
Cu I | 324.75 | steel alloy | 6.31 ppm | [43] |
Cu I | 324.75 | water | 7 ppm | [37] |
Cu I | 324.75 | water | 7 μg/mL | [39] |
Cu I | 324.75 | water | 9.6 mg/L | [16] |
Cu I | 324.75 | soil | 3.3 μg/g | [38] |
Cu I | 324.75 | oil | 2.87 μg/g | [41] |
Cu I | 324.75 | zeolite | 14.4 ppm | this research |
Pb I | 363.96 | bronze | 0.30% | [31] |
Pb I | 405.78 | concrete | 10 ppm | [37] |
Pb I | 405.78 | soil | 5 ppm | [37] |
Pb I | 405.78 | soil | 17 μg/g | [38] |
Pb I | 405.78 | ice | 1.3 mg/L | [16] |
Pb I | 405.78 | water | 100 μg/mL | [39] |
Pb I | 405.78 | water | 12.5 mg/L | [16] |
Pb I | 405.78 | soil | 20 ppm | [44] |
Pb I | 405.78 | oil | 90 μg/mL | [39] |
Pb I | 405.78 | oil | >100 μg/g | [41] |
Pb I | 405.78 | sediments | 190 μg/g | [45] |
Pb I | 261.42 | CaCO3 | 95 ppm | [46] |
Pb I | 405.78 | zeolite | 62.6 ppm | this research |
Co I | 350.23 | W-carbide | 4% m/m | [47] |
Co I | 345.35 | Cu concentrate | 884 ppm | [48] |
Co I | 348.94 | zeolite | 18.5 ppm | this research |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horňáčková, M.; Plavčan, J.; Horňáček, M.; Hudec, P.; Veis, P. Heavy Metals Detection in Zeolites Using the LIBS Method. Atoms 2019, 7, 98. https://doi.org/10.3390/atoms7040098
Horňáčková M, Plavčan J, Horňáček M, Hudec P, Veis P. Heavy Metals Detection in Zeolites Using the LIBS Method. Atoms. 2019; 7(4):98. https://doi.org/10.3390/atoms7040098
Chicago/Turabian StyleHorňáčková, Michaela, Jozef Plavčan, Michal Horňáček, Pavol Hudec, and Pavel Veis. 2019. "Heavy Metals Detection in Zeolites Using the LIBS Method" Atoms 7, no. 4: 98. https://doi.org/10.3390/atoms7040098