Next Article in Journal
Electron Scattering Processes in Non-Monochromatic and Relativistically Intense Laser Fields
Next Article in Special Issue
Interrelationship between Lab, Space, Astrophysical, Magnetic Fusion, and Inertial Fusion Plasma Experiments
Previous Article in Journal / Special Issue
Cavity-Enhanced Photodetachment of H as a Means to Produce Energetic Neutral Beams for Plasma Heating
Article Menu
Issue 1 (March) cover image

Export Article

Open AccessArticle

Electron-Induced Chemistry in the Condensed Phase

Institute for Applied and Physical Chemistry, University of Bremen, Leobener Str.5, 28359 Bremen, Germany
Atoms 2019, 7(1), 33;
Received: 30 November 2018 / Revised: 28 February 2019 / Accepted: 1 March 2019 / Published: 4 March 2019
(This article belongs to the Special Issue SPIG2018)
PDF [1318 KB, uploaded 8 March 2019]
  |     |  


Electron–molecule interactions have been studied for a long time. Most of these studies have in the past been limited to the gas phase. In the condensed-phase processes that have recently attracted attention from academia as well as industry, a theoretical understanding is mostly based on electron–molecule interaction data from these gas phase experiments. When transferring this knowledge to condensed-phase problems, where number densities are much higher and multi-body interactions are common, care must be taken to critically interpret data, in the light of this chemical environment. The paper presented here highlights three typical challenges, namely the shift of ionization energies, the difference in absolute cross-sections and branching ratios, and the occurrence of multi-body processes that can stabilize otherwise unstable intermediates. Examples from recent research in astrochemistry, where radiation driven chemistry is imminently important are used to illustrate these challenges. View Full-Text
Keywords: low-energy electrons; electron–molecule interactions; astrochemistry low-energy electrons; electron–molecule interactions; astrochemistry

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
Printed Edition Available!
A printed edition of this Special Issue is available here.

Share & Cite This Article

MDPI and ACS Style

Bredehöft, J.H. Electron-Induced Chemistry in the Condensed Phase. Atoms 2019, 7, 33.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Atoms EISSN 2218-2004 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top