Characterization of a Continuous Beam Cold Atom Ramsey Interferometer
Abstract
:1. Introduction
2. Beam Construction and Characterization
2.1. 2D-MOT
2.2. Atomic Beam
2.2.1. Atom Signal Measurements
2.2.2. Atom Beam Longitudinal Velocity
2.2.3. Atom Beam Divergence
3. Optical Pumping as a Switch
4. Detection Apparatus
4.1. Detection Laser Shaping
4.1.1. Longitudinal Width
4.1.2. Transverse Width
4.1.3. Incident Angle
4.2. Lock-In Detection
5. Raman Laser
5.1. Construction
5.2. Masks
5.3. Optimization of the Raman Beams
5.3.1. Elimination of the AC Stark Shift
5.3.2. Magnetic Field Measurement
5.3.3. Setting the Condition
6. Representative Data
6.1. Doppler-Free Raman Spectroscopy
6.2. Doppler-Free Ramsey Spectroscopy
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Keith, D.W.; Ekstrom, C.R.; Turchette, Q.A.; Pritchard, D.E. An interferometer for atoms. Phys. Rev. Lett. 1991, 66, 2693–2696. [Google Scholar] [CrossRef]
- Carnal, O.; Mlynek, J. Young’s double-slit experiment with atoms: A simple atom interferometer. Phys. Rev. Lett. 1991, 66, 2689–2692. [Google Scholar] [CrossRef]
- Riehle, F.; Kisters, T.; Witte, A.; Helmcke, J.; Bordé, C.J. Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. Phys. Rev. Lett. 1991, 67, 177–180. [Google Scholar] [CrossRef]
- Kasevich, M.; Chu, S. Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 1991, 67, 181–184. [Google Scholar] [CrossRef]
- Kasevich, M.; Chu, S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Appl. Phys. B Photophys. Laser Chem. 1992, 54, 321–332. [Google Scholar] [CrossRef]
- Baudon, J.; Mathevet, R.; Robert, J. Atomic interferometry. J. Phys. B-At. Mol. Opt. Phys. 1999, 32, R173–R195. [Google Scholar] [CrossRef]
- Cronin, A.D.; Schmiedmayer, J.; Pritchard, D.E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 2009, 81, 1051–1129. [Google Scholar] [CrossRef]
- Lepoutre, S.; Jelassi, H.; Trenec, G.; Buechner, M.; Vigue, J. Atom interferometry as a detector of rotation and gravitational waves: Comparison of various diffraction processes. Gen. Relativ. Gravit. 2011, 43, 2011–2025. [Google Scholar] [CrossRef] [Green Version]
- Barrett, B.; Geiger, R.; Dutta, I.; Meunier, M.; Canuel, B.; Gauguet, A.; Bouyer, P.; Landragin, A. The Sagnac effect: 20 years of development in matter-wave interferometry. C. R. Phys. 2014, 15, 875–883. [Google Scholar] [CrossRef] [Green Version]
- Geiger, R.; Landragin, A.; Merlet, S.; Pereira Dos Santos, F. High-accuracy inertial measurements with cold-atom sensors. AVS Quantum Sci. 2020, 2, 024702. [Google Scholar] [CrossRef]
- Barrett, B.; Bertoldi, A.; Bouyer, P. Inertial quantum sensors using light and matter. Phys. Scr. 2016, 91, 053006. [Google Scholar] [CrossRef]
- Bongs, K.; Holynski, M.; Vovrosh, J.; Bouyer, P.; Condon, G.; Rasel, E.; Schubert, C.; Schleich, W.P.; Roura, A. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat. Rev. Phys. 2019, 1, 731–739. [Google Scholar] [CrossRef] [Green Version]
- Fang, B.; Dutta, I.; Gillot, P.; Savoie, D.; Lautier, J.; Cheng, B.; Garrido Alzar, C.L.; Geiger, R.; Merlet, S.; Pereira Dos Santos, F.; et al. Metrology with Atom Interferometry: Inertial Sensors from Laboratory to Field Applications. J. Phys. Conf. Ser. 2016, 723, 012049. [Google Scholar] [CrossRef] [Green Version]
- Narducci, F.A.; Black, A.T.; Burke, J.H. Advances toward fieldable atom interferometers. Adv. Phys. X 2022, 7, 1946426. [Google Scholar] [CrossRef]
- Gustavson, T.L.; Bouyer, P.; Kasevich, M.A. Precision Rotation Measurements with an Atom Interferometer Gyroscope. Phys. Rev. Lett. 1997, 78, 2046–2049. [Google Scholar] [CrossRef] [Green Version]
- Gustavson, T.; Landragin, A.; Kasevich, M. Rotation sensing with a dual atom-interferometer Sagnac gyroscope. Class. Quantum Gravity 2000, 17, 2385–2398. [Google Scholar] [CrossRef] [Green Version]
- McGuirk, J.M.; Foster, G.T.; Fixler, J.B.; Snadden, M.J.; Kasevich, M.A. Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev. A 2002, 65, 033608. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Feng, Y.; Chen, S.; Wang, X.; Yan, X.; Jiang, Z.; Zhou, Z. A continuous cold atomic beam interferometer. J. Appl. Phys. 2015, 117, 094901. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Wang, Q.; He, X.; Fang, S.; Yuan, Z.; Qi, X.; Chen, X. A cold cesium beam source based on a two-dimensional magneto-optical trap. AIP Adv. 2022, 12, 075124. [Google Scholar] [CrossRef]
- Müller, T.; Gilowski, M.; Zaiser, M.; Berg, P.; Schubert, C.; Wendrich, T.; Ertmer, W.; Rasel, E.M. A compact dual atom interferometer gyroscope based on laser-cooled rubidium. Eur. Phys. J. D 2009, 53, 273–281. [Google Scholar] [CrossRef]
- Lu, Z.T.; Corwin, K.L.; Renn, M.J.; Anderson, M.H.; Cornell, E.A.; Wieman, C.E. Low-Velocity Intense Source of Atoms from a Magneto-optical Trap. Phys. Rev. Lett. 1996, 77, 3331–3334. [Google Scholar] [CrossRef] [PubMed]
- Schoser, J.; Batär, A.; Löw, R.; Schweikhard, V.; Grabowski, A.; Ovchinnikov, Y.B.; Pfau, T. Intense source of cold Rb atoms from a pure two-dimensional magneto-optical trap. Phys. Rev. A 2002, 66, 023410. [Google Scholar] [CrossRef]
- Kwolek, J.; Black, A. Continuous Sub-Doppler-Cooled Atomic Beam Interferometer for Inertial Sensing. Phys. Rev. Appl. 2022, 17, 024061. [Google Scholar] [CrossRef]
- Meng, Z.X.; Yan, P.Q.; Wang, S.Z.; Li, X.J.; Feng, Y.Y. Closed-Loop Dual-Atom-Interferometer Inertial Sensor with Continuous Cold Atomic Beams. arXiv 2022. [Google Scholar] [CrossRef]
- Riis, E.; Weiss, D.S.; Moler, K.A.; Chu, S. Atom funnel for the production of a slow, high-density atomic beam. Phys. Rev. Lett. 1990, 64, 1658–1661. [Google Scholar] [CrossRef]
- Kellogg, J.R.; Schlippert, D.; Kohel, J.M.; Thompson, R.J.; Aveline, D.C.; Yu, N. A compact high-efficiency cold atom beam source. Appl. Phys. B 2012, 109, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Manicchia, M.P.; Lee, J.; Welch, G.R.; Mimih, J.; Narducci, F.A. Construction and characterization of a continuous atom beam interferometer. J. Mod. Opt. 2020, 67, 69–79. [Google Scholar] [CrossRef]
- Manicchia, M. Construction and Characterization of a Dual Atomic Beam Accelerometer/Gyroscope. Ph.D. Thesis, Naval Postgraduate School, Monterey, CA, USA, 2020. [Google Scholar]
- Steck, D. Rubidium 85 D Line Data. Revision 2.2.3. Available online: http://steck.us/alkalidata (accessed on 9 July 2021).
- Inc., Wolfram Research. Clebsch-Gordan Calculator-Wolfram|Alpha; Inc., Wolfram Research: Champaign, IL, USA, 2021. [Google Scholar]
- Kimble, H.J.; Dagenais, M.; Mandel, L. Photon Antibunching in Resonance Fluorescence. Phys. Rev. Lett. 1977, 39, 691–695. [Google Scholar] [CrossRef] [Green Version]
- Dagenais, M.; Mandel, L. Investigation of two-time correlations in photon emissions from a single atom. Phys. Rev. A 1978, 18, 2217–2228. [Google Scholar] [CrossRef]
- Narducci, F.A. Photon Correlation Effects in Single and Multi-Atom Systems. Ph.D. Thesis, University of Rochester, Department of Physics and Astronomy,, Rochester, NY, USA, 1996. [Google Scholar]
- DeSavage, S.; Gordon, K.; Clifton, E.; Davis, J.; Narducci, F. Raman resonances in arbitrary magnetic fields. J. Mod. Opt. 2011, 58, 2028–2035. [Google Scholar] [CrossRef]
- DeSavage, S.; Davis, J.; Narducci, F. Controlling Raman resonances with magnetic fields. J. Mod. Opt. 2013, 60, 95–102. [Google Scholar] [CrossRef]
- Meldrum, A.; Manicchia, M.; Davis, J.P.; Narducci, F.A. Raman spectroscopy using a continuous beam from a 2D MOT. In Proceedings of the Steep Dispersion Engineering and Opto-Atomic Precision Metrology XI, San Francisco, CA, USA, 2 February 2018; SPIE: Bellingham, CA, USA, 2018; Volume 10548, pp. 114–124. [Google Scholar] [CrossRef]
- Ramsey, N.F. A Molecular Beam Resonance Method with Separated Oscillating Fields. Phys. Rev. 1950, 78, 695–699. [Google Scholar] [CrossRef]
- Ramsey, N.F. Molecular Beams; Oxford University Press: Oxford, UK; New York, NY, USA, 1990. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manicchia, M.P.; Lee, J.G.; Narducci, F.A. Characterization of a Continuous Beam Cold Atom Ramsey Interferometer. Atoms 2023, 11, 51. https://doi.org/10.3390/atoms11030051
Manicchia MP, Lee JG, Narducci FA. Characterization of a Continuous Beam Cold Atom Ramsey Interferometer. Atoms. 2023; 11(3):51. https://doi.org/10.3390/atoms11030051
Chicago/Turabian StyleManicchia, Michael P., Jeffrey G. Lee, and Frank A. Narducci. 2023. "Characterization of a Continuous Beam Cold Atom Ramsey Interferometer" Atoms 11, no. 3: 51. https://doi.org/10.3390/atoms11030051
APA StyleManicchia, M. P., Lee, J. G., & Narducci, F. A. (2023). Characterization of a Continuous Beam Cold Atom Ramsey Interferometer. Atoms, 11(3), 51. https://doi.org/10.3390/atoms11030051