The NEXT Project: Towards Production and Investigation of Neutron-Rich Heavy Nuclides
Abstract
:1. Introduction
- a large angular acceptance to capture the vast majority of the target-like transfer products and achieve good focusing;
- good suppression of the primary beam and lighter transfer products;
- separation and identification of isobaric nuclides;
- isotope identification independent from chemical properties
- sensitivity to isotopes of a broad range of half-lives.
2. The NEXT Setup
2.1. AGOR Cyclotron
2.2. The Solenoid Separator
2.3. Gas-Catcher, Ion Guide, and MR-ToF MS
3. Status and Planned Experimental Program
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NEXT | Neutron-rich, EXotic, heavy nuclei produced in multi-nucleon Transfer reactionss |
MR-ToF MS | Multi-reflection time-of-flight mass spectrometer |
SHIP | Separator for heavy ion reaction products |
VAMOS | Variable mode spectrometer |
KISS | KEK isotope separation system |
IGISOL | Ion guide isotope separation on-line |
FRS | Fragment separator |
AGOR | Accélérateur Groningen–Orsay |
ECR | Electron cyclotron resonance |
N | Neutron number |
DC | Direct current |
RF | Radiofrequency |
MCP | Multichannel plate |
References
- Türler, A.; Pershina, V. Advances in the production and chemistry of the heaviest elements. Chem. Rev. 2013, 113, 1237–1312. [Google Scholar] [CrossRef] [PubMed]
- Devaraja, H.M.; Heinz, S.; Ackermann, D.; Göbel, T.; Heßberger, F.P.; Hofmann, S.; Maurer, J.; Münzenberg, G.; Popeko, A.G.; Yeremin, A.V. New studies and a short review of heavy neutron-rich transfer products. Eur. Phys. J. A 2020, 56, 224. [Google Scholar] [CrossRef]
- Loveland, W.D. The Synthesis of New Neutron-Rich Heavy Nuclei. Front. Phys. 2019, 7, 1–8. [Google Scholar] [CrossRef]
- Kratz, J.V.; Loveland, W.; Moody, K.J. Syntheses of transuranium isotopes with atomic numbers Z≤103 in multi-nucleon transfer reactions. Nucl. Phys. A 2014, 944, 117–157. [Google Scholar] [CrossRef]
- Zagrebaev, V.I.; Greiner, W. Cross sections for the production of superheavy nuclei. Nucl. Phys. A 2014, 944, 257–307. [Google Scholar] [CrossRef]
- Corradi, L.; Szilner, S.; Pollarolo, G.; Montanari, D.; Fioretto, E.; Stefanini, A.M.; Valiente-Dobón, J.J.; Farnea, E.; Michelagnoli, C.; Montagnoli, G.; et al. Multinucleon transfer reactions: Present status and perspectives. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2013, 317, 743–751. [Google Scholar] [CrossRef]
- Golabek, C.; Heinz, S.; Mittig, W.; Rejmund, F.; Villari, A.C.C.; Bhattacharyva, S.; Boilley, D.; de France, G.; Drouart, A.; Gaudefroy, L.; et al. Investigation of deep inelastic reactions in 238U + 238U at Coulomb barrier energies. Eur. Phys. J. A 2010, 43, 251–259. [Google Scholar] [CrossRef]
- Vogt, A.; Birkenbach, B.; Reiter, P.; Corradi, L.; Mijatovic, T.; Montanari, D.; Szilner, S.; Bazzacco, D.; Bowry, M.; Bracco, A.; et al. Light and heavy transfer products in 136Xe + 238U multinucleon transfer reactions. Phys. Rev. C Nucl. Phys. 2015, 92, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Hirayama, Y.; Imai, N.; Ishiyama, H.; Jeong, S.; Miyatake, H.; Clement, E.; de France, G.; Navin, A.; Rejmund, M.; et al. Study of collisions of 136Xe + 198Pt for the KEK isotope separator. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2013, 317, 752–755. [Google Scholar] [CrossRef]
- Savard, G.; Brodeur, M.; Clark, J.A.; Knaack, R.A.; Valverde, A.A. The N = 126 factory: A new facility to produce very heavy neutron-rich isotopes. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2020, 463, 258–261. [Google Scholar] [CrossRef]
- Spǎtaru, A.; Balabanski, D.L.; Beliuskina, O.; Constantin, P.; Dickel, T.; Hornung, C.; Kankainen, A.; Karpov, A.V.; Nichita, D.; Plass, W.; et al. Production of exotic nuclei via MNT reactions using gas cells. Acta Phys. Pol. B 2020, 51, 817–822. [Google Scholar] [CrossRef]
- Dickel, T.; Kankainen, A.; Spǎtaru, A.; Amanbayev, D.; Beliuskina, O.; Beck, S.; Constantin, P.; Benyamin, D.; Geissel, H.; Gröf, L.; et al. Multi-nucleon transfer reactions at ion catcher facilities—A new way to produce and study heavy neutron-rich nuclei. J. Phys. Conf. Ser. 2020, 1668, 012012. [Google Scholar] [CrossRef]
- Dvorak, J.; Block, M.; Düllmann, C.; Heinz, S.; Herzberg, R.D.; Schädel, M. IRiS—Exploring new frontiers in neutron-rich isotopes of the heaviest elements with a new Inelastic Reaction Isotope Separator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 652, 687–691. [Google Scholar] [CrossRef]
- Mollaebrahimi, A.; Anđelić, B.; Even, J.; Block, M.; Eibach, M.; Giacoppo, F.; Kalantar-Nayestanaki, N.; Kaleja, O.; Kremers, H.R.; Laatiaoui, M.; et al. A setup to develop novel Chemical Isobaric SEparation (CISE). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2020, 463, 508–511. [Google Scholar] [CrossRef]
- Chen, X.; Even, J.; Fischer, P.; Schlaich, M.; Schlathölter, T.; Schweikhard, L.; Soylu, A. Stacked-ring ion guide for cooling and bunching rare isotopes. Int. J. Mass Spectrom. 2022, 477, 116856. [Google Scholar] [CrossRef]
- Schlaich, M. Development and Characterization of a Multi-Reflection Time-of-Flight Mass Spectrometer for the Offline Ion Source of PUMA. Master’s Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2021. [Google Scholar]
- Wolf, R.N.; Wienholtz, F.; Atanasov, D.; Beck, D.; Blaum, K.; Borgmann, C.; Herfurth, F.; Kowalska, M.; Kreim, S.; Litvinov, Y.A.; et al. ISOLTRAP’s multi-reflection time-of-flight mass separator/spectrometer. Int. J. Mass Spectrom. 2013, 349–350, 123–133. [Google Scholar] [CrossRef]
- Wienholtz, F.; Beck, D.; Blaum, K.; Borgmann, C.; Breitenfeldt, M.; Cakirli, R.B.; George, S.; Herfurth, F.; Holt, J.D.; Kowalska, M.; et al. Masses of exotic calcium isotopes pin down nuclear forces. Nature 2013, 498, 346–349. [Google Scholar] [CrossRef]
- Brandenburg, S.; Ostendorf, R.; Hofstee, M.; Kiewiet, H.; Beijers, H. The irradiation facility at the AGOR cyclotron. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2007, 261, 82–85. [Google Scholar] [CrossRef]
- Brandenburg, S.; Hevinga, M.A.; Nijboer, T.W.; Vorenholt, H. Beam loss monitoring and control for high intensity beams at the AGOR-facility. In Proceedings of the CYCLOTRONS 2010, Lanzhou, China, 6–10 September 2010; pp. 227–229. [Google Scholar]
- Karpov, A.; Saiko, V. Production of neutron-rich nuclides in the vicinity of N = 126 shell closure in multinucleon transfer reactions. EPJ Web Conf. 2017, 163, 27. [Google Scholar] [CrossRef] [Green Version]
- Karpov, A.; Saiko, V. Synthesis of Transuranium Nuclei in Multinucleon Transfer Reactions at Near-Barrier Energies. Phys. Partic. Nucl. Lett. 2019, 16, 667–670. [Google Scholar] [CrossRef]
- Shima, K.; Ishihara, T.; Mikumo, T. Empirical formula for the average equilibrium charge-state of heavy ions behind various foils. Nucl. Instrum. Methods Phys. Res. 1982, 200, 605–608. [Google Scholar] [CrossRef]
- Nikolaev, V.; Dmitriev, I. On the equilibrium charge distribution in heavy element ion beams. Phys. Lett. A 1968, 28, 277–278. [Google Scholar] [CrossRef]
- Wolf, R.N.; Marx, G.; Rosenbusch, M.; Schweikhard, L. Static-mirror ion capture and time focusing for electrostatic ion-beam traps and multi-reflection time-of-flight mass analyzers by use of an in-trap potential lift. Int. J. Mass Spectrom. 2012, 313, 8–14. [Google Scholar] [CrossRef]
- Fischer, P.; Knauer, S.; Marx, G.; Schweikhard, L. In-depth study of in-trap high-resolution mass separation by transversal ion ejection from a multi-reflection time-of-flight device. Rev. Sci. Instrum. 2018, 89, 015114. [Google Scholar] [CrossRef]
- Wienholtz, F.; Kreim, S.; Rosenbusch, M.; Schweikhard, L.; Wolf, R.N. Mass-selective ion ejection from multi-reflection time-of-flight devices via a pulsed in-trap lift. Int. J. Mass Spectrom. 2017, 421, 285–293. [Google Scholar] [CrossRef]
- Cowan, J.J.; Sneden, C.; Lawler, J.E.; Aprahamian, A.; Wiescher, M.; Langanke, K.; Martinez-Pinedo, G.; Thielemann, F.K. Origin of the heaviest elements: The rapid neutron-capture process. Rev. Mod. Phys. 2021, 93, 15002. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Even, J.; Chen, X.; Soylu, A.; Fischer, P.; Karpov, A.; Saiko, V.; Saren, J.; Schlaich, M.; Schlathölter, T.; Schweikhard, L.; et al. The NEXT Project: Towards Production and Investigation of Neutron-Rich Heavy Nuclides. Atoms 2022, 10, 59. https://doi.org/10.3390/atoms10020059
Even J, Chen X, Soylu A, Fischer P, Karpov A, Saiko V, Saren J, Schlaich M, Schlathölter T, Schweikhard L, et al. The NEXT Project: Towards Production and Investigation of Neutron-Rich Heavy Nuclides. Atoms. 2022; 10(2):59. https://doi.org/10.3390/atoms10020059
Chicago/Turabian StyleEven, Julia, Xiangcheng Chen, Arif Soylu, Paul Fischer, Alexander Karpov, Vyacheslav Saiko, Jan Saren, Moritz Schlaich, Thomas Schlathölter, Lutz Schweikhard, and et al. 2022. "The NEXT Project: Towards Production and Investigation of Neutron-Rich Heavy Nuclides" Atoms 10, no. 2: 59. https://doi.org/10.3390/atoms10020059
APA StyleEven, J., Chen, X., Soylu, A., Fischer, P., Karpov, A., Saiko, V., Saren, J., Schlaich, M., Schlathölter, T., Schweikhard, L., Uusitalo, J., & Wienholtz, F. (2022). The NEXT Project: Towards Production and Investigation of Neutron-Rich Heavy Nuclides. Atoms, 10(2), 59. https://doi.org/10.3390/atoms10020059