New Developments in the Production and Research of Actinide Elements
Abstract
1. Introduction
2. Element Production
3. Atomic Structure Modeling
4. Experiments Targeting the Atomic Structure
5. Nuclear Properties
6. The Thorium-229 Nuclear Isomer
7. Trace Analysis and Medical Applications
8. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vernon, R.E. The location and composition of Group 3 of the periodic table. Found. Chem. 2021, 23, 155–197. [Google Scholar] [CrossRef]
- de Bettencourt-Dias, A. The Periodic Table and the f Elements. In Rare Earth Elements and Actinides: Progress in Computational Science Applications; ACS Publications: Washington, DC, USA, 2021; pp. 55–61. [Google Scholar]
- Cowan, J.J.; Sneden, C.; Lawler, J.E.; Aprahamian, A.; Wiescher, M.; Langanke, K.; Martínez-Pinedo, G.; Thielemann, F.K. Origin of the heaviest elements: The rapid neutron-capture process. Rev. Mod. Phys. 2021, 93, 015002. [Google Scholar] [CrossRef]
- Roberto, J.B.; Rykaczewski, K.P. Actinide Targets for the Synthesis of Superheavy Nuclei: Current Priorities and Future Opportunities. In Proceedings of the Fission and Properties of Neutron-Rich Nuclei Sixth International Conference on ICFN6, Sanibel Island, FL, USA, 6–12 November 2016; World Scientific: Singapore, 2017. [Google Scholar] [CrossRef]
- Robinson, S.M.; Benker, D.E.; Collins, E.D.; Ezold, J.G.; Garrison, J.R.; Hogle, S.L. Production of Cf-252 and other transplutonium isotopes at Oak Ridge National Laboratory. Radiochim. Acta 2020, 108, 737–746. [Google Scholar] [CrossRef]
- Moody, K.J. Synthesis of Superheavy Elements. In The Chemistry of Superheavy Elements; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–81. [Google Scholar] [CrossRef]
- Even, J.; Chen, X.; Soylu, A.; Fischer, P.; Karpov, A.; Saiko, V.; Saren, J.; Schlaich, M.; Schlathölter, T.; Schweikhard, L.; et al. The NEXT project: Towards production and investigation of neutron-rich heavy nuclides. Atoms 2022, 10, 59. [Google Scholar] [CrossRef]
- Münzenberg, G.; Devaraja, H.M.; Dickel, T.; Geissel, H.; Gupta, M.; Heinz, S.; Hofmann, S.; Plass, W.R.; Scheidenberger, C.; Winfield, J.S.; et al. SHE Research with Rare-Isotope Beams, Challenges and Perspectives, and the New Generation of SHE Factories. In New Horizons in Fundamental Physics; Schramm, S., Schäfer, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 81–90. [Google Scholar] [CrossRef]
- Miyatake, H. KISS project. AIP Conf. Proc. 2021, 2319, 080006. Available online: https://aip.scitation.org/doi/pdf/10.1063/5.0036990 (accessed on 5 February 2022). [CrossRef]
- Dickel, T.; Kankainen, A.; Spătaru, A.; Amanbayev, D.; Beliuskina, O.; Beck, S.; Constantin, P.; Benyamin, D.; Geissel, H.; Gröf, L.; et al. Multi-nucleon transfer reactions at ion catcher facilities—A new way to produce and study heavy neutron-rich nuclei. J. Phys. Conf. Ser. 2020, 1668, 012012. [Google Scholar] [CrossRef]
- Savard, G.; Brodeur, M.; Clark, J.; Knaack, R.; Valverde, A. The N = 126 factory: A new facility to produce very heavy neutron-rich isotopes. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 463, 258–261. [Google Scholar] [CrossRef]
- Smartt, S.J.; Chen, T.W.; Jerkstrand, A.; Coughlin, M.; Kankare, E.; Sim, S.A.; Fraser, M.; Inserra, C.; Maguire, K.; Chambers, K.C.; et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 2017, 551, 75–79. [Google Scholar] [CrossRef]
- Fontes, C.J.; Fryer, C.L.; Hungerford, A.L.; Wollaeger, R.T.; Korobkin, O. A line-binned treatment of opacities for the spectra and light curves from neutron star mergers. Mon. Not. R. Astron. Soc. 2020, 493, 4143–4171. Available online: https://academic.oup.com/mnras/article-pdf/493/3/4143/32920641/staa485.pdf (accessed on 27 May 2022). [CrossRef]
- Tanaka, M.; Kato, D.; Gaigalas, G.; Kawaguchi, K. Systematic opacity calculations for kilonovae. Mon. Not. R. Astron. Soc. 2020, 496, 1369–1392. Available online: https://academic.oup.com/mnras/article-pdf/496/2/1369/33424936/staa1576.pdf (accessed on 27 May 2022). [CrossRef]
- Silva, R.F.; Sampaio, J.M.; Amaro, P.; Flörs, A.; Martínez-Pinedo, G.; Marques, J.P. Structure Calculations in Nd III and U III Relevant for Kilonovae Modelling. Atoms 2022, 10, 18. [Google Scholar] [CrossRef]
- Pyykkö, P. The RTAM electronic bibliography, version 17.0, on relativistic theory of atoms and molecules. J. Comput. Chem. 2013, 34, 2667. [Google Scholar] [CrossRef] [PubMed]
- Naubereit, P.; Studer, D.; Viatkina, A.V.; Buchleitner, A.; Dietz, B.; Flambaum, V.V.; Wendt, K. Intrinsic quantum chaos and spectral fluctuations within the protactinium atom. Phys. Rev. A 2018, 98, 022506. [Google Scholar] [CrossRef]
- Naubereit, P.; Gottwald, T.; Studer, D.; Wendt, K. Excited atomic energy levels in protactinium by resonance ionization spectroscopy. Phys. Rev. A 2018, 98, 022505. [Google Scholar] [CrossRef]
- Eliav, E.; Borschevsky, A.; Kaldor, U. Electronic Structure at the Edge of the Periodic Table. Nucl. Phys. News 2019, 29, 16–20. [Google Scholar] [CrossRef]
- Fritzsche, S. Symbolic Evaluation of Expressions from Racah’s Algebra. Symmetry 2021, 13, 1558. [Google Scholar] [CrossRef]
- Safronova, M.S.; Safronova, U.I.; Kozlov, M.G. Atomic properties of actinide ions with particle-hole configurations. Phys. Rev. A 2018, 97, 012511. [Google Scholar] [CrossRef]
- Fritzsche, S. Level Structure and Properties of Open f-Shell Elements. Atoms 2022, 10, 7. [Google Scholar] [CrossRef]
- Dzuba, V. Calculation of Polarizabilities for Atoms with Open Shells. Symmetry 2020, 12, 1950. [Google Scholar] [CrossRef]
- Kahl, E.; Berengut, J. Ambit: A programme for high-precision relativistic atomic structure calculations. Comput. Phys. Commun. 2019, 238, 232–243. [Google Scholar] [CrossRef]
- Dzuba, V.A.; Flambaum, V.V.; Roberts, B.M. Calculations of the atomic structure for the low-lying states of actinium. Phys. Rev. A 2019, 100, 022504. [Google Scholar] [CrossRef]
- Allehabi, S.O.; Li, J.; Dzuba, V.; Flambaum, V. Theoretical study of electronic structure of erbium and fermium. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107137. [Google Scholar] [CrossRef]
- Li, J.; Dzuba, V. Theoretical study of the spectroscopic properties of mendelevium (Z = 101). J. Quant. Spectrosc. Radiat. Transf. 2020, 247, 106943. [Google Scholar] [CrossRef]
- Kahl, E.V.; Berengut, J.C.; Laatiaoui, M.; Eliav, E.; Borschevsky, A. High-precision ab initio calculations of the spectrum of Lr+. Phys. Rev. A 2019, 100, 062505. [Google Scholar] [CrossRef]
- Kahl, E.V.; Raeder, S.; Eliav, E.; Borschevsky, A.; Berengut, J.C. Ab initio calculations of the spectrum of lawrencium. Phys. Rev. A 2021, 104, 052810. [Google Scholar] [CrossRef]
- Ramanantoanina, H.; Borschevsky, A.; Block, M.; Laatiaoui, M. Electronic structure of Lr+ (Z = 103) from ab initio calculations. Atoms 2022, 10, 48. [Google Scholar] [CrossRef]
- Ramanantoanina, H.; Borschevsky, A.; Block, M.; Laatiaoui, M. Electronic structure of Rf+ (Z = 104) from ab initio calculations. Phys. Rev. A 2021, 104, 022813. [Google Scholar] [CrossRef]
- Allehabi, S.O.; Dzuba, V.A.; Flambaum, V.V. Theoretical study of the electronic structure of hafnium (Hf,Z = 72) and rutherfordium (Rf,Z = 104) atoms and their ions: Energy levels and hyperfine-structure constants. Phys. Rev. A 2021, 104, 052811. [Google Scholar] [CrossRef]
- Lackenby, B.G.C.; Dzuba, V.A.; Flambaum, V.V. Calculation of atomic spectra and transition amplitudes for the superheavy element Db (Z = 105). Phys. Rev. A 2018, 98, 022518. [Google Scholar] [CrossRef]
- Sewtz, M.; Backe, H.; Dretzke, A.; Kube, G.; Lauth, W.; Schwamb, P.; Eberhardt, K.; Grüning, C.; Thörle, P.; Trautmann, N.; et al. First Observation of Atomic Levels for the Element Fermium (Z = 100). Phys. Rev. Lett. 2003, 90, 163002. [Google Scholar] [CrossRef]
- Backe, H.; Dretzke, A.; Fritzsche, S.; Haire, R.G.; Kunz, P.; Lauth, W.; Sewtz, M.; Trautmann, N. Laser Spectroscopic Investigation of the Element Fermium (Z = 100). Hyperfine Interact. 2005, 162, 3–14. [Google Scholar] [CrossRef]
- Fritzsche, S. On the accuracy of valence–shell computations for heavy and super–heavy elements. Eur. Phys. J. D 2005, 33, 15–21. [Google Scholar] [CrossRef]
- Borschevsky, A.; Eliav, E.; Vilkas, M.J.; Ishikawa, Y.; Kaldor, U. Predicted spectrum of atomic nobelium. Phys. Rev. A 2007, 75, 042514. [Google Scholar] [CrossRef]
- Indelicato, P.; Santos, J.P.; Boucard, S.; Desclaux, J.P. QED and relativistic corrections in superheavy elements. Eur. Phys. J. D 2007, 45, 155–170. [Google Scholar] [CrossRef]
- Liu, Y.; Hutton, R.; Zou, Y. Atomic structure of the super-heavy element No I (Z = 102). Phys. Rev. A 2007, 76, 062503. [Google Scholar] [CrossRef]
- Dzuba, V.A.; Safronova, M.S.; Safronova, U.I. Atomic properties of superheavy elements No, Lr, and Rf. Phys. Rev. A 2014, 90, 012504. [Google Scholar] [CrossRef]
- Laatiaoui, M.; Lauth, W.; Backe, H.; Block, M.; Ackermann, D.; Cheal, B.; Chhetri, P.; Düllmann, C.E.; van Duppen, P.; Even, J.; et al. Atom-at-a-time laser resonance ionization spectroscopy of nobelium. Nature 2016, 538, 495–498. [Google Scholar] [CrossRef]
- Lackenby, B.G.C.; Dzuba, V.A.; Flambaum, V.V. Atomic structure calculations of superheavy noble element oganesson (Z = 118). Phys. Rev. A 2018, 98, 042512. [Google Scholar] [CrossRef]
- Guo, Y.; Pašteka, L.F.; Eliav, E.; Borschevsky, A. Ionization potentials and electron affinity of oganesson with relativistic coupled cluster method. In New Electron Correlation Methods and Their Applications, and Use of Atomic Orbitals with Exponential Asymptotes; Elsevier: Amsterdam, The Netherlands, 2021; pp. 107–123. [Google Scholar] [CrossRef]
- Smits, O.R.; Mewes, J.M.; Jerabek, P.; Schwerdtfeger, P. Oganesson: A Noble Gas Element That Is Neither Noble Nor a Gas. Angew. Chem. Int. Ed. 2020, 59, 23636–23640. [Google Scholar] [CrossRef]
- Sato, T.; Asai, M.; Borschevsky, A.; Stora, T.; Sato, N.; Kaneya, Y.; Tsukada, K.; Düllmann, C.E.; Eberhardt, K.; Eliav, E.; et al. Measurement of the first ionization potential of lawrencium, element 103. Nature 2015, 520, 209–211. [Google Scholar] [CrossRef]
- Sato, T.K.; Asai, M.; Borschevsky, A.; Beerwerth, R.; Kaneya, Y.; Makii, H.; Mitsukai, A.; Nagame, Y.; Osa, A.; Toyoshima, A.; et al. First ionization potentials of Fm, Md, No, and Lr: Verification of filling-up of 5f electrons and confirmation of the actinide series. J. Am. Chem. Soc. 2018, 140, 14609–14613. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, M.; Safronova, M.; López-Urrutia, J.C.; Schmidt, P. Highly charged ions: Optical clocks and applications in fundamental physics. Rev. Mod. Phys. 2018, 90, 045005. [Google Scholar] [CrossRef]
- Porsev, S.G.; Safronova, U.I.; Safronova, M.S.; Schmidt, P.O.; Bondarev, A.I.; Kozlov, M.G.; Tupitsyn, I.I.; Cheung, C. Optical clocks based on the Cf15+ and Cf17+ ions. Phys. Rev. A 2020, 102, 012802. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (Ver. 5.9); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021. Available online: https://physics.nist.gov/asd (accessed on 26 April 2022).
- Kramida, A. Update of Atomic Data for the First Three Spectra of Actinium. Atoms 2022, 10, 42. [Google Scholar] [CrossRef]
- Block, M.; Laatiaoui, M.; Raeder, S. Recent progress in laser spectroscopy of the actinides. Prog. Part. Nucl. Phys. 2021, 116, 103834. [Google Scholar] [CrossRef]
- Chhetri, P.; Ackermann, D.; Backe, H.; Block, M.; Cheal, B.; Droese, C.; Düllmann, C.E.; Even, J.; Ferrer, R.; Giacoppo, F.; et al. Precision Measurement of the First Ionization Potential of Nobelium. Phys. Rev. Lett. 2018, 120, 263003. [Google Scholar] [CrossRef]
- Warbinek, J.; Andelic, B.; Block, M.; Chhetri, P.; Claessens, A.; Ferrer, R.; Giacoppo, F.; Kaleja, O.; Kieck, T.; Kim, E.; et al. Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides. Atoms 2022, 10, 41. [Google Scholar] [CrossRef]
- Laatiaoui, M.; Buchachenko, A.A.; Viehland, L.A. Laser Resonance Chromatography of Superheavy Elements. Phys. Rev. Lett. 2020, 125, 023002. [Google Scholar] [CrossRef]
- Laatiaoui, M.; Buchachenko, A.A.; Viehland, L.A. Exploiting transport properties for the detection of optical pumping in heavy ions. Phys. Rev. A 2020, 102, 013106. [Google Scholar] [CrossRef]
- Romero-Romero, E.; Block, M.; Kim, E.; Nothhelfer, S.; Raeder, S.; Ramanantoanina, H.; Rickert, E.; Schneider, J.; Sikora, P.; Laatiaoui, M. A progress report on Laser Resonance Chromatography. Atoms 2022. manuscript in preparation. [Google Scholar]
- Rickert, E.; Backe, H.; Block, M.; Laatiaoui, M.; Lauth, W.; Raeder, S.; Schneider, J.; Schneider, F. Ion Mobilities for Heaviest Element Identification. Hyperfine Interact. 2020, 241, 49. [Google Scholar] [CrossRef]
- Cheal, B.; Flanagan, K.T. Progress in laser spectroscopy at radioactive ion beam facilities. J. Phys. G Nucl. Part. Phys. 2010, 37, 113101. [Google Scholar] [CrossRef]
- Campbell, P.; Moore, I.; Pearson, M. Laser spectroscopy for nuclear structure physics. Prog. Part. Nucl. Phys. 2016, 86, 127–180. [Google Scholar] [CrossRef]
- Voss, A.; Sonnenschein, V.; Campbell, P.; Cheal, B.; Kron, T.; Moore, I.D.; Pohjalainen, I.; Raeder, S.; Trautmann, N.; Wendt, K. High-resolution laser spectroscopy of long-lived plutonium isotopes. Phys. Rev. A 2017, 95, 032506. [Google Scholar] [CrossRef]
- Raggio, A.; Pohjalainen, I.; Moore, I.D. Observation of Collisional De-Excitation Phenomena in Plutonium. Atoms 2022, 10, 40. [Google Scholar] [CrossRef]
- Zhang, K.; Studer, D.; Weber, F.; Gadelshin, V.M.; Kneip, N.; Raeder, S.; Budker, D.; Wendt, K.; Kieck, T.; Porsev, S.G.; et al. Detection of the Lowest-Lying Odd-Parity Atomic Levels in Actinium. Phys. Rev. Lett. 2020, 125, 073001. [Google Scholar] [CrossRef]
- Verstraelen, E.; Teigelhöfer, A.; Ryssens, W.; Ames, F.; Barzakh, A.; Bender, M.; Ferrer, R.; Goriely, S.; Heenen, P.H.; Huyse, M.; et al. Search for octupole-deformed actinium isotopes using resonance ionization spectroscopy. Phys. Rev. C 2019, 100, 044321. [Google Scholar] [CrossRef]
- Ferrer, R.; Barzakh, A.; Bastin, B.; Beerwerth, R.; Block, M.; Creemers, P.; Grawe, H.; de Groote, R.; Delahaye, P.; Fléchard, X.; et al. Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion. Nat. Commun. 2017, 8, 14520. [Google Scholar] [CrossRef]
- Granados, C.; Creemers, P.; Ferrer, R.; Gaffney, L.P.; Gins, W.; de Groote, R.; Huyse, M.; Kudryavtsev, Y.; Martínez, Y.; Raeder, S.; et al. In-gas laser ionization and spectroscopy of actinium isotopes near the N = 126 closed shell. Phys. Rev. C 2017, 96, 054331. [Google Scholar] [CrossRef]
- Weber, F.; Düllmann, C.E.; Gadelshin, V.; Kneip, N.; Oberstedt, S.; Raeder, S.; Runke, J.; Mokry, C.; Thörle-Pospiech, P.; Studer, D.; et al. Probing the Atomic Structure of Californium by Resonance Ionization Spectroscopy. Atoms 2022, 10, 51. [Google Scholar] [CrossRef]
- Nothhelfer, S.; Albrecht-Schönzart, T.E.; Block, M.; Chhetri, P.; Düllmann, C.E.; Ezold, J.G.; Gadelshin, V.; Gaiser, A.; Giacoppo, F.; Heinke, R.; et al. Nuclear structure investigations of Es253-255 by laser spectroscopy. Phys. Rev. C 2022, 105, l021302. [Google Scholar] [CrossRef]
- Raeder, S.; Ackermann, D.; Backe, H.; Beerwerth, R.; Berengut, J.; Block, M.; Borschevsky, A.; Cheal, B.; Chhetri, P.; Düllmann, C.E.; et al. Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy. Phys. Rev. Lett. 2018, 120, 232503. [Google Scholar] [CrossRef]
- Kudryavtsev, Y.; Ferrer, R.; Huyse, M.; den Bergh, P.V.; Duppen, P.V. The in-gas-jet laser ion source: Resonance ionization spectroscopy of radioactive atoms in supersonic gas jets. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 297, 7–22. [Google Scholar] [CrossRef]
- Zadvornaya, A.; Creemers, P.; Dockx, K.; Ferrer, R.; Gaffney, L.; Gins, W.; Granados, C.; Huyse, M.; Kudryavtsev, Y.; Laatiaoui, M.; et al. Characterization of Supersonic Gas Jets for High-Resolution Laser Ionization Spectroscopy of Heavy Elements. Phys. Rev. X 2018, 8, 041008. [Google Scholar] [CrossRef]
- Ferrer, R.; Verlinde, M.; Verstraelen, E.; Claessens, A.; Huyse, M.; Kraemer, S.; Kudryavtsev, Y.; Romans, J.; den Bergh, P.V.; Duppen, P.V.; et al. Hypersonic nozzle for laser-spectroscopy studies at 17 K characterized by resonance-ionization-spectroscopy-based flow mapping. Phys. Rev. Res. 2021, 3, 043041. [Google Scholar] [CrossRef]
- Piot, J. Studying Nuclear Structure at the extremes with S3. EPJ Web Conf. 2018, 178, 02027. [Google Scholar] [CrossRef][Green Version]
- Ferrer, R.; Bastin, B.; Boilley, D.; Creemers, P.; Delahaye, P.; Liénard, E.; Fléchard, X.; Franchoo, S.; Ghys, L.; Huyse, M.; et al. In gas laser ionization and spectroscopy experiments at the Superconducting Separator Spectrometer (S3): Conceptual studies and preliminary design. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 317, 570–581. [Google Scholar] [CrossRef][Green Version]
- Romans, J.; Ajayakumar, A.; Authier, M.; Boumard, F.; Caceres, L.; Cam, J.F.; Claessens, A.; Damoy, S.; Delahaye, P.; Desrues, P.; et al. First Offline Results from the S3 Low-Energy Branch. Atoms 2022, 10, 21. [Google Scholar] [CrossRef]
- Papadakis, P.; Liimatainen, J.; Sarén, J.; Moore, I.; Eronen, T.; Partanen, J.; Pohjalainen, I.; Rinta-Antila, S.; Tuunanen, J.; Uusitalo, J. The MARA-LEB ion transport system. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 463, 286–289. [Google Scholar] [CrossRef]
- Raeder, S.; Block, M.; Chhetri, P.; Ferrer, R.; Kraemer, S.; Kron, T.; Laatiaoui, M.; Nothhelfer, S.; Schneider, F.; Duppen, P.V.; et al. A gas-jet apparatus for high-resolution laser spectroscopy on the heaviest elements at SHIP. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 463, 272–276. [Google Scholar] [CrossRef]
- Münzberg, D.; Block, M.; Claessens, A.; Ferrer, R.; Laatiaoui, M.; Lantis, J.; Nothhelfer, S.; Raeder, S.; Van Duppen, P. Resolution characterizations of JetRIS in Mainz using 164Dy. Atoms 2022, 10, 57. [Google Scholar] [CrossRef]
- Verlinde, M.; Ferrer, R.; Claessens, A.; Granados, C.A.; Kraemer, S.; Kudryavtsev, Y.; Li, D.; den Bergh, P.V.; Duppen, P.V.; Verstraelen, E. Single-longitudinal-mode pumped pulsed-dye amplifier for high-resolution laser spectroscopy. Rev. Sci. Instrum. 2020, 91, 103002. [Google Scholar] [CrossRef] [PubMed]
- Raeder, S.; Ferrer, R.; Granados, C.; Huyse, M.; Kron, T.; Kudryavtsev, Y.; Lecesne, N.; Piot, J.; Romans, J.; Savajols, H.; et al. Performance of Dye and Ti:sapphire laser systems for laser ionization and spectroscopy studies at S3. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 463, 86–95. [Google Scholar] [CrossRef]
- Sonnenschein, V.; Ohashi, M.; Tomita, H.; Iguchi, T. A direct diode pumped continuous-wave Ti:sapphire laser as seed of a pulsed amplifier for high-resolution resonance ionization spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 463, 512–514. [Google Scholar] [CrossRef]
- Dobaczewski, J.; Engel, J.; Kortelainen, M.; Becker, P. Correlating Schiff Moments in the Light Actinides with Octupole Moments. Phys. Rev. Lett. 2018, 121, 232501. [Google Scholar] [CrossRef]
- Ruiz, R.F.G.; Berger, R.; Billowes, J.; Binnersley, C.L.; Bissell, M.L.; Breier, A.A.; Brinson, A.J.; Chrysalidis, K.; Cocolios, T.E.; Cooper, B.S.; et al. Spectroscopy of short-lived radioactive molecules. Nature 2020, 581, 396–400. [Google Scholar] [CrossRef]
- von der Wense, L.; Seiferle, B.; Laatiaoui, M.; Neumayr, J.B.; Maier, H.J.; Wirth, H.F.; Mokry, C.; Runke, J.; Eberhardt, K.; Düllmann, C.E.; et al. Direct detection of the 229Th nuclear clock transition. Nature 2016, 533, 47–51. [Google Scholar] [CrossRef]
- Seiferle, B.; von der Wense, L.; Bilous, P.V.; Amersdorffer, I.; Lemell, C.; Libisch, F.; Stellmer, S.; Schumm, T.; Düllmann, C.E.; Pálffy, A.; et al. Energy of the 229Th nuclear clock transition. Nature 2019, 573, 243–246. [Google Scholar] [CrossRef]
- Sikorsky, T.; Geist, J.; Hengstler, D.; Kempf, S.; Gastaldo, L.; Enss, C.; Mokry, C.; Runke, J.; Düllmann, C.E.; Wobrauschek, P.; et al. Measurement of the Th229 Isomer Energy with a Magnetic Microcalorimeter. Phys. Rev. Lett. 2020, 125, 142503. [Google Scholar] [CrossRef]
- Peik, E.; Schumm, T.; Safronova, M.S.; Pálffy, A.; Weitenberg, J.; Thirolf, P.G. Nuclear clocks for testing fundamental physics. Quantum Sci. Technol. 2021, 6, 034002. [Google Scholar] [CrossRef]
- Thirolf, P.G.; Seiferle, B.; Wense, L.V. The Thorium-Isomer: Heartbeat for a Nuclear Clock. Nucl. Phys. News 2021, 31, 13–18. [Google Scholar] [CrossRef]
- Beeks, K.; Sikorsky, T.; Schumm, T.; Thielking, J.; Okhapkin, M.V.; Peik, E. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 2021, 3, 238–248. [Google Scholar] [CrossRef]
- Verlinde, M.; Kraemer, S.; Moens, J.; Chrysalidis, K.; Correia, J.G.; Cottenier, S.; Witte, H.D.; Fedorov, D.V.; Fedosseev, V.N.; Ferrer, R.; et al. Alternative approach to populate and study the Th229 nuclear clock isomer. Phys. Rev. C 2019, 100, 024315. [Google Scholar] [CrossRef]
- Seiferle, B.; Moritz, D.; Scharl, K.; Ding, S.; Zacherl, F.; Löbell, L.; Thirolf, P.G. Extending Our Knowledge about the 229Th Nuclear Isomer. Atoms 2022, 10, 24. [Google Scholar] [CrossRef]
- Seiferle, B.; von der Wense, L.; Thirolf, P.G. Lifetime Measurement of the Th229 nuclear isomer. Phys. Rev. Lett. 2017, 118, 042501. [Google Scholar] [CrossRef] [PubMed]
- Tkalya, E.V.; Si, R. Internal conversion of the low-energy Th229m isomer in the thorium anion. Phys. Rev. C 2020, 101, 054602. [Google Scholar] [CrossRef]
- Campbell, C.J.; Radnaev, A.G.; Kuzmich, A. Wigner Crystals of 229Th for Optical Excitation of the Nuclear Isomer. Phys. Rev. Lett. 2011, 106, 223001. [Google Scholar] [CrossRef] [PubMed]
- Thielking, J.; Okhapkin, M.V.; Głowacki, P.; Meier, D.M.; von der Wense, L.; Seiferle, B.; Düllmann, C.E.; Thirolf, P.G.; Peik, E. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 2018, 556, 321–325. [Google Scholar] [CrossRef]
- Hotchkis, M.; Child, D.; Zorko, B. Actinides AMS for nuclear safeguards and related applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 1257–1260. [Google Scholar] [CrossRef]
- Bosco, H.; Hamann, L.; Kneip, N.; Raiwa, M.; Weiss, M.; Wendt, K.; Walther, C. New horizons in microparticle forensics: Actinide imaging and detection of 238 Pu and 242m Am in hot particles. Sci. Adv. 2021, 7, 44. [Google Scholar] [CrossRef]
- Kneip, N.; Düllmann, C.E.; Gadelshin, V.; Heinke, R.; Mokry, C.; Raeder, S.; Runke, J.; Studer, D.; Trautmann, N.; Weber, F.; et al. Highly selective two-step laser ionization schemes for the analysis of actinide mixtures. Hyperfine Interact. 2020, 241, 45. [Google Scholar] [CrossRef]
- Raeder, S.; Kneip, N.; Reich, T.; Studer, D.; Trautmann, N.; Wendt, K. Recent developments in resonance ionization mass spectrometry for ultra-trace analysis of actinide elements. Radiochim. Acta 2019, 107, 645–652. [Google Scholar] [CrossRef]
- Liu, Y.; Stracener, D. High efficiency resonance ionization of thorium. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 462, 95–101. [Google Scholar] [CrossRef]
- Galindo-Uribarri, A.; Liu, Y.; Romero, E.R.; Stracener, D.W. High efficiency laser resonance ionization of plutonium. Sci. Rep. 2021, 11, 23432. [Google Scholar] [CrossRef]
- Schönenbach, D.; Berg, F.; Breckheimer, M.; Hagenlocher, D.; Schönberg, P.; Haas, R.; Amayri, S.; Reich, T. Development, characterization, and first application of a resonant laser secondary neutral mass spectrometry setup for the research of plutonium in the context of long-term nuclear waste storage. Anal. Bioanal. Chem. 2021, 413, 3987–3997. [Google Scholar] [CrossRef]
- Savina, M.R.; Isselhardt, B.H.; Trappitsch, R. Simultaneous Isotopic Analysis of U, Pu, and Am in Spent Nuclear Fuel by Resonance Ionization Mass Spectrometry. Anal. Chem. 2021, 93, 9505–9512. [Google Scholar] [CrossRef]
- Dockx, K.; Cocolios, T.E.; Stora, T. ISOL Technique for the Production of 225Ac at CERN-MEDICIS. J. Med Imaging Radiat. Sci. 2019, 50, S92. [Google Scholar] [CrossRef]
- Duchemin, C.; Ramos, J.P.; Stora, T.; Ahmed, E.; Aubert, E.; Audouin, N.; Barbero, E.; Barozier, V.; Bernardes, A.P.; Bertreix, P.; et al. CERN-MEDICIS: A Review Since Commissioning in 2017. Front. Med. 2021, 8. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laatiaoui, M.; Raeder, S. New Developments in the Production and Research of Actinide Elements. Atoms 2022, 10, 61. https://doi.org/10.3390/atoms10020061
Laatiaoui M, Raeder S. New Developments in the Production and Research of Actinide Elements. Atoms. 2022; 10(2):61. https://doi.org/10.3390/atoms10020061
Chicago/Turabian StyleLaatiaoui, Mustapha, and Sebastian Raeder. 2022. "New Developments in the Production and Research of Actinide Elements" Atoms 10, no. 2: 61. https://doi.org/10.3390/atoms10020061
APA StyleLaatiaoui, M., & Raeder, S. (2022). New Developments in the Production and Research of Actinide Elements. Atoms, 10(2), 61. https://doi.org/10.3390/atoms10020061