Probing Diversity of Type II Supernovae with the Chinese Space Station Telescope
Abstract
:1. Introduction
2. Observational Diversity of SNe II
2.1. SN IIP
2.2. SN IIL
2.3. SN IIb
2.4. SN IIn
2.5. SN 1987A-Like
3. Progenitors of Core-Collapse Supernovae
4. Roles of CSST in SNe II Studies
4.1. Chinese Space Station Telescope
4.2. CSST for Mapping SNe II with Progenitors
4.3. CSST for Revealing the Environment of SNe II
4.4. CSST for Observing Peculiar Transients
4.5. CSST for SNe II Cosmology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SN/SNe | supernova/supernovae |
CCSNe | Core-Collapse Supernovae |
SESNe | Stripped Envelope Supernovae |
SLSNe | Superluminous Supernovae |
PISNe | Pair-instability Supernovae |
ECSNe | Electron-capture Supenovae |
CSM | Circumstellar Material |
CSI | Circumstellar Interaction |
RSG | Red Supergiant |
BSG | Blue Supergiant |
YSG | Yellow Supergiant |
WR | Wolf-Rayet stars |
LBV | Luminous Blue Varible |
FBOT | Fast Blue Optical Transients |
FoV | Field of View |
SED | spectral energy distribution |
FI | Flash-Ionized |
CSST | Chinese Space Station Telescope |
MCI | multichannel imager |
IFS | integral field spectrograph |
IFU | integral field units |
LOSS | Lick Observatory Supernova Search |
HST | Hubble Space Telescope |
ACS | Advanced Camera for Surveys |
WFC | Wide Field Channel |
EPM | Expanding Photosphere Method |
PCM | Photometric Color Method |
SCM | Standard Candle Method |
Appendix A
Multicolor Imaging and Slitless Spectroscopy Survey | ||||
---|---|---|---|---|
FOV | 1.1 deg | |||
Survey area | ≥17,500 | |||
Photometric survey | Spectroscopic survey | |||
Bands | NUV (255 nm–317 nm), u (322 nm–396 nm), g (403 nm–545 nm), r (554 nm–684 nm), i (695 nm–833 nm), z (846 nm–1000 nm) and y (937 nm–1000 nm) | Bands | GU (255 um–420 nm), GV (400 nm–650 nm), GI (620 nm–1000 nm) | |
Spatial resolution | ∼0.15″ | Spectral resolution | R ≥ 200 | |
Limit magnitude | 25.5 on average (S/N > 5, AB mag) | Limit magnitude | GU, GI 20; GV 21 (S/N > 5) | |
MCI | ||||
FOV | ||||
Survey area | ≥300 arcmin | |||
Bands | 250 nm–400 nm, 400 nm–700 nm, 700 nm–1100 nm | |||
Spatial resolution | 0.18″ | |||
Limit magnitude | 29–30 mag (SN>5) | |||
IFS | ||||
FOV | ≥6″ × 6″ | |||
Wavelength coverage | 0.35–1.0 um | |||
Spatial resolution | ≤0.2″ | |||
Spectral resolution | R ≥ 1000 | |||
Limit magnitude | 17 mag/arcsec (B band, 200 s × 20, SN = 10) |
References
- Minkowski, R. Spectra of Supernovae. Publ. Astron. Soc. Pac. 1941, 53, 224. [Google Scholar] [CrossRef]
- Filippenko, A.V. Optical Spectra of Supernovae. Annu. Rev. Astron. Astrophys. 1997, 35, 309–355. [Google Scholar] [CrossRef]
- Turatto, M. Classification of Supernovae. In Supernovae and Gamma-ray Bursters; Weiler, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 598, pp. 21–36. [Google Scholar] [CrossRef]
- Podsiadlowski, P.; Joss, P.C.; Hsu, J.J.L. Presupernova Evolution in Massive Interacting Binaries. Astrophys. J. 1992, 391, 246. [Google Scholar] [CrossRef]
- Heger, A.; Langer, N. Presupernova Evolution of Rotating Massive Stars. II. Evolution of the Surface Properties. Astrophys. J. 2000, 544, 1016–1035. [Google Scholar] [CrossRef]
- Cappellaro, E.; Turatto, M. Supernova Types and Rates. In Proceedings of the The Influence of Binaries on Stellar Population Studies; Astrophysics and Space Science Library; Vanbeveren, D., Ed.; Springer: Dordrecht, The Netherlands, 2001; Volume 264, p. 199. [Google Scholar] [CrossRef]
- Eldridge, J.J.; Tout, C.A. The progenitors of core-collapse supernovae. Mon. Not. R. Astron. Soc. 2004, 353, 87–97. [Google Scholar] [CrossRef]
- Hirschi, R.; Meynet, G.; Maeder, A. Stellar evolution with rotation. XII. Pre-supernova models. Astron. Astrophys. 2004, 425, 649–670. [Google Scholar] [CrossRef]
- Whelan, J.; Iben, I., Jr. Binaries and Supernovae of Type I. Astrophys. J. 1973, 186, 1007–1014. [Google Scholar] [CrossRef]
- Woosley, S.E.; Weaver, T.A. The physics of supernova explosions. Annu. Rev. Astron. Astrophys. 1986, 24, 205–253. [Google Scholar] [CrossRef]
- Heger, A.; Fryer, C.L.; Woosley, S.E.; Langer, N.; Hartmann, D.H. How Massive Single Stars End Their Life. Astrophys. J. 2003, 591, 288–300. [Google Scholar] [CrossRef]
- Agnoletto, I.; Benetti, S.; Cappellaro, E.; Zampieri, L.; Turatto, M.; Mazzali, P.; Pastorello, A.; Della Valle, M.; Bufano, F.; Harutyunyan, A.; et al. SN 2006gy: Was it Really Extraordinary? Astrophys. J. 2009, 691, 1348–1359. [Google Scholar] [CrossRef]
- Maguire, K.; Jerkstrand, A.; Smartt, S.J.; Fransson, C.; Pastorello, A.; Benetti, S.; Valenti, S.; Bufano, F.; Leloudas, G. Constraining the physical properties of Type II-Plateau supernovae using nebular phase spectra. Mon. Not. R. Astron. Soc. 2012, 420, 3451–3468. [Google Scholar] [CrossRef]
- Jerkstrand, A.; Fransson, C.; Maguire, K.; Smartt, S.; Ergon, M.; Spyromilio, J. The progenitor mass of the Type IIP supernova SN 2004et from late-time spectral modeling. Astron. Astrophys. 2012, 546, A28. [Google Scholar] [CrossRef]
- Jerkstrand, A.; Ertl, T.; Janka, H.T.; Müller, E.; Sukhbold, T.; Woosley, S.E. Emission line models for the lowest mass core-collapse supernovae—I. Case study of a 9 M⊙ one-dimensional neutrino-driven explosion. Mon. Not. R. Astron. Soc. 2018, 475, 277–305. [Google Scholar] [CrossRef]
- Grassberg, E.K.; Imshennik, V.S.; Nadyozhin, D.K. On the Theory of the Light Curves of Supernovae. Astrophys. Space Sci. 1971, 10, 28–51. [Google Scholar] [CrossRef]
- Falk, S.W.; Arnett, W.D. Radiation Dynamics, Envelope Ejection, and Supernova Light Curves. Astrophys. J. Suppl. 1977, 33, 515. [Google Scholar] [CrossRef]
- Arnett, W.D. Analytic solutions for light curves of supernovae of Type II. Astrophys. J. 1980, 237, 541–549. [Google Scholar] [CrossRef]
- Litvinova, I.Y.; Nadezhin, D.K. Determination of Integrated Parameters for Type-II Supernovae. Sov. Astron. Lett. 1985, 11, 145–147. [Google Scholar]
- Chugai, N.N. Duration of the Plateau Stage in Type-II Supernovae. Sov. Astron. Lett. 1991, 17, 210. [Google Scholar]
- Blinnikov, S.I.; Popov, D.V. Analytic models for low-mass supernovae of type II. Astron. Astrophys. 1993, 274, 775. [Google Scholar]
- Popov, D.V. An Analytical Model for the Plateau Stage of Type II Supernovae. Astrophys. J. 1993, 414, 712. [Google Scholar] [CrossRef]
- Kasen, D.; Woosley, S.E. Type II Supernovae: Model Light Curves and Standard Candle Relationships. Astrophys. J. 2009, 703, 2205–2216. [Google Scholar] [CrossRef]
- Pumo, M.L.; Zampieri, L. Radiation-hydrodynamical Modeling of Core-collapse Supernovae: Light Curves and the Evolution of Photospheric Velocity and Temperature. Astrophys. J. 2011, 741, 41. [Google Scholar] [CrossRef]
- Dessart, L.; Hillier, D.J.; Li, C.; Woosley, S. On the nature of supernovae Ib and Ic. Mon. Not. R. Astron. Soc. 2012, 424, 2139–2159. [Google Scholar] [CrossRef]
- Morozova, V.; Piro, A.L.; Renzo, M.; Ott, C.D.; Clausen, D.; Couch, S.M.; Ellis, J.; Roberts, L.F. Light Curves of Core-collapse Supernovae with Substantial Mass Loss Using the New Open-source SuperNova Explosion Code (SNEC). Astrophys. J. 2015, 814, 63. [Google Scholar] [CrossRef]
- White, G.L.; Malin, D.F. Possible binary star progenitor for SN1987A. Nature 1987, 327, 36–38. [Google Scholar] [CrossRef]
- Gilmozzi, R.; Cassatella, A.; Clavel, J.; Fransson, C.; Gonzalez, R.; Gry, C.; Panagia, N.; Talavera, A.; Wamsteker, W. The progenitor of SN1987A. Nature 1987, 328, 318–320. [Google Scholar] [CrossRef]
- Walborn, N.R.; Prevot, M.L.; Prevot, L.; Wamsteker, W.; Gonzalez, R.; Gilmozzi, R.; Fitzpatrick, E.L. The spectrograms of Sanduleak - 69º202, precursor to supernova 1987A in the Large Magellanic Cloud. Astron. Astrophys. 1989, 219, 229–236. [Google Scholar]
- Aldering, G.; Humphreys, R.M.; Richmond, M. SN 1993J: The Optical Properties of its Progenitor. Astron. J. 1994, 107, 662. [Google Scholar] [CrossRef]
- Maund, J.R.; Smartt, S.J.; Kudritzki, R.P.; Podsiadlowski, P.; Gilmore, G.F. The massive binary companion star to the progenitor of supernova 1993J. Nature 2004, 427, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Smartt, S.J. Progenitors of Core-Collapse Supernovae. Annu. Rev. Astron. Astrophys. 2009, 47, 63–106. [Google Scholar] [CrossRef]
- Smartt, S.J.; Eldridge, J.J.; Crockett, R.M.; Maund, J.R. The death of massive stars—I. Observational constraints on the progenitors of Type II-P supernovae. Mon. Not. R. Astron. Soc. 2009, 395, 1409–1437. [Google Scholar] [CrossRef]
- Arcavi, I.; Gal-Yam, A.; Cenko, S.B.; Fox, D.B.; Leonard, D.C.; Moon, D.S.; Sand, D.J.; Soderberg, A.M.; Kiewe, M.; Yaron, O.; et al. Caltech Core-Collapse Project (CCCP) Observations of Type II Supernovae: Evidence for Three Distinct Photometric Subtypes. Astrophys. J. Lett. 2012, 756, L30. [Google Scholar] [CrossRef]
- Elmhamdi, A.; Danziger, I.J.; Chugai, N.; Pastorello, A.; Turatto, M.; Cappellaro, E.; Altavilla, G.; Benetti, S.; Patat, F.; Salvo, M. Photometry and spectroscopy of the Type IIP SN 1999em from outburst to dust formation. Mon. Not. R. Astron. Soc. 2003, 338, 939–956. [Google Scholar] [CrossRef]
- Arnett, D. Supernovae and Nucleosynthesis: An Investigation of the History of Matter from the Big Bang to the Present; Princeton University Press: Princeton, NJ, USA, 1996. [Google Scholar]
- Khazov, D.; Yaron, O.; Gal-Yam, A.; Manulis, I.; Rubin, A.; Kulkarni, S.R.; Arcavi, I.; Kasliwal, M.M.; Ofek, E.O.; Cao, Y.; et al. Flash Spectroscopy: Emission Lines from the Ionized Circumstellar Material around <10-day-old Type II Supernovae. Astrophys. J. 2016, 818, 3. [Google Scholar] [CrossRef]
- Gal-Yam, A.; Arcavi, I.; Ofek, E.O.; Ben-Ami, S.; Cenko, S.B.; Kasliwal, M.M.; Cao, Y.; Yaron, O.; Tal, D.; Silverman, J.M.; et al. A Wolf-Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 2014, 509, 471–474. [Google Scholar] [CrossRef]
- Smith, N.; Mauerhan, J.C.; Cenko, S.B.; Kasliwal, M.M.; Silverman, J.M.; Filippenko, A.V.; Gal-Yam, A.; Clubb, K.I.; Graham, M.L.; Leonard, D.C.; et al. PTF11iqb: Cool supergiant mass-loss that bridges the gap between Type IIn and normal supernovae. Mon. Not. R. Astron. Soc. 2015, 449, 1876–1896. [Google Scholar] [CrossRef]
- Shivvers, I.; Groh, J.H.; Mauerhan, J.C.; Fox, O.D.; Leonard, D.C.; Filippenko, A.V. Early Emission from the Type IIn Supernova 1998S at High Resolution. Astrophys. J. 2015, 806, 213. [Google Scholar] [CrossRef]
- Yaron, O.; Perley, D.A.; Gal-Yam, A.; Groh, J.H.; Horesh, A.; Ofek, E.O.; Kulkarni, S.R.; Sollerman, J.; Fransson, C.; Rubin, A.; et al. Confined dense circumstellar material surrounding a regular type II supernova. Nat. Phys. 2017, 13, 510–517. [Google Scholar] [CrossRef]
- Nakaoka, T.; Kawabata, K.S.; Maeda, K.; Tanaka, M.; Yamanaka, M.; Moriya, T.J.; Tominaga, N.; Morokuma, T.; Takaki, K.; Kawabata, M.; et al. The Low-luminosity Type IIP Supernova 2016bkv with Early-phase Circumstellar Interaction. Astrophys. J. 2018, 859, 78. [Google Scholar] [CrossRef]
- Hosseinzadeh, G.; Valenti, S.; McCully, C.; Howell, D.A.; Arcavi, I.; Jerkstrand, A.; Guevel, D.; Tartaglia, L.; Rui, L.; Mo, J.; et al. Short-lived Circumstellar Interaction in the Low-luminosity Type IIP SN 2016bkv. Astrophys. J. 2018, 861, 63. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; József, V.; Zhai, Q.; Zhang, T.; Filippenko, A.V.; Brink, T.G.; Zheng, W.; Wyrzykowski, Ł.; Mikołajczyk, P.; et al. SN 2018zd: An unusual stellar explosion as part of the diverse Type II Supernova landscape. Mon. Not. R. Astron. Soc. 2020, 498, 84–100. [Google Scholar] [CrossRef]
- Terreran, G.; Jacobson-Galán, W.V.; Groh, J.H.; Margutti, R.; Coppejans, D.L.; Dimitriadis, G.; Kilpatrick, C.D.; Matthews, D.J.; Siebert, M.R.; Angus, C.R.; et al. The Early Phases of Supernova 2020pni: Shock Ionization of the Nitrogen-enriched Circumstellar Material. Astrophys. J. 2022, 926, 20. [Google Scholar] [CrossRef]
- Jeffery, D.J.; Branch, D. Analysis of Supernova Spectra. In Proceedings of the Supernovae, Jerusalem Winter School for Theoretical Physics; Wheeler, J.C., Piran, T., Weinberg, S., Eds.; World Scientific Publishing Company: Singapore, 1990; Volume 6, p. 149. [Google Scholar]
- Branch, D.; Baron, E.; Jeffery, D.J. Optical Spectra of Supernovae. arXiv 2001, arXiv:astro-ph/astro-ph/0111573. [Google Scholar]
- Kozma, C.; Fransson, C. Gamma-Ray Deposition and Nonthermal Excitation in Supernovae. Astrophys. J. 1992, 390, 602. [Google Scholar] [CrossRef]
- Barbon, R.; Ciatti, F.; Rosino, L. Photometric properties of type II supernovae. Astron. Astrophys. 1979, 72, 287–292. [Google Scholar]
- Patat, F.; Barbon, R.; Cappellaro, E.; Turatto, M. Light curves of type II supernovae. II. The analysis. Astron. Astrophys. 1994, 282, 731–741. [Google Scholar]
- Schlegel, E.M. On the Early Spectroscopic Distinction of Type II Supernovae. Astron. J. 1996, 111, 1660. [Google Scholar] [CrossRef]
- Gutiérrez, C.P.; Anderson, J.P.; Hamuy, M.; González-Gaitán, S.; Folatelli, G.; Morrell, N.I.; Stritzinger, M.D.; Phillips, M.M.; McCarthy, P.; Suntzeff, N.B.; et al. Hα Spectral Diversity of Type II Supernovae: Correlations with Photometric Properties. Astrophys. J. Lett. 2014, 786, L15. [Google Scholar] [CrossRef]
- Litvinova, I.I.; Nadezhin, D.K. Hydrodynamical Models of Type-II Supernovae. Astrophys. Space Sci. 1983, 89, 89–113. [Google Scholar] [CrossRef]
- Anderson, J.P.; González-Gaitán, S.; Hamuy, M.; Gutiérrez, C.P.; Stritzinger, M.D.; Olivares E., F.; Phillips, M.M.; Schulze, S.; Antezana, R.; Bolt, L.; et al. Characterizing the V-band Light-curves of Hydrogen-rich Type II Supernovae. Astrophys. J. 2014, 786, 67. [Google Scholar] [CrossRef]
- Gutiérrez, C.P.; Anderson, J.P.; Hamuy, M.; González-Gaitan, S.; Galbany, L.; Dessart, L.; Stritzinger, M.D.; Phillips, M.M.; Morrell, N.; Folatelli, G. Type II Supernova Spectral Diversity. II. Spectroscopic and Photometric Correlations. Astrophys. J. 2017, 850, 90. [Google Scholar] [CrossRef]
- Hillier, D.J.; Dessart, L. Photometric and spectroscopic diversity of Type II supernovae. Astron. Astrophys. 2019, 631, A8. [Google Scholar] [CrossRef]
- Faran, T.; Poznanski, D.; Filippenko, A.V.; Chornock, R.; Foley, R.J.; Ganeshalingam, M.; Leonard, D.C.; Li, W.; Modjaz, M.; Nakar, E.; et al. Photometric and spectroscopic properties of Type II-P supernovae. Mon. Not. R. Astron. Soc. 2014, 442, 844–861. [Google Scholar] [CrossRef]
- Faran, T.; Poznanski, D.; Filippenko, A.V.; Chornock, R.; Foley, R.J.; Ganeshalingam, M.; Leonard, D.C.; Li, W.; Modjaz, M.; Serduke, F.J.D.; et al. A sample of Type II-L supernovae. Mon. Not. R. Astron. Soc. 2014, 445, 554–569. [Google Scholar] [CrossRef]
- Sanders, N.E.; Soderberg, A.M.; Gezari, S.; Betancourt, M.; Chornock, R.; Berger, E.; Foley, R.J.; Challis, P.; Drout, M.; Kirshner, R.P.; et al. Toward Characterization of the Type IIP Supernova Progenitor Population: A Statistical Sample of Light Curves from Pan-STARRS1. Astrophys. J. 2015, 799, 208. [Google Scholar] [CrossRef]
- Valenti, S.; Howell, D.A.; Stritzinger, M.D.; Graham, M.L.; Hosseinzadeh, G.; Arcavi, I.; Bildsten, L.; Jerkstrand, A.; McCully, C.; Pastorello, A.; et al. The diversity of Type II supernova versus the similarity in their progenitors. Mon. Not. R. Astron. Soc. 2016, 459, 3939–3962. [Google Scholar] [CrossRef]
- de Jaeger, T.; Anderson, J.P.; Galbany, L.; González-Gaitán, S.; Hamuy, M.; Phillips, M.M.; Stritzinger, M.D.; Contreras, C.; Folatelli, G.; Gutiérrez, C.P.; et al. Observed Type II supernova colours from the Carnegie Supernova Project-I. Mon. Not. R. Astron. Soc. 2018, 476, 4592–4616. [Google Scholar] [CrossRef]
- Leonard, D.C.; Filippenko, A.V.; Gates, E.L.; Li, W.; Eastman, R.G.; Barth, A.J.; Bus, S.J.; Chornock, R.; Coil, A.L.; Frink, S.; et al. The Distance to SN 1999em in NGC 1637 from the Expanding Photosphere Method. Publ. Astron. Soc. Pac. 2002, 114, 35–64. [Google Scholar] [CrossRef]
- de Vaucouleurs, G.; de Vaucouleurs, A.; Buta, R.; Ables, H.D.; Hewitt, A.V. The bright SN 1979 C in M 100. Publ. Astron. Soc. Pac. 1981, 93, 36–44. [Google Scholar] [CrossRef]
- Richmond, M.W.; Treffers, R.R.; Filippenko, A.V.; Paik, Y.; Leibundgut, B.; Schulman, E.; Cox, C.V. UBVRI Photometry of SN 1993J in M81: The First 120 Days. Astron. J. 1994, 107, 1022. [Google Scholar] [CrossRef]
- Pastorello, A.; Kasliwal, M.M.; Crockett, R.M.; Valenti, S.; Arbour, R.; Itagaki, K.; Kaspi, S.; Gal-Yam, A.; Smartt, S.J.; Griffith, R.; et al. The Type IIb SN 2008ax: Spectral and light curve evolution. Mon. Not. R. Astron. Soc. 2008, 389, 955–966. [Google Scholar] [CrossRef]
- Stathakis, R.A.; Sadler, E.M. What was supernova 1988Z? Mon. Not. R. Astron. Soc. 1991, 250, 786. [Google Scholar] [CrossRef]
- Turatto, M.; Cappellaro, E.; Danziger, I.J.; Benetti, S.; Gouiffes, C.; della Valle, M. The type II supernova 1988Z in MCG +03-28-022: Increasingevidence of interaction of supernova ejecta with a circumstellar wind. Mon. Not. R. Astron. Soc. 1993, 262, 128–140. [Google Scholar] [CrossRef]
- Hamuy, M.; Suntzeff, N.B.; Gonzalez, R.; Martin, G. SN 1987A in the LMC: UBVRI Photometry at Cerro Tololo. Astron. J. 1988, 95, 63. [Google Scholar] [CrossRef]
- Filippenko, A.V. Supernova 1987K: Type II in Youth, Type Ib in Old Age. Astron. J. 1988, 96, 1941. [Google Scholar] [CrossRef]
- Filippenko, A.V.; Matheson, T.; Ho, L.C. The “Type IIb” Supernova 1993J in M81: A Close Relative of Type Ib Supernovae. Astrophys. J. Lett. 1993, 415, L103. [Google Scholar] [CrossRef]
- Wheeler, J.C.; Levreault, R. The peculiar type I supernova in NGC 991. Astrophys. J. Lett. 1985, 294, L17–L20. [Google Scholar] [CrossRef]
- Filippenko, A.V.; Barth, A.J.; Matheson, T.; Armus, L.; Brown, M.; Espey, B.R.; Fan, X.M.; Goodrich, R.W.; Ho, L.C.; Junkkarinen, V.T.; et al. The Type IC Supernova 1994I in M51: Detection of Helium and Spectral Evolution. Astrophys. J. Lett. 1995, 450, L11. [Google Scholar] [CrossRef]
- Clocchiatti, A.; Wheeler, J.C.; Benetti, S.; Frueh, M. SN 1983N and the Nature of Stripped Envelope–Core Collapse Supernovae. Astrophys. J. 1996, 459, 547. [Google Scholar] [CrossRef]
- Wheeler, J.C.; Barker, E.; Benjamin, R.; Boisseau, J.; Clocchiatti, A.; de Vaucouleurs, G.; Gaffney, N.; Harkness, R.P.; Khokhlov, A.M.; Lester, D.F.; et al. Early Observations of SN 1993J in M81 at McDonald Observatory. Astrophys. J. Lett. 1993, 417, L71. [Google Scholar] [CrossRef]
- Nomoto, K.; Suzuki, T.; Shigeyama, T.; Kumagai, S.; Yamaoka, H.; Saio, H. A type IIb model for supernova 1993J. Nature 1993, 364, 507–509. [Google Scholar] [CrossRef]
- Podsiadlowski, P.; Hsu, J.J.L.; Joss, P.C.; Ross, R.R. The progenitor of supernova 1993J: A stripped supergiant in a binary system? Nature 1993, 364, 509–511. [Google Scholar] [CrossRef]
- Woosley, S.E.; Eastman, R.G.; Weaver, T.A.; Pinto, P.A. SN 1993J: A Type IIb Supernova. Astrophys. J. 1994, 429, 300. [Google Scholar] [CrossRef]
- Taubenberger, S.; Navasardyan, H.; Maurer, J.I.; Zampieri, L.; Chugai, N.N.; Benetti, S.; Agnoletto, I.; Bufano, F.; Elias-Rosa, N.; Turatto, M.; et al. The He-rich stripped-envelope core-collapse supernova 2008ax. Mon. Not. R. Astron. Soc. 2011, 413, 2140–2156. [Google Scholar] [CrossRef]
- Chevalier, R.A.; Soderberg, A.M. Type IIb Supernovae with Compact and Extended Progenitors. Astrophys. J. Lett. 2010, 711, L40–L43. [Google Scholar] [CrossRef]
- Hamuy, M.; Pinto, P.A.; Maza, J.; Suntzeff, N.B.; Phillips, M.M.; Eastman, R.G.; Smith, R.C.; Corbally, C.J.; Burstein, D.; Li, Y.; et al. The Distance to SN 1999em from the Expanding Photosphere Method. Astrophys. J. 2001, 558, 615–642. [Google Scholar] [CrossRef]
- Branch, D.; Falk, S.W.; McCall, M.L.; Rybski, P.; Uomoto, A.K.; Wills, B.J. The type II SN 1979c in M 100 and the distance to the Virgo cluster. Astrophys. J. 1981, 244, 780–804. [Google Scholar] [CrossRef]
- Filippenko, A.V.; Matheson, T.; Barth, A.J. The Peculiar Type II Supernova 1993J in M81: Transition to the Nebular Phase. Astron. J. 1994, 108, 2220. [Google Scholar] [CrossRef]
- Matheson, T.; Filippenko, A.V.; Barth, A.J.; Ho, L.C.; Leonard, D.C.; Bershady, M.A.; Davis, M.; Finley, D.S.; Fisher, D.; González, R.A.; et al. Optical Spectroscopy of Supernova 1993J During Its First 2500 Days. Astron. J. 2000, 120, 1487–1498. [Google Scholar] [CrossRef]
- Aretxaga, I.; Benetti, S.; Terlevich, R.J.; Fabian, A.C.; Cappellaro, E.; Turatto, M.; della Valle, M. SN 1988Z: Spectro-photometric catalogue and energy estimates*. Mon. Not. R. Astron. Soc. 1999, 309, 343–354. [Google Scholar] [CrossRef]
- Pun, C.S.J.; Kirshner, R.P.; Sonneborn, G.; Challis, P.; Nassiopoulos, G.; Arquilla, R.; Crenshaw, D.M.; Shrader, C.; Teays, T.; Cassatella, A.; et al. Ultraviolet Observations of SN 1987A with the IUE Satellite. Astrophys. J. Suppl. 1995, 99, 223. [Google Scholar] [CrossRef]
- Smith, N. Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars. Annu. Rev. Astron. Astrophys. 2014, 52, 487–528. [Google Scholar] [CrossRef]
- Chevalier, R.A. The radio and X-ray emission from type II supernovae. Astrophys. J. 1982, 259, 302–310. [Google Scholar] [CrossRef]
- Chevalier, R.A.; Fransson, C. Supernova Interaction with a Circumstellar Medium. In Supernovae and Gamma-Ray Bursters; Weiler, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 598, pp. 171–194. [Google Scholar] [CrossRef]
- Schlegel, E.M. A new subclass of type II supernovae ? Mon. Not. R. Astron. Soc. 1990, 244, 269–271. [Google Scholar]
- Smith, N. Interacting Supernovae: Types IIn and Ibn. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer: Cham, Switzerland, 2017; p. 403. [Google Scholar] [CrossRef]
- Arnett, W.D.; Bahcall, J.N.; Kirshner, R.P.; Woosley, S.E. Supernova 1987A. Annu. Rev. Astron. Astrophys. 1989, 27, 629–700. [Google Scholar] [CrossRef]
- Woosley, S.E. SN 1987A: After the Peak. Astrophys. J. 1988, 330, 218. [Google Scholar] [CrossRef]
- Pastorello, A.; Baron, E.; Branch, D.; Zampieri, L.; Turatto, M.; Ramina, M.; Benetti, S.; Cappellaro, E.; Salvo, M.; Patat, F.; et al. SN 1998A: Explosion of a blue supergiant. Mon. Not. R. Astron. Soc. 2005, 360, 950–962. [Google Scholar] [CrossRef]
- Pastorello, A.; Pumo, M.L.; Navasardyan, H.; Zampieri, L.; Turatto, M.; Sollerman, J.; Taddia, F.; Kankare, E.; Mattila, S.; Nicolas, J.; et al. SN 2009E: A faint clone of SN 1987A. Astron. Astrophys. 2012, 537, A141. [Google Scholar] [CrossRef]
- Taddia, F.; Stritzinger, M.D.; Sollerman, J.; Phillips, M.M.; Anderson, J.P.; Ergon, M.; Folatelli, G.; Fransson, C.; Freedman, W.; Hamuy, M.; et al. The Type II supernovae 2006V and 2006au: Two SN 1987A-like events. Astron. Astrophys. 2012, 537, A140. [Google Scholar] [CrossRef]
- Taddia, F.; Sollerman, J.; Fremling, C.; Migotto, K.; Gal-Yam, A.; Armen, S.; Duggan, G.; Ergon, M.; Filippenko, A.V.; Fransson, C.; et al. Long-rising Type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project. Astron. Astrophys. 2016, 588, A5. [Google Scholar] [CrossRef]
- Singh, A.; Sahu, D.K.; Anupama, G.C.; Kumar, B.; Kumar, H.; Yamanaka, M.; Baklanov, P.V.; Tominaga, N.; Blinnikov, S.I.; Maeda, K.; et al. SN 2018hna: 1987A-like Supernova with a Signature of Shock Breakout. Astrophys. J. Lett. 2019, 882, L15. [Google Scholar] [CrossRef]
- Xiang, D.; Wang, X.; Zhang, X.; Sai, H.; Zhang, J.; Brink, T.G.; Filippenko, A.V.; Mo, J.; Zhang, T.; Chen, Z.; et al. SN 2018hna: Adding a piece to the puzzles of the explosion of blue supergiants. Mon. Not. R. Astron. Soc. 2023. [Google Scholar] [CrossRef]
- Taddia, F.; Sollerman, J.; Razza, A.; Gafton, E.; Pastorello, A.; Fransson, C.; Stritzinger, M.D.; Leloudas, G.; Ergon, M. A metallicity study of 1987A-like supernova host galaxies. Astron. Astrophys. 2013, 558, A143. [Google Scholar] [CrossRef]
- Van Dyk, S.D.; Li, W.; Filippenko, A.V. On the Progenitor of the Type II-Plateau Supernova 2003gd in M74. Publ. Astron. Soc. Pac. 2003, 115, 1289–1295. [Google Scholar] [CrossRef]
- Hendry, M.A.; Smartt, S.J.; Maund, J.R.; Pastorello, A.; Zampieri, L.; Benetti, S.; Turatto, M.; Cappellaro, E.; Meikle, W.P.S.; Kotak, R.; et al. A study of the Type II-P supernova 2003gd in M74. Mon. Not. R. Astron. Soc. 2005, 359, 906–926. [Google Scholar] [CrossRef]
- Maíz-Apellániz, J.; Bond, H.E.; Siegel, M.H.; Lipkin, Y.; Maoz, D.; Ofek, E.O.; Poznanski, D. The Progenitor of the Type II-P SN 2004dj in NGC 2403. Astrophys. J. Lett. 2004, 615, L113–L116. [Google Scholar] [CrossRef]
- Li, W.; Van Dyk, S.D.; Filippenko, A.V.; Cuillandre, J.C. On the Progenitor of the Type II Supernova 2004et in NGC 6946. Publ. Astron. Soc. Pac. 2005, 117, 121–131. [Google Scholar] [CrossRef]
- Maund, J.R.; Smartt, S.J.; Danziger, I.J. The progenitor of SN 2005cs in the Whirlpool Galaxy. Mon. Not. R. Astron. Soc. 2005, 364, L33–L37. [Google Scholar] [CrossRef]
- Li, W.; Van Dyk, S.D.; Filippenko, A.V.; Cuillandre, J.C.; Jha, S.; Bloom, J.S.; Riess, A.G.; Livio, M. Identification of the Red Supergiant Progenitor of Supernova 2005cs: Do the Progenitors of Type II-P Supernovae Have Low Mass? Astrophys. J. 2006, 641, 1060–1070. [Google Scholar] [CrossRef]
- O’Neill, D.; Kotak, R.; Fraser, M.; Mattila, S.; Pietrzyński, G.; Prieto, J.L. Revisiting the progenitor of the low-luminosity type II-plateau supernova, SN 2008bk. Astron. Astrophys. 2021, 645, L7. [Google Scholar] [CrossRef]
- Van Dyk, S.D.; Cenko, S.B.; Poznanski, D.; Arcavi, I.; Gal-Yam, A.; Filippenko, A.V.; Silverio, K.; Stockton, A.; Cuillandre, J.C.; Marcy, G.W.; et al. The Red Supergiant Progenitor of Supernova 2012aw (PTF12bvh) in Messier 95. Astrophys. J. 2012, 756, 131. [Google Scholar] [CrossRef]
- Maund, J.R.; Fraser, M.; Smartt, S.J.; Botticella, M.T.; Barbarino, C.; Childress, M.; Gal-Yam, A.; Inserra, C.; Pignata, G.; Reichart, D.; et al. Supernova 2012ec: Identification of the progenitor and early monitoring with PESSTO. Mon. Not. R. Astron. Soc. 2013, 431, L102–L106. [Google Scholar] [CrossRef]
- Kilpatrick, C.D.; Foley, R.J. The dusty progenitor star of the Type II supernova 2017eaw. Mon. Not. R. Astron. Soc. 2018, 481, 2536–2547. [Google Scholar] [CrossRef]
- Van Dyk, S.D.; Zheng, W.; Maund, J.R.; Brink, T.G.; Srinivasan, S.; Andrews, J.E.; Smith, N.; Leonard, D.C.; Morozova, V.; Filippenko, A.V.; et al. The Type II-plateau Supernova 2017eaw in NGC 6946 and Its Red Supergiant Progenitor. Astrophys. J. 2019, 875, 136. [Google Scholar] [CrossRef]
- Elias-Rosa, N.; Van Dyk, S.D.; Li, W.; Miller, A.A.; Silverman, J.M.; Ganeshalingam, M.; Boden, A.F.; Kasliwal, M.M.; Vinkó, J.; Cuillandre, J.C.; et al. The Massive Progenitor of the Type II-linear Supernova 2009kr. Astrophys. J. Lett. 2010, 714, L254–L259. [Google Scholar] [CrossRef]
- Fraser, M.; Takáts, K.; Pastorello, A.; Smartt, S.J.; Mattila, S.; Botticella, M.T.; Valenti, S.; Ergon, M.; Sollerman, J.; Arcavi, I.; et al. On the Progenitor and Early Evolution of the Type II Supernova 2009kr. Astrophys. J. Lett. 2010, 714, L280–L284. [Google Scholar] [CrossRef]
- Maund, J.R.; Fraser, M.; Reilly, E.; Ergon, M.; Mattila, S. Whatever happened to the progenitors of supernovae 2008cn, 2009kr and 2009md? Mon. Not. R. Astron. Soc. 2015, 447, 3207–3217. [Google Scholar] [CrossRef]
- Elias-Rosa, N.; Van Dyk, S.D.; Li, W.; Silverman, J.M.; Foley, R.J.; Ganeshalingam, M.; Mauerhan, J.C.; Kankare, E.; Jha, S.; Filippenko, A.V.; et al. The Massive Progenitor of the Possible Type II-Linear Supernova 2009hd in Messier 66. Astrophys. J. 2011, 742, 6. [Google Scholar] [CrossRef]
- Crockett, R.M.; Eldridge, J.J.; Smartt, S.J.; Pastorello, A.; Gal-Yam, A.; Fox, D.B.; Leonard, D.C.; Kasliwal, M.M.; Mattila, S.; Maund, J.R.; et al. The type IIb SN 2008ax: The nature of the progenitor. Mon. Not. R. Astron. Soc. 2008, 391, L5–L9. [Google Scholar] [CrossRef]
- Folatelli, G.; Bersten, M.C.; Kuncarayakti, H.; Benvenuto, O.G.; Maeda, K.; Nomoto, K. The Progenitor of the Type IIb SN 2008ax Revisited. Astrophys. J. 2015, 811, 147. [Google Scholar] [CrossRef]
- Gaskell, C.M.; Cappellaro, E.; Dinerstein, H.L.; Garnett, D.R.; Harkness, R.P.; Wheeler, J.C. Type Ib Supernovae 1983n and 1985f: Oxygen-rich Late Time Spectra. Astrophys. J. Lett. 1986, 306, L77. [Google Scholar] [CrossRef]
- Anderson, J.P.; James, P.A. Constraints on core-collapse supernova progenitors from correlations with Hα emission. Mon. Not. R. Astron. Soc. 2008, 390, 1527–1538. [Google Scholar] [CrossRef]
- Lyman, J.D.; Bersier, D.; James, P.A.; Mazzali, P.A.; Eldridge, J.J.; Fraser, M.; Pian, E. Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae. Mon. Not. R. Astron. Soc. 2016, 457, 328–350. [Google Scholar] [CrossRef]
- Nomoto, K.I.; Iwamoto, K.; Suzuki, T. The evolution and explosion of massive binary stars and Type Ib-Ic-IIb-IIL supernovae. physrep 1995, 256, 173–191. [Google Scholar] [CrossRef]
- Sana, H.; de Mink, S.E.; de Koter, A.; Langer, N.; Evans, C.J.; Gieles, M.; Gosset, E.; Izzard, R.G.; Le Bouquin, J.B.; Schneider, F.R.N. Binary Interaction Dominates the Evolution of Massive Stars. Science 2012, 337, 444. [Google Scholar] [CrossRef]
- Smith, N.; Li, W.; Filippenko, A.V.; Chornock, R. Observed fractions of core-collapse supernova types and initial masses of their single and binary progenitor stars. Mon. Not. R. Astron. Soc. 2011, 412, 1522–1538. [Google Scholar] [CrossRef]
- Eldridge, J.J.; Fraser, M.; Smartt, S.J.; Maund, J.R.; Crockett, R.M. The death of massive stars - II. Observational constraints on the progenitors of Type Ibc supernovae. Mon. Not. R. Astron. Soc. 2013, 436, 774–795. [Google Scholar] [CrossRef]
- Eldridge, J.J.; Maund, J.R. The disappearance of the helium-giant progenitor of the Type Ib supernova iPTF13bvn and constraints on its companion. Mon. Not. R. Astron. Soc. 2016, 461, L117–L121. [Google Scholar] [CrossRef]
- Cao, Y.; Kasliwal, M.M.; Arcavi, I.; Horesh, A.; Hancock, P.; Valenti, S.; Cenko, S.B.; Kulkarni, S.R.; Gal-Yam, A.; Gorbikov, E.; et al. Discovery, Progenitor and Early Evolution of a Stripped Envelope Supernova iPTF13bvn. Astrophys. J. Lett. 2013, 775, L7. [Google Scholar] [CrossRef]
- Kilpatrick, C.D.; Drout, M.R.; Auchettl, K.; Dimitriadis, G.; Foley, R.J.; Jones, D.O.; DeMarchi, L.; French, K.D.; Gall, C.; Hjorth, J.; et al. A cool and inflated progenitor candidate for the Type Ib supernova 2019yvr at 2.6 yr before explosion. Mon. Not. R. Astron. Soc. 2021, 504, 2073–2093. [Google Scholar] [CrossRef]
- Sun, N.C.; Maund, J.R.; Crowther, P.A.; Hirai, R.; Kashapov, A.; Liu, J.F.; Liu, L.D.; Zapartas, E. An environmental analysis of the Type Ib SN 2019yvr and the possible presence of an inflated binary companion. Mon. Not. R. Astron. Soc. 2022, 510, 3701–3715. [Google Scholar] [CrossRef]
- Van Dyk, S.D.; Zheng, W.; Brink, T.G.; Filippenko, A.V.; Milisavljevic, D.; Andrews, J.E.; Smith, N.; Cignoni, M.; Fox, O.D.; Kelly, P.L.; et al. SN 2017ein and the Possible First Identification of a Type Ic Supernova Progenitor. Astrophys. J. 2018, 860, 90. [Google Scholar] [CrossRef]
- Xiang, D.; Wang, X.; Mo, J.; Wang, L.; Smartt, S.; Fraser, M.; Ehgamberdiev, S.A.; Mirzaqulov, D.; Zhang, J.; Zhang, T.; et al. Observations of SN 2017ein Reveal Shock Breakout Emission and a Massive Progenitor Star for a Type Ic Supernova. Astrophys. J. 2019, 871, 176. [Google Scholar] [CrossRef]
- Gal-Yam, A.; Leonard, D.C.; Fox, D.B.; Cenko, S.B.; Soderberg, A.M.; Moon, D.S.; Sand, D.J.; Caltech Core Collapse Program; Li, W.; Filippenko, A.V.; et al. On the Progenitor of SN 2005gl and the Nature of Type IIn Supernovae. Astrophys. J. 2007, 656, 372–381. [Google Scholar] [CrossRef]
- Smith, N.; Miller, A.; Li, W.; Filippenko, A.V.; Silverman, J.M.; Howard, A.W.; Nugent, P.; Marcy, G.W.; Bloom, J.S.; Ghez, A.M.; et al. Discovery of Precursor Luminous Blue Variable Outbursts in Two Recent Optical Transients: The Fitfully Variable Missing Links UGC 2773-OT and SN 2009ip. Astron. J. 2010, 139, 1451–1467. [Google Scholar] [CrossRef]
- Mauerhan, J.C.; Smith, N.; Filippenko, A.V.; Blanchard, K.B.; Blanchard, P.K.; Casper, C.F.E.; Cenko, S.B.; Clubb, K.I.; Cohen, D.P.; Fuller, K.L.; et al. The unprecedented 2012 outburst of SN 2009ip: A luminous blue variable star becomes a true supernova. Mon. Not. R. Astron. Soc. 2013, 430, 1801–1810. [Google Scholar] [CrossRef]
- Pastorello, A.; Cappellaro, E.; Inserra, C.; Smartt, S.J.; Pignata, G.; Benetti, S.; Valenti, S.; Fraser, M.; Takáts, K.; Benitez, S.; et al. Interacting Supernovae and Supernova Impostors: SN 2009ip, is this the End? Astrophys. J. 2013, 767, 1. [Google Scholar] [CrossRef]
- Podsiadlowski, P. The Progenitor of SN 1987A. Publ. Astron. Soc. Pac. 1992, 104, 717. [Google Scholar] [CrossRef]
- Lundqvist, P.; Fransson, C. The Line Emission from the Circumstellar Gas around SN 1987A. Astrophys. J. 1996, 464, 924. [Google Scholar] [CrossRef]
- Crotts, A.P.S.; Heathcote, S.R. SN 1987A’s Circumstellar Envelope. II. Kinematics of the Three Rings and the Diffuse Nebula. Astrophys. J. 2000, 528, 426–435. [Google Scholar] [CrossRef]
- Saio, H.; Kato, M.; Nomoto, K. Why Did the Progenitor of SN 1987A Undergo the Blue-Red-Blue Evolution? Astrophys. J. 1988, 331, 388. [Google Scholar] [CrossRef]
- Hillebrandt, W.; Hoeflich, P.; Weiss, A.; Truran, J.W. Explosion of a blue supergiant: A model for supernova SN1987A. Nature 1987, 327, 597–600. [Google Scholar] [CrossRef]
- Woosley, S.E.; Pinto, P.A.; Ensman, L. Supernova 1987A: Six Weeks Later. Astrophys. J. 1988, 324, 466. [Google Scholar] [CrossRef]
- Menon, A.; Heger, A. The quest for blue supergiants: Binary merger models for the evolution of the progenitor of SN 1987A. Mon. Not. R. Astron. Soc. 2017, 469, 4649–4664. [Google Scholar] [CrossRef]
- Utrobin, V.P.; Wongwathanarat, A.; Janka, H.T.; Müller, E.; Ertl, T.; Menon, A.; Heger, A. Supernova 1987A: 3D Mixing and Light Curves for Explosion Models Based on Binary-merger Progenitors. Astrophys. J. 2021, 914, 4. [Google Scholar] [CrossRef]
- Georgy, C.; Ekström, S.; Granada, A.; Meynet, G.; Mowlavi, N.; Eggenberger, P.; Maeder, A. Populations of rotating stars. I. Models from 1.7 to 15 M⊙ at Z = 0.014, 0.006, and 0.002 with Ω/Ωcrit between 0 and 1. Astron. Astrophys. 2013, 553, A24. [Google Scholar] [CrossRef]
- Yusof, N.; Hirschi, R.; Eggenberger, P.; Ekström, S.; Georgy, C.; Sibony, Y.; Crowther, P.A.; Meynet, G.; Kassim, H.A.; Harun, W.A.W.; et al. Grids of stellar models with rotation VII: Models from 0.8 to 300 M⊙ at supersolar metallicity (Z = 0.020). Mon. Not. R. Astron. Soc. 2022, 511, 2814–2828. [Google Scholar] [CrossRef]
- Anderson, J.P.; Dessart, L.; Gutiérrez, C.P.; Krühler, T.; Galbany, L.; Jerkstrand, A.; Smartt, S.J.; Contreras, C.; Morrell, N.; Phillips, M.M.; et al. The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor. Nat. Astron. 2018, 2, 574–579. [Google Scholar] [CrossRef]
- Davies, B.; Beasor, E.R. The initial masses of the red supergiant progenitors to Type II supernovae. Mon. Not. R. Astron. Soc. 2018, 474, 2116–2128. [Google Scholar] [CrossRef]
- Walmswell, J.J.; Eldridge, J.J. Circumstellar dust as a solution to the red supergiant supernova progenitor problem. Mon. Not. R. Astron. Soc. 2012, 419, 2054–2062. [Google Scholar] [CrossRef]
- Sukhbold, T.; Ertl, T.; Woosley, S.E.; Brown, J.M.; Janka, H.T. Core-collapse Supernovae from 9 to 120 Solar Masses Based on Neutrino-powered Explosions. Astrophys. J. 2016, 821, 38. [Google Scholar] [CrossRef]
- Adams, S.M.; Kochanek, C.S.; Gerke, J.R.; Stanek, K.Z.; Dai, X. The search for failed supernovae with the Large Binocular Telescope: Confirmation of a disappearing star. Mon. Not. R. Astron. Soc. 2017, 468, 4968–4981. [Google Scholar] [CrossRef]
- Basinger, C.M.; Kochanek, C.S.; Adams, S.M.; Dai, X.; Stanek, K.Z. The search for failed supernovae with the Large Binocular Telescope: N6946-BH1, still no star. Mon. Not. R. Astron. Soc. 2021, 508, 1156–1164. [Google Scholar] [CrossRef]
- Zhan, H. Consideration for a large-scale multi-color imaging and slitless spectroscopy survey on the Chinese space station and its application in dark energy research. Sci. Sin. Phys. Mech. Astron. 2011, 41, 1441. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, X.; Cao, Y.; Chen, X.; Fan, Z.; Li, R.; Li, X.D.; Li, Z.; Zhang, X.; Zhan, H. Cosmology from the Chinese Space Station Optical Survey (CSS-OS). Astrophys. J. 2019, 883, 203. [Google Scholar] [CrossRef]
- Massey, P.; Neugent, K.F.; Ekstrom, S.; Georgy, C.; Meynet, G. The Time-Averaged Mass-Loss Rates of Red Supergiants As Revealed by their Luminosity Functions in M31 and M33. arXiv 2022, arXiv:2211.14147. [Google Scholar] [CrossRef]
- Cappellaro, E.; Evans, R.; Turatto, M. A new determination of supernova rates and a comparison with indicators for galactic star formation. Astron. Astrophys. 1999, 351, 459–466. [Google Scholar]
- Cross, N.; Driver, S.P.; Couch, W.; Baugh, C.M.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Cole, S.; Colless, M.; Collins, C.; et al. The 2dF Galaxy Redshift Survey: The number and luminosity density of galaxies. Mon. Not. R. Astron. Soc. 2001, 324, 825–841. [Google Scholar] [CrossRef]
- Li, W.; Chornock, R.; Leaman, J.; Filippenko, A.V.; Poznanski, D.; Wang, X.; Ganeshalingam, M.; Mannucci, F. Nearby supernova rates from the Lick Observatory Supernova Search - III. The rate-size relation, and the rates as a function of galaxy Hubble type and colour. Mon. Not. R. Astron. Soc. 2011, 412, 1473–1507. [Google Scholar] [CrossRef]
- James, P.A.; Anderson, J.P. The Hα Galaxy Survey. III. Constraints on supernova progenitors from spatial correlations with Hα emission. Astron. Astrophys. 2006, 453, 57–65. [Google Scholar] [CrossRef]
- Anderson, J.P.; Covarrubias, R.A.; James, P.A.; Hamuy, M.; Habergham, S.M. Observational constraints on the progenitor metallicities of core-collapse supernovae. Mon. Not. R. Astron. Soc. 2010, 407, 2660–2672. [Google Scholar] [CrossRef]
- Anderson, J.P.; James, P.A.; Habergham, S.M.; Galbany, L.; Kuncarayakti, H. Statistical Studies of Supernova Environments. Publ. Astron. Soc. Aust. 2015, 32, e019. [Google Scholar] [CrossRef]
- Andrews, J.E.; Smith, N. Strong late-time circumstellar interaction in the peculiar supernova iPTF14hls. Mon. Not. R. Astron. Soc. 2018, 477, 74–79. [Google Scholar] [CrossRef]
- Soker, N.; Gilkis, A. Explaining iPTF14hls as a common-envelope jets supernova. Mon. Not. R. Astron. Soc. 2018, 475, 1198–1202. [Google Scholar] [CrossRef]
- Dessart, L. A magnetar model for the hydrogen-rich super-luminous supernova iPTF14hls. Astron. Astrophys. 2018, 610, L10. [Google Scholar] [CrossRef]
- Uno, K.; Maeda, K. A Wind-driven Model: Application to Peculiar Transients AT2018cow and iPTF14hls. Astrophys. J. 2020, 897, 156. [Google Scholar] [CrossRef]
- Moriya, T.J.; Mazzali, P.A.; Pian, E. iPTF14hls as a variable hyper-wind from a very massive star. Mon. Not. R. Astron. Soc. 2020, 491, 1384–1390. [Google Scholar] [CrossRef]
- Perley, D.A.; Mazzali, P.A.; Yan, L.; Cenko, S.B.; Gezari, S.; Taggart, K.; Blagorodnova, N.; Fremling, C.; Mockler, B.; Singh, A.; et al. The fast, luminous ultraviolet transient AT2018cow: Extreme supernova, or disruption of a star by an intermediate-mass black hole? Mon. Not. R. Astron. Soc. 2019, 484, 1031–1049. [Google Scholar] [CrossRef]
- Margutti, R.; Metzger, B.D.; Chornock, R.; Vurm, I.; Roth, N.; Grefenstette, B.W.; Savchenko, V.; Cartier, R.; Steiner, J.F.; Terreran, G.; et al. An Embedded X-Ray Source Shines through the Aspherical AT 2018cow: Revealing the Inner Workings of the Most Luminous Fast-evolving Optical Transients. Astrophys. J. 2019, 872, 18. [Google Scholar] [CrossRef]
- Lyutikov, M.; Toonen, S. Fast-rising blue optical transients and AT2018cow following electron-capture collapse of merged white dwarfs. Mon. Not. R. Astron. Soc. 2019, 487, 5618–5629. [Google Scholar] [CrossRef]
- Kuin, N.P.M.; Wu, K.; Oates, S.; Lien, A.; Emery, S.; Kennea, J.A.; de Pasquale, M.; Han, Q.; Brown, P.J.; Tohuvavohu, A.; et al. Swift spectra of AT2018cow: A white dwarf tidal disruption event? Mon. Not. R. Astron. Soc. 2019, 487, 2505–2521. [Google Scholar] [CrossRef]
- Leung, S.C.; Blinnikov, S.; Nomoto, K.; Baklanov, P.; Sorokina, E.; Tolstov, A. A Model for the Fast Blue Optical Transient AT2018cow: Circumstellar Interaction of a Pulsational Pair-instability Supernova. Astrophys. J. 2020, 903, 66. [Google Scholar] [CrossRef]
- Barkat, Z.; Rakavy, G.; Sack, N. Dynamics of Supernova Explosion Resulting from Pair Formation. Phys. Rev. Lett. 1967, 18, 379–381. [Google Scholar] [CrossRef]
- Rakavy, G.; Shaviv, G. Instabilities in Highly Evolved Stellar Models. Astrophys. J. 1967, 148, 803. [Google Scholar] [CrossRef]
- Woosley, S.E.; Blinnikov, S.; Heger, A. Pulsational pair instability as an explanation for the most luminous supernovae. Nature 2007, 450, 390–392. [Google Scholar] [CrossRef]
- Miyaji, S.; Nomoto, K.; Yokoi, K.; Sugimoto, D. Supernova triggered by electron captures. Publ. Astron. Soc. Jpn. 1980, 32, 303–329. [Google Scholar]
- Nomoto, K. Evolution of 8–10 solar mass stars toward electron capture supernovae. I—Formation of electron-degenerate O + NE + MG cores. Astrophys. J. 1984, 277, 791–805. [Google Scholar] [CrossRef]
- Nomoto, K. Evolution of 8–10 Msun Stars toward Electron Capture Supernovae. II. Collapse of an O + NE + MG Core. Astrophys. J. 1987, 322, 206. [Google Scholar] [CrossRef]
- Botticella, M.T.; Pastorello, A.; Smartt, S.J.; Meikle, W.P.S.; Benetti, S.; Kotak, R.; Cappellaro, E.; Crockett, R.M.; Mattila, S.; Sereno, M.; et al. SN 2008S: An electron-capture SN from a super-AGB progenitor? Mon. Not. R. Astron. Soc. 2009, 398, 1041–1068. [Google Scholar] [CrossRef]
- Thompson, T.A.; Prieto, J.L.; Stanek, K.Z.; Kistler, M.D.; Beacom, J.F.; Kochanek, C.S. A New Class of Luminous Transients and a First Census of their Massive Stellar Progenitors. Astrophys. J. 2009, 705, 1364–1384. [Google Scholar] [CrossRef]
- Hiramatsu, D.; Howell, D.A.; Van Dyk, S.D.; Goldberg, J.A.; Maeda, K.; Moriya, T.J.; Tominaga, N.; Nomoto, K.; Hosseinzadeh, G.; Arcavi, I.; et al. The electron-capture origin of supernova 2018zd. Nat. Astron. 2021, 5, 903–910. [Google Scholar] [CrossRef]
- Mauerhan, J.C.; Smith, N.; Silverman, J.M.; Filippenko, A.V.; Morgan, A.N.; Cenko, S.B.; Ganeshalingam, M.; Clubb, K.I.; Bloom, J.S.; Matheson, T.; et al. SN 2011ht: Confirming a class of interacting supernovae with plateau light curves (Type IIn-P). Mon. Not. R. Astron. Soc. 2013, 431, 2599–2611. [Google Scholar] [CrossRef]
- Moriya, T.J.; Tominaga, N.; Langer, N.; Nomoto, K.; Blinnikov, S.I.; Sorokina, E.I. Electron-capture supernovae exploding within their progenitor wind. Astron. Astrophys. 2014, 569, A57. [Google Scholar] [CrossRef]
- Cai, Y.; Reguitti, A.; Valerin, G.; Wang, X. Gap Transients Interacting with Circumstellar Medium. Universe 2022, 8, 493. [Google Scholar] [CrossRef]
- Cai, Y.-Z.; Pastorello, A.; Fraser, M.; Botticella, M.T.; Gall, C.; Arcavi, I.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Harmanen, J.; et al. AT 2017be—A new member of the class of intermediate-luminosity red transients. Mon. Not. R. Astron. Soc. 2018, 480, 3424–3445. [Google Scholar] [CrossRef]
- Cai, Y.-Z.; Pastorello, A.; Fraser, M.; Botticella, M.T.; Elias-Rosa, N.; Wang, L.-Z.; Kotak, R.; Benetti, S.; Cappellaro, E.; Turatto, M.; et al. Intermediate-luminosity red transients: Spectrophotometric properties and connection to electron-capture supernova explosions. Astron. Astrophys. 2021, 654, A157. [Google Scholar] [CrossRef]
- Falk, S.W. Shock steepening and prompt thermal emission in supernovae. Astrophys. J. Lett. 1978, 225, L133–L136. [Google Scholar] [CrossRef]
- Huang, F.; Wang, X.F.; Hosseinzadeh, G.; Brown, P.J.; Mo, J.; Zhang, J.J.; Zhang, K.C.; Zhang, T.M.; Howell, D.A.; Arcavi, I.; et al. SN 2016X: A type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant. Mon. Not. R. Astron. Soc. 2018, 475, 3959–3973. [Google Scholar] [CrossRef]
- Phillips, M.M. The Absolute Magnitudes of Type IA Supernovae. Astrophys. J. Lett. 1993, 413, L105. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Schmidt, B.P.; Suntzeff, N.B.; Phillips, M.M.; Schommer, R.A.; Clocchiatti, A.; Kirshner, R.P.; Garnavich, P.; Challis, P.; Leibundgut, B.; Spyromilio, J.; et al. The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type IA Supernovae. Astrophys. J. 1998, 507, 46–63. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; Anand, G.S.; Breuval, L.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. Lett. 2022, 934, L7. [Google Scholar] [CrossRef]
- Dahlen, T.; Strolger, L.G.; Riess, A.G. The Extended HST Supernova Survey: The Rate of SNe Ia at z > 1.4 Remains Low. Astrophys. J. 2008, 681, 462–469. [Google Scholar] [CrossRef]
- Melinder, J.; Dahlen, T.; Mencía Trinchant, L.; Östlin, G.; Mattila, S.; Sollerman, J.; Fransson, C.; Hayes, M.; Kankare, E.; Nasoudi-Shoar, S. The rate of supernovae at redshift 0.1-1.0. The Stockholm VIMOS Supernova Survey III. Astron. Astrophys. 2012, 545, A96. [Google Scholar] [CrossRef]
- Kirshner, R.P.; Kwan, J. Distances to extragalactic supernovae. Astrophys. J. 1974, 193, 27–36. [Google Scholar] [CrossRef]
- Hamuy, M.; Pinto, P.A. Type II Supernovae as Standardized Candles. Astrophys. J. Lett. 2002, 566, L63–L65. [Google Scholar] [CrossRef]
- de Jaeger, T.; González-Gaitán, S.; Anderson, J.P.; Galbany, L.; Hamuy, M.; Phillips, M.M.; Stritzinger, M.D.; Gutiérrez, C.P.; Bolt, L.; Burns, C.R.; et al. A Hubble Diagram from Type II Supernovae Based Solely on Photometry: The Photometric Color Method. Astrophys. J. 2015, 815, 121. [Google Scholar] [CrossRef]
- Hamuy, M.; Phillips, M.M.; Suntzeff, N.B.; Schommer, R.A.; Maza, J.; Antezan, A.R.; Wischnjewsky, M.; Valladares, G.; Muena, C.; Gonzales, L.E.; et al. BVRI Light Curves for 29 Type IA Supernovae. Astron. J. 1996, 112, 2408. [Google Scholar] [CrossRef]
- Gilliland, R.L.; Nugent, P.E.; Phillips, M.M. High-Redshift Supernovae in the Hubble Deep Field. Astrophys. J. 1999, 521, 30–49. [Google Scholar] [CrossRef]
- Barbary, K.; Bailey, S.; Barentsen, G.; Barclay, T.; Biswas, R.; Boone, K.; Craig, M.; Feindt, U.; Friesen, B.; Goldstein, D.; et al. SNCosmo. Zenodo. Available online: https://zenodo.org/record/6363879#.ZEOCc85BxPY (accessed on 20 February 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Zhang, J.; Zhang, X. Probing Diversity of Type II Supernovae with the Chinese Space Station Telescope. Universe 2023, 9, 201. https://doi.org/10.3390/universe9050201
Lin H, Zhang J, Zhang X. Probing Diversity of Type II Supernovae with the Chinese Space Station Telescope. Universe. 2023; 9(5):201. https://doi.org/10.3390/universe9050201
Chicago/Turabian StyleLin, Han, Jujia Zhang, and Xinghan Zhang. 2023. "Probing Diversity of Type II Supernovae with the Chinese Space Station Telescope" Universe 9, no. 5: 201. https://doi.org/10.3390/universe9050201
APA StyleLin, H., Zhang, J., & Zhang, X. (2023). Probing Diversity of Type II Supernovae with the Chinese Space Station Telescope. Universe, 9(5), 201. https://doi.org/10.3390/universe9050201