Anion Inhibition Profile of the β-Carbonic Anhydrase from the Opportunist Pathogenic Fungus Malassezia restricta Involved in Dandruff and Seborrheic Dermatitis
Abstract
:1. Introduction
2. Results and Discussion
- (i)
- Anions, which generally complex many cations, including Zn(II), such as fluoride, chloride, bromide, cyanate, thiocyanate, cyanide, nitrite, carbonate, bisulfite, sulfate, hydrogen sulfate, pyrophosphate, divanadate, perrhenate, peroxydisulfate, iminodisulfite, and fluorosulfonate, did not show any inhibitory action against MreCA (KI > 50 mM). It is interesting to note that MreCA has a very intriguingly inhibition pattern versus these anions when compared with its ortholog MgCA, or the two human isoforms (hCA I and hCA II), MrCA being less or not inhibited by most of the anions tested. The enzyme from M. globosa showed a KI in the range of 4.06–21.4 mM for most of these inhibitors, apart from carbonate, bisulfite, and peroxydisulfate. Indeed, the two human isoforms belonging to the α-CA class were well inhibited by the ‘‘metal ion poisons”, such as cyanide and azide. The behavior of MreCA is somewhat difficult to explain observing the different inhibition profile compared to MgCA, hCA I, and hCA II. However, it fortifies the thesis that the synthesis of new drugs capable of interfering selectively with MreCA and MgCA activity can avoid the inhibition of the human CAs (α-class enzymes), leading to the inactivation of the CAs encoded by the scalp microbes necessary for the integrity of the human skin.
- (ii)
- Simple and complex anions investigated here, including iodide, nitrate, sulfamic acid, phenylboronic acid, perchlorate, osmate, perruthenate, esafluorofosfato, and trifalate, showed an interesting inhibition profile for MreCA, with KI ranging between 3.9 and 9.0 mM. Most of these anions showed a similar KI for the homologous enzyme MgCA, with the exception of sulfamic acid and phenylboronic acid, which are very effective inhibitors of MgCA, with Ki of 0.083 and 0.089 mM, respectively. Interesting, the human isoforms (hCAI and hCAII) are not well inhibited by phenyl boronic acid.
- (iii)
- The most effective MreCA inhibitors identified in this study were bicarbonate, sulfamide, phenyl arsenic acid, stannate, tellurate, tetraborate, selenocyanate, trithiocarbonate, and diethyldithiocarbamate (KI of 0.075–0.86 mM). These small molecules/anions are in fact well known to effectively inhibit many CAs belonging to all genetic families, as well as the two human isoforms (hCA I and hCA II).
3. Materials and Methods
3.1. Cloning and Purification of MreCA
3.2. Western Blotting
3.3. Determination of the Inhibition Constants
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alonso-de Castro, S.; Terenzi, A.; Gurruchaga-Pereda, J.; Salassa, L. Catalysis concepts in medicinal inorganic chemistry. Chemistry 2019, 25, 6651–6660. [Google Scholar] [CrossRef] [PubMed]
- Mjos, K.D.; Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev. 2014, 114, 4540–4563. [Google Scholar] [CrossRef] [PubMed]
- Gambino, D. Advances and current perspectives in medicinal inorganic chemistry. Curr. Med. Chem. 2010, 17, 3605. [Google Scholar] [CrossRef] [PubMed]
- Reeder, N.L.; Kaplan, J.; Xu, J.; Youngquist, R.S.; Wallace, J.; Hu, P.; Juhlin, K.D.; Schwartz, J.R.; Grant, R.A.; Fieno, A.; et al. Zinc pyrithione inhibits yeast growth through copper influx and inactivation of iron-sulfur proteins. Antimicrob. Agents Chemother. 2011, 55, 5753–5760. [Google Scholar] [CrossRef] [PubMed]
- Flesch, P. On the mode of action of selenium sulfide. J. Invest. Dermatol. 1953, 21, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Rose, T.; Braren, S.; Folster, H.; Hillemann, T.; Oltrogge, B.; Philipp, P.; Weets, G.; Fey, S. Efficacy of a piroctone olamine/climbazol shampoo in comparison with a zinc pyrithione shampoo in subjects with moderate to severe dandruff. Int. J. Cosmet. Sci. 2011, 33, 276–282. [Google Scholar] [CrossRef]
- Haas, K.L.; Franz, K.J. Application of metal coordination chemistry to explore and manipulate cell biology. Chem. Rev. 2009, 109, 4921–4960. [Google Scholar] [CrossRef] [PubMed]
- Tsang, K.K.; Kwong, E.W.; Woo, K.Y.; To, T.S.; Chung, J.W.; Wong, T.K. The anti-inflammatory and antibacterial action of nanocrystalline silver and manuka honey on the molecular alternation of diabetic foot ulcer: A comprehensive literature review. Evid. Based Complement. Alternat. Med. 2015, 2015, 218283. [Google Scholar] [CrossRef]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef]
- Angeli, A.; Pinteala, M.; Maier, S.S.; Del Prete, S.; Capasso, C.; Simionescu, B.C.; Supuran, C.T. Inhibition of alpha-, beta-, gamma-, delta-, zeta- and eta-class carbonic anhydrases from bacteria, fungi, algae, diatoms and protozoans with famotidine. J. Enzyme Inhib. Med. Chem. 2019, 34, 644–650. [Google Scholar] [CrossRef]
- Carta, F.; Osman, S.M.; Vullo, D.; AlOthman, Z.; Del Prete, S.; Capasso, C.; Supuran, C.T. Poly(amidoamine) dendrimers show carbonic anhydrase inhibitory activity against alpha-, beta-, gamma- and eta-class enzymes. Bioorg. Med. Chem. 2015, 23, 6794–6798. [Google Scholar] [CrossRef] [PubMed]
- Capasso, C.; Supuran, C.T. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin. Ther. Targets 2015, 19, 1689–1704. [Google Scholar] [CrossRef] [PubMed]
- Capasso, C.; Supuran, C.T. Anti-infective carbonic anhydrase inhibitors: A patent and literature review. Expert Opin. Ther. Pat. 2013, 23, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Annunziato, G.; Angeli, A.; D’Alba, F.; Bruno, A.; Pieroni, M.; Vullo, D.; De Luca, V.; Capasso, C.; Supuran, C.T.; Costantino, G. Discovery of new potential anti-infective compounds based on carbonic anhydrase inhibitors by rational target-focused repurposing approaches. ChemMedChem 2016, 11, 1904–1914. [Google Scholar] [CrossRef] [PubMed]
- Ozensoy Guler, O.; Capasso, C.; Supuran, C.T. A magnificent enzyme superfamily: Carbonic anhydrases, their purification and characterization. J. Enzyme Inhib. Med. Chem. 2016, 31, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, S.; Vullo, D.; De Luca, V.; Carginale, V.; Ferraroni, M.; Osman, S.M.; AlOthman, Z.; Supuran, C.T.; Capasso, C. Sulfonamide inhibition studies of the beta-carbonic anhydrase from the pathogenic bacterium vibrio cholerae. Bioorg. Med. Chem. 2016, 24, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, S.; De Luca, V.; De Simone, G.; Supuran, C.T.; Capasso, C. Cloning, expression and purification of the complete domain of the eta-carbonic anhydrase from plasmodium falciparum. J. Enzyme Inhib. Med. Chem. 2016, 31, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Capasso, C.; Supuran, C.T. An overview of the carbonic anhydrases from two pathogens of the oral cavity: Streptococcus mutans and porphyromonas gingivalis. Curr. Top. Med. Chem. 2016, 16, 2359–2368. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.L.; Clement, R.; Kosta, A.; Maberly, S.C.; Gontero, B. A new widespread subclass of carbonic anhydrase in marine phytoplankton. ISME J. 2019, 1, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, S.; Vullo, D.; De Luca, V.; Carginale, V.; Osman, S.M.; AlOthman, Z.; Supuran, C.T.; Capasso, C. Cloning, expression, purification and sulfonamide inhibition profile of the complete domain of the eta-carbonic anhydrase from plasmodium falciparum. Bioorg. Med. Chem. Lett. 2016, 26, 4184–4190. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, S.; Vullo, D.; De Luca, V.; Carginale, V.; di Fonzo, P.; Osman, S.M.; AlOthman, Z.; Supuran, C.T.; Capasso, C. Anion inhibition profiles of the complete domain of the eta-carbonic anhydrase from plasmodium falciparum. Bioorg. Med. Chem. 2016, 24, 4410–4414. [Google Scholar] [CrossRef]
- Del Prete, S.; Vullo, D.; De Luca, V.; Carginale, V.; di Fonzo, P.; Osman, S.M.; AlOthman, Z.; Supuran, C.T.; Capasso, C. Anion inhibition profiles of alpha-, beta- and gamma-carbonic anhydrases from the pathogenic bacterium vibrio cholerae. Bioorg. Med. Chem. 2016, 24, 3413–3417. [Google Scholar] [CrossRef]
- Abdel Gawad, N.M.; Amin, N.H.; Elsaadi, M.T.; Mohamed, F.M.; Angeli, A.; De Luca, V.; Capasso, C.; Supuran, C.T. Synthesis of 4-(thiazol-2-ylamino)-benzenesulfonamides with carbonic anhydrase i, ii and ix inhibitory activity and cytotoxic effects against breast cancer cell lines. Bioorg. Med. Chem. 2016, 24, 3043–3051. [Google Scholar] [CrossRef]
- Del Prete, S.; Vullo, D.; De Luca, V.; Carginale, V.; Osman, S.M.; AlOthman, Z.; Supuran, C.T.; Capasso, C. Comparison of the sulfonamide inhibition profiles of the alpha-, beta- and gamma-carbonic anhydrases from the pathogenic bacterium vibrio cholerae. Bioorg. Med. Chem. Lett. 2016, 26, 1941–1946. [Google Scholar] [CrossRef]
- Smith, K.S.; Ferry, J.G. Prokaryotic carbonic anhydrases. FEMS Microbiol. Rev. 2000, 24, 335–366. [Google Scholar] [CrossRef]
- Maeda, S.; Price, G.D.; Badger, M.R.; Enomoto, C.; Omata, T. Bicarbonate binding activity of the cmpa protein of the cyanobacterium synechococcus sp. Strain pcc 7942 involved in active transport of bicarbonate. J. Biol. Chem. 2000, 275, 20551–20555. [Google Scholar] [CrossRef]
- Joseph, P.; Ouahrani-Bettache, S.; Montero, J.L.; Nishimori, I.; Minakuchi, T.; Vullo, D.; Scozzafava, A.; Winum, J.Y.; Kohler, S.; Supuran, C.T. A new beta-carbonic anhydrase from brucella suis, its cloning, characterization, and inhibition with sulfonamides and sulfamates, leading to impaired pathogen growth. Bioorg. Med. Chem. 2011, 19, 1172–1178. [Google Scholar] [CrossRef]
- Joseph, P.; Turtaut, F.; Ouahrani-Bettache, S.; Montero, J.L.; Nishimori, I.; Minakuchi, T.; Vullo, D.; Scozzafava, A.; Kohler, S.; Winum, J.Y.; et al. Cloning, characterization, and inhibition studies of a beta-carbonic anhydrase from brucella suis. J. Med. Chem. 2010, 53, 2277–2285. [Google Scholar] [CrossRef]
- Murima, P.; McKinney, J.D.; Pethe, K. Targeting bacterial central metabolism for drug development. Chem. Biol. 2014, 21, 1423–1432. [Google Scholar] [CrossRef]
- Del Prete, S.; Vullo, D.; Ghobril, C.; Hitce, J.; Clavaud, C.; Marat, X.; Capasso, C.; Supuran, C.T. Cloning, purification, and characterization of a beta-carbonic anhydrase from malassezia restricta, an opportunistic pathogen involved in dandruff and seborrheic dermatitis. Int. J. Mol. Sci. 2019, 20, 2447. [Google Scholar] [CrossRef]
- Nocentini, A.; Cadoni, R.; Del Prete, S.; Capasso, C.; Dumy, P.; Gratteri, P.; Supuran, C.T.; Winum, J.-Y. Benzoxaboroles as efficient inhibitors of the beta-carbonic anhydrases from pathogenic fungi: Activity and modeling study. ACS Med. Chem. Lett. 2017, 8, 1194–1198. [Google Scholar] [CrossRef]
- Del Prete, S.; Vullo, D.; Osman, S.M.; AlOthman, Z.; Capasso, C.; Supuran, C.T. Anion inhibition studies of the dandruff-producing fungus malassezia globosa beta-carbonic anhydrase mgca. Bioorg. Med. Chem. Lett. 2015, 25, 5194–5198. [Google Scholar] [CrossRef]
- Vullo, D.; Del Prete, S.; Nocentini, A.; Osman, S.M.; AlOthman, Z.; Capasso, C.; Bozdag, M.; Carta, F.; Gratteri, P.; Supuran, C.T. Dithiocarbamates effectively inhibit the beta-carbonic anhydrase from the dandruff-producing fungus malassezia globosa. Bioorg. Med. Chem. 2017, 25, 1260–1265. [Google Scholar] [CrossRef]
- Nocentini, A.; Vullo, D.; Del Prete, S.; Osman, S.M.; Alasmary, F.A.S.; AlOthman, Z.; Capasso, C.; Carta, F.; Gratteri, P.; Supuran, C.T. Inhibition of the beta-carbonic anhydrase from the dandruff-producing fungus malassezia globosa with monothiocarbamates. J. Enzyme Inhib. Med. Chem. 2017, 32, 1064–1070. [Google Scholar] [CrossRef]
- Nocentini, A.; Bua, S.; Del Prete, S.; Heravi, Y.E.; Saboury, A.A.; Karioti, A.; Bilia, A.R.; Capasso, C.; Gratteri, P.; Supuran, C.T. Natural polyphenols selectively inhibit beta-carbonic anhydrase from the dandruff-producing fungus malassezia globosa: Activity and modeling studies. ChemMedChem 2018, 13, 816–823. [Google Scholar] [CrossRef]
- Entezari Heravi, Y.; Bua, S.; Nocentini, A.; Del Prete, S.; Saboury, A.A.; Sereshti, H.; Capasso, C.; Gratteri, P.; Supuran, C.T. Inhibition of malassezia globosa carbonic anhydrase with phenols. Bioorg. Med. Chem. 2017, 25, 2577–2582. [Google Scholar] [CrossRef]
- Clavaud, C.; Jourdain, R.; Bar-Hen, A.; Tichit, M.; Bouchier, C.; Pouradier, F.; El Rawadi, C.; Guillot, J.; Menard-Szczebara, F.; Breton, L.; et al. Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS ONE 2013, 8, e58203. [Google Scholar] [CrossRef]
- Park, T.; Kim, H.-J.; Myeong, N.R.; Lee, H.G.; Kwack, I.; Lee, J.; Kim, B.J.; Sul, W.J.; An, S. Collapse of human scalp microbiome network in dandruff and seborrhoeic dermatitis. Exp. Dermatol. 2017, 26, 835–838. [Google Scholar] [CrossRef] [Green Version]
- Stalhberger, T.; Simenel, C.; Clavaud, C.; Eijsink, V.G.H.; Jourdain, R.; Delepierre, M.; Latge, J.-P.; Breton, L.; Fontaine, T. Chemical organization of the cell wall polysaccharide core of malassezia restricta. J. Biol. Chem. 2014, 289, 12647–12656. [Google Scholar] [CrossRef]
- Morand, S.C.; Bertignac, M.; Iltis, A.; Kolder, I.C.R.M.; Pirovano, W.; Jourdain, R.; Clavaud, C. Complete genome sequence of malassezia restricta cbs 7877, an opportunist pathogen involved in dandruff and seborrheic dermatitis. Microbiol. Resour. Announc. 2019, 8, e01543-18. [Google Scholar] [CrossRef]
- Elleuche, S.; Poggeler, S. Carbonic anhydrases in fungi. Microbiology 2010, 156, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Han, K.-H.; Chun, Y.-H.; Figueiredo, B.d.C.P.; Soriani, F.M.; Savoldi, M.; Almeida, A.; Rodrigues, F.; Cairns, C.T.; Bignell, E.; Tobal, J.M.; et al. The conserved and divergent roles of carbonic anhydrases in the filamentous fungi aspergillus fumigatus and aspergillus nidulans. Mol. Microbiol. 2010, 75, 1372–1388. [Google Scholar] [CrossRef]
- Xu, J.; Saunders, C.W.; Hu, P.; Grant, R.A.; Boekhout, T.; Kuramae, E.E.; Kronstad, J.W.; Deangelis, Y.M.; Reeder, N.L.; Johnstone, K.R.; et al. Dandruff-associated malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc. Natl. Acad. Sci. USA 2007, 104, 18730–18735. [Google Scholar] [CrossRef]
- Supuran, C.T. How many carbonic anhydrase inhibition mechanisms exist? J. Enzyme Inhib. Med. Chem. 2016, 31, 345–360. [Google Scholar] [CrossRef]
- Mass, T.; Giuffre, A.J.; Sun, C.-Y.; Stifler, C.A.; Frazier, M.J.; Neder, M.; Tamura, N.; Stan, C.V.; Marcus, M.A.; Gilbert, P.U.P.A. Amorphous calcium carbonate particles form coral skeletons. Proc. Natl. Acad. Sci. USA 2017, 114, E7670–E7678. [Google Scholar] [CrossRef] [Green Version]
- Khalifah, R.G. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes b and c. J. Biol. Chem. 1971, 246, 2561–2573. [Google Scholar]
- Carta, F.; Scozzafava, A.; Supuran, C.T. Sulfonamides: A patent review (2008–2012). Expert Opin. Ther. Pat. 2012, 22, 747–758. [Google Scholar] [CrossRef]
- Pastorekova, S.; Casini, A.; Scozzafava, A.; Vullo, D.; Pastorek, J.; Supuran, C.T. Carbonic anhydrase inhibitors: The first selective, membrane-impermeant inhibitors targeting the tumor-associated isozyme ix. Bioorg. Med. Chem. Lett. 2004, 14, 869–873. [Google Scholar] [CrossRef]
- Scozzafava, A.; Carta, F.; Supuran, C.T. Secondary and tertiary sulfonamides: A patent review (2008–2012). Expert Opin. Ther. Pat. 2013, 23, 203–213. [Google Scholar] [CrossRef]
- Supuran, C.T. Carbonic anhydrase inhibitors as emerging drugs for the treatment of obesity. Expert Opin. Emerg. Drugs 2012, 17, 11–15. [Google Scholar] [CrossRef]
- Schlicker, C.; Hall, R.A.; Vullo, D.; Middelhaufe, S.; Gertz, M.; Supuran, C.T.; Muhlschlegel, F.A.; Steegborn, C. Structure and inhibition of the co2-sensing carbonic anhydrase can2 from the pathogenic fungus cryptococcus neoformans. J. Mol. Biol. 2009, 385, 1207–1220. [Google Scholar] [CrossRef]
- Innocenti, A.; Muhlschlegel, F.A.; Hall, R.A.; Steegborn, C.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors: Inhibition of the beta-class enzymes from the fungal pathogens candida albicans and cryptococcus neoformans with simple anions. Bioorg. Med. Chem. Lett. 2008, 18, 5066–5070. [Google Scholar] [CrossRef]
- Wang, L.; Clavaud, C.; Bar-Hen, A.; Cui, M.; Gao, J.; Liu, Y.; Liu, C.; Shibagaki, N.; Gueniche, A.; Jourdain, R.; et al. Characterization of the major bacterial-fungal populations colonizing dandruff scalps in Shanghai, China, shows microbial disequilibrium. Exp. Dermatol. 2015, 24, 398–400. [Google Scholar] [CrossRef]
KI (mM) * | ||||
---|---|---|---|---|
Inhibitor § | hCA I a | hCA II a | MgCA a | MreCA b |
F− | >300 | >300 | 7.13 | >50 |
Cl− | 6 | 200 | 7.98 | >50 |
Br− | 4 | 63 | 18.6 | >50 |
I− | 0.3 | 26 | 8.73 | 8.6 |
CNO− | 0.0007 | 0.03 | 6.81 | >50 |
SCN− | 0.2 | 1.6 | 8.39 | >50 |
CN− | 0.0005 | 0.02 | 7.19 | >50 |
N3− | 0.0012 | 1.51 | 45.2 | >50 |
NO2− | 8.4 | 63 | 7.56 | >50 |
NO3− | 7 | 35 | 8.13 | 9 |
HCO3− | 12 | 85 | 0.59 | 0.86 |
CO32 | 15 | 73 | >100 | >50 |
HSO3− | 18 | 89 | >100 | >50 |
SO42− | 63 | >200 | 19.5 | >50 |
HS− | 0.0006 | 0.04 | 11.9 | >50 |
H2NSO2NH2 | 0.31 | 1.13 | 0.094 | 0.72 |
NH2SO3H | 0.021 | 0.39 | 0.083 | 7.7 |
PhAsO3H2 | 31.7 | 49.2 | 0.09 | 0.83 |
PhB(OH)2 | 58.6 | 23.1 | 0.089 | 8.7 |
ClO4− | >200 | >200 | >100 | 9.2 |
SnO32− | 0.57 | 0.83 | 5.07 | 0.56 |
SeO42− | 118 | 112 | 7.41 | 1.7 |
TeO42− | 0.66 | 0.92 | 5.75 | 0.56 |
OsO52− | 0.92 | 0.95 | 6.16 | 8.5 |
P2O72− | 25.77 | 48.5 | 6.03 | >50 |
V2O72− | 0.54 | 0.57 | 6.89 | >50 |
B4O72− | 0.64 | 0.95 | 8.45 | 0.4 |
ReO4− | 0.11 | 0.75 | 16.7 | >50 |
RuO4− | 0.101 | 0.69 | 8.82 | 7.4 |
S2O82− | 0.107 | 0.084 | >100 | >50 |
SeCN− | 0.085 | 0.086 | 1.73 | 0.65 |
NH(SO3)22− | 0.31 | 0.76 | 21.4 | >50 |
FSO3− | 0.79 | 0.46 | 4.06 | >50 |
CS32− | 0.0087 | 0.0088 | 1.77 | 0.92 |
Et2NCS2− | 0.00079 | 0.0031 | 0.3 | 0.075 |
PF6− | nt | nt | 6.47 | 3.9 |
CF3SO3− | nt | nt | 2.28 | 4.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prete, S.D.; Angeli, A.; Ghobril, C.; Hitce, J.; Clavaud, C.; Marat, X.; Supuran, C.T.; Capasso, C. Anion Inhibition Profile of the β-Carbonic Anhydrase from the Opportunist Pathogenic Fungus Malassezia restricta Involved in Dandruff and Seborrheic Dermatitis. Metabolites 2019, 9, 147. https://doi.org/10.3390/metabo9070147
Prete SD, Angeli A, Ghobril C, Hitce J, Clavaud C, Marat X, Supuran CT, Capasso C. Anion Inhibition Profile of the β-Carbonic Anhydrase from the Opportunist Pathogenic Fungus Malassezia restricta Involved in Dandruff and Seborrheic Dermatitis. Metabolites. 2019; 9(7):147. https://doi.org/10.3390/metabo9070147
Chicago/Turabian StylePrete, Sonia Del, Andrea Angeli, Cynthia Ghobril, Julien Hitce, Cécile Clavaud, Xavier Marat, Claudiu T. Supuran, and Clemente Capasso. 2019. "Anion Inhibition Profile of the β-Carbonic Anhydrase from the Opportunist Pathogenic Fungus Malassezia restricta Involved in Dandruff and Seborrheic Dermatitis" Metabolites 9, no. 7: 147. https://doi.org/10.3390/metabo9070147
APA StylePrete, S. D., Angeli, A., Ghobril, C., Hitce, J., Clavaud, C., Marat, X., Supuran, C. T., & Capasso, C. (2019). Anion Inhibition Profile of the β-Carbonic Anhydrase from the Opportunist Pathogenic Fungus Malassezia restricta Involved in Dandruff and Seborrheic Dermatitis. Metabolites, 9(7), 147. https://doi.org/10.3390/metabo9070147