Comparison of Growth and Metabolomic Profiles of Two Afforestation Cypress Species Cupressus chengiana and Platycladus orientalis Grown at Minjiang Valley in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Sites
2.2. Tree Selection, Growth Measurement, and Leaf and Soil Sampling
2.3. Biochemical Analyses
2.3.1. Biochemical Analyses of Soil Samples
2.3.2. Biochemical Analyses of Leaf Samples
2.4. Statistical Analysis
3. Results
3.1. Soil Properties at the Two Field Sites
3.2. Tree Growth
3.3. Species-Specific Differences at Two Sites
3.4. Differences between the Two Sites
4. Discussion
4.1. Different Growth Rates of the Two Species
4.2. Climate Conditions Mediated Species-Specific Differences of Metabolome
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schimel, D.S. Drylands in the Earth System. Science 2010, 327, 418–419. [Google Scholar] [CrossRef]
- Prăvălie, R. Drylands Extent and Environmental Issues. A Global Approach. Earth-Sci. Rev. 2016, 161, 259–278. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Li, Z.; Liu, Y.; Huang, W.; Liu, X.; Feng, M. Analysis of the Impact of Global Climate Change on Dryland Areas. Adv. Earth Sci. 2022, 37, 111. [Google Scholar] [CrossRef]
- Liu, H.; Xu, C.; Allen, C.D.; Hartmann, H.; Wei, X.; Yakir, D.; Wu, X.; Yu, P. Nature-Based Framework for Sustainable Afforestation in Global Drylands under Changing Climate. Glob. Change Biol. 2022, 28, 2202–2220. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Guan, W.; Wu, B.; Ma, K.; Liu, G.; Wang, X.; Chen, Q. Plant Community Complexity in the Arid Valley of Minjiang River, Southwestern China. Acta Ecol. Sin. 2006, 26, 3159–3165. [Google Scholar] [CrossRef]
- Sun, L.; Sun, R.; Chen, L.; Sun, T. Sensitive Indicators of Soil Nutrients from Reservoir Effects in the Hot-Dry Valleys of China. Catena 2022, 216, 106421. [Google Scholar] [CrossRef]
- Ma, H.; McConchie, J.A. The Dry-Hot Valleys and Forestation in Southwest China. J. For. Res. 2001, 12, 35–39. [Google Scholar] [CrossRef]
- Gong, Z.; Li, Y.; Liu, L.; Deng, S. Great Facilitation of Thirty Years of Reforestation with Mixed Species to Ecosystem Nitrogen Accumulation in Dry-Hot Valley in the Jinsha River. Int. J. Environ. Res. Public Health 2022, 19, 12660. [Google Scholar] [CrossRef] [PubMed]
- Yıldız, O.; Eşen, D.; Sargıncı, M.; Çetin, B.; Toprak, B.; Dönmez, A.H. Restoration Success in Afforestation Sites Established at Different Times in Arid Lands of Central Anatolia. For. Ecol. Manag. 2022, 503, 119808. [Google Scholar] [CrossRef]
- Li, S.; Huang, X.; Tang, R.; Li, J.; Zhu, B.; Su, J. Soil Microbial Diversity and Network Complexity Sustain Ecosystem Multifunctionality Following Afforestation in a Dry-Hot Valley Savanna. Catena 2023, 231, 107329. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Y.; Zhang, J.; Liu, M.; Yang, Z. Assessment of Land Use Change and Potential Eco-Service Value in the Upper Reaches of Minjiang River, China. J. For. Res. 2007, 18, 97–102. [Google Scholar] [CrossRef]
- Li, M.; Tian, C.; Wang, Y.; Liu, Q.; Lu, Y.; Shan, W. Impacts of Future Climate Change (2030-2059) on Debris Flow Hazard: A Case Study in the Upper Minjiang River Basin, China. J. Mt. Sci. 2018, 15, 1836–1850. [Google Scholar] [CrossRef]
- Wang, B.; Qu, L.Y.; Ma, K.M.; Zhang, X.Y.; Song, C.J. Patterns of Ecoenzymatic Stoichiometry in the Dominant Shrubs in the Semi-Arid Upper Minjiang River Valley. Acta Ecol. Sin. 2015, 35, 6078–6088. (In Chinese) [Google Scholar]
- Wang, B.; Qu, L.; Song, C.; Gong, Y. Effects of Dominant Shrubs on Soil Microbial Composition in the Semi-Arid Minjiang River Valley. Acta Ecol. Sin. 2015, 35, 2481–2493. (In Chinese) [Google Scholar]
- Gong, Z.; Tang, Y.; Xu, W.; Mou, Z. Rapid Sequestration of Ecosystem Carbon in 30-Year Reforestation with Mixed Species in Dry Hot Valley of the Jinsha River. Int. J. Environ. Res. Public Health 2019, 16, 1937. [Google Scholar] [CrossRef]
- Wei, H.E.; Tian, L.I.; Wei, Z.; Shilei, W.U.; Yu, S.U.; Yan, W.; You, J. Research on Species Diversity of Pinus radiata Plantation under Different Afforestation Models in Dry-hot Valley of the Minjiang River. J. Sichuan For. Sci. Technol. 2021, 42, 61–67. (In Chinese) [Google Scholar] [CrossRef]
- Pang, X.-Y.; Bao, W.-K.; Zhang, Y.-M. Evaluation of Soil Fertility Under Different Cupressus chengiana Forests Using Multivariate Approach1. Pedosphere 2006, 16, 602–615. [Google Scholar] [CrossRef]
- Hu, X.-G.; Mao, J.-F.; El-Kassaby, Y.A.; Jia, K.-H.; Jiao, S.-Q.; Zhou, S.-S.; Li, Y.; Coops, N.C.; Wang, T. Local Adaptation and Response of Platycladus orientalis (L.) Franco Populations to Climate Change. Forests 2019, 10, 622. [Google Scholar] [CrossRef]
- Li, J.; Milne, R.I.; Ru, D.; Miao, J.; Tao, W.; Zhang, L.; Xu, J.; Liu, J.; Mao, K. Allopatric Divergence and Hybridization within Cupressus chengiana (Cupressaceae), a Threatened Conifer in the Northern Hengduan Mountains of Western China. Mol. Ecol. 2020, 29, 1250–1266. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, Z. Study on Models of Conversion of Cropland to Forest and Grassland in the Midwest China. Sci. Silvae Sin. 2002, 38, 154–159. (In Chinese) [Google Scholar]
- Li, F.; Bao, W.-K.; Pang, X.; Leng, L. Seedling emergence, survival and growth of five endemic species in the dry valley of Minjiang River. Acta Ecol. Sin. 2009, 29, 2219–2230. (In Chinese) [Google Scholar]
- Rosell, R.A.; Gasparoni, J.C.; Galantini, J.A. Soil Organic Matter Evaluation. In Assessment Methods for Soil Carbon; Lewis Publishers: Boca Raton, FL, USA, 2001; pp. 311–322. [Google Scholar]
- Yang, Y.; Wu, Q.; Yang, W.; Wu, F.; Zhang, L.; Xu, Z.; Liu, Y.; Tan, B.; Li, H.; Zhou, W. Temperature and Soil Nutrients Drive the Spatial Distributions of Soil Macroinvertebrates on the Eastern Tibetan Plateau. Ecosphere 2020, 11, e03075. [Google Scholar] [CrossRef]
- Heanes, D.L. Determination of Total organic-C in Soils by an Improved Chromic Acid Digestion and Spectrophotometric Procedure. Commun. Soil Sci. Plant Anal. 1984, 15, 1191–1213. [Google Scholar] [CrossRef]
- Du, B.; Kreuzwieser, J.; Winkler, J.B.; Ghirardo, A.; Schnitzler, J.-P.; Ache, P.; Alfarraj, S.; Hedrich, R.; White, P.; Rennenberg, H. Physiological Responses of Date Palm (Phoenix dactylifera) Seedlings to Acute Ozone Exposure at High Temperature. Environ. Pollut. 2018, 242, 905–913. [Google Scholar] [CrossRef]
- Li, G.; Wan, S.; Zhou, J.; Yang, Z.; Qin, P. Leaf Chlorophyll Fluorescence, Hyperspectral Reflectance, Pigments Content, Malondialdehyde and Proline Accumulation Responses of Castor Bean (Ricinus communis L.) Seedlings to Salt Stress Levels. Ind. Crops Prod. 2010, 31, 13–19. [Google Scholar] [CrossRef]
- Werner, C.; Hasenbein, N.; Maia, R.; Beyschlag, W.; Máguas, C. Evaluating High Time-Resolved Changes in Carbon Isotope Ratio of Respired CO2 by a Rapid in-Tube Incubation Technique. Rapid Commun. Mass Spectrom. 2007, 21, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Jansen, K.; Junker, L.V.; Eiblmeier, M.; Kreuzwieser, J.; Gessler, A.; Ensminger, I.; Rennenberg, H. Elevated temperature differently affects foliar nitrogen partitioning in seedlings of diverse Douglas fir provenances. Tree Physiol. 2014, 34, 1090–1101. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; MacDonald, P.E.; Wishart, D.S.; Li, S.; et al. MetaboAnalyst 6.0: Towards a Unified Platform for Metabolomics Data Processing, Analysis and Interpretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef]
- Long, H.; Qin, Z.; Liu, F.; Wei, Z.; Gan, S.; Pu, C.; You, J. Advances in Researches on Vegegation Restoration in Dry Valleys of Sichuan Provence. J. Sichuan For. Sci. Technol. 2013, 34, 27–32. (In Chinese) [Google Scholar]
- Chen, X.; Yang, S.; He, J.; Dai, Y.; Yang, H. The Present Situation and Recovery Strategy of Ecological Environments in the Dry Valleys in the Upper Reaches of the Minjiang River Area. J. Sichuan For. Sci. Technol. 2014, 35, 62–65. (In Chinese) [Google Scholar]
- Luo, D.; Feng, Q.; Shi, Z.; Li, D.; Yang, C.; Liu, Q.; He, J. Dynamics of Carbon and Nitrogen Storage of Cupressus Chengiana Plantations in the Arid Valley of Minjiang River, Southwest China. Chin. J. Appl. Ecol. 2015, 26, 1099–1105. (In Chinese) [Google Scholar]
- Karasov, T.L.; Chae, E.; Herman, J.J.; Bergelson, J. Mechanisms to Mitigate the Trade-Off between Growth and Defense. Plant Cell 2017, 29, 666–680. [Google Scholar] [CrossRef]
- Cope, O.L.; Keefover-Ring, K.; Kruger, E.L.; Lindroth, R.L. Growth–Defense Trade-Offs Shape Population Genetic Composition in an Iconic Forest Tree Species. Proc. Natl. Acad. Sci. USA 2021, 118, e2103162118. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Webster, S.; He, S.Y. Growth–Defense Trade-Offs in Plants. Curr. Biol. 2022, 32, R634–R639. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; He, J.; Zhang, L.; Zhu, X.; Yang, C.; Li, D.; Feng, Q. Research on Photosynthetic and Water Physiological Characteristics of 10 Tree Species Used for Ecological Restoration in Dry Valleys. J. Sichuan For. Sci. Technol. 2019, 40, 20–24. (In Chinese) [Google Scholar]
- Smirnoff, N.; Arnaud, D. Hydrogen Peroxide Metabolism and Functions in Plants. New Phytol. 2019, 221, 1197–1214. [Google Scholar] [CrossRef]
- Li, D.; Wei, S.; Chen, J.; Feng, Q.; Xu, Z.; Li, X.; Liu, Q.; Cai, L. Comparative study on photosynthetic physiological and water physiological characteristics of Cupressus chengiana in wet and dry season, the upper Minjiang River dry valley. Acta Ecol. Sin. 2022, 42, 7381–7389. (In Chinese) [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant Properties of Phenolic Compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Matysik, J.; Alia; Bhalu, B.; Mohanty, P. Molecular Mechanisms of Quenching of Reactive Oxygen Species by Proline under Stress in Plants. Curr. Sci. 2002, 82, 525–532. [Google Scholar]
- Ullah, I.; Khan, A.L.; Ali, L.; Khan, A.R.; Waqas, M.; Hussain, J.; Lee, I.-J.; Shin, J.-H. Benzaldehyde as an Insecticidal, Antimicrobial, and Antioxidant Compound Produced by Photorhabdus Temperata M1021. J. Microbiol. 2015, 53, 127–133. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Kundu, A. Sugars and Sugar Polyols in Overcoming Environmental Stresses. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress; Roychoudhury, A., Tripathi, D.K., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 71–101. ISBN 978-1-119-55163-8. [Google Scholar]
- Corpas, F.J.; Gupta, D.K.; Palma, J.M. Tryptophan: A Precursor of Signaling Molecules in Higher Plants. In Hormones and Plant Response; Gupta, D.K., Corpas, F.J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 273–289. ISBN 978-3-030-77477-6. [Google Scholar]
- Wheeler, G.L.; Jones, M.A.; Smirnoff, N. The Biosynthetic Pathway of Vitamin C in Higher Plants. Nature 1998, 393, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Kunert, K. The Ascorbate–Glutathione Cycle Coming of Age. J. Exp. Bot. 2024, 75, 2682–2699. [Google Scholar] [CrossRef] [PubMed]
- Jansen, K.; Du, B.; Kayler, Z.; Siegwolf, R.; Ensminger, I.; Rennenberg, H.; Kammerer, B.; Jaeger, C.; Schaub, M.; Kreuzwieser, J. Douglas-Fir Seedlings Exhibit Metabolic Responses to Increased Temperature and Atmospheric Drought. PLoS ONE 2014, 9, e114165. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Burzlaff, T.; Rennenberg, H. Drought Hardening of European Beech (Fagus sylvatica L.) and Silver Fir (Abies alba Mill.) Seedlings in Mixed Cultivation. Forests 2022, 13, 1386. [Google Scholar] [CrossRef]
- Werner, C.; Schnyder, H.; Cuntz, M.; Keitel, C.; Zeeman, M.J.; Dawson, T.E.; Badeck, F.-W.; Brugnoli, E.; Ghashghaie, J.; Grams, T.E.E.; et al. Progress and Challenges in Using Stable Isotopes to Trace Plant Carbon and Water Relations across Scales. Biogeosciences 2012, 9, 3083–3111. [Google Scholar] [CrossRef]
- Schweiger, R.; Castells, E.; Da Sois, L.; Martínez-Vilalta, J.; Müller, C. Highly Species-Specific Foliar Metabolomes of Diverse Woody Species and Relationships with the Leaf Economics Spectrum. Cells 2021, 10, 644. [Google Scholar] [CrossRef] [PubMed]
- Anzano, A.; Bonanomi, G.; Mazzoleni, S.; Lanzotti, V. Plant Metabolomics in Biotic and Abiotic Stress: A Critical Overview. Phytochem. Rev. 2022, 21, 503–524. [Google Scholar] [CrossRef]
- Couée, I.; Sulmon, C.; Gouesbet, G.; El Amrani, A. Involvement of Soluble Sugars in Reactive Oxygen Species Balance and Responses to Oxidative Stress in Plants. J. Exp. Bot. 2006, 57, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.U.; Nawaz, M.; Shah, A.N.; Raza, A.; Barbanti, L.; Skalicky, M.; Hashem, M.; Brestic, M.; Pandey, S.; Alamri, S.; et al. Trehalose: A Key Player in Plant Growth Regulation and Tolerance to Abiotic Stresses. J. Plant Growth Regul. 2023, 42, 4935–4957. [Google Scholar] [CrossRef]
- Bae, H.; Herman, E.; Sicher, R. Exogenous Trehalose Promotes Non-Structural Carbohydrate Accumulation and Induces Chemical Detoxification and Stress Response Proteins in Arabidopsis Thaliana Grown in Liquid Culture. Plant Sci. 2005, 168, 1293–1301. [Google Scholar] [CrossRef]
- Zhang, Y.; Fernie, A.R. On the Role of the Tricarboxylic Acid Cycle in Plant Productivity. J. Integr. Plant Biol. 2018, 60, 1199–1216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Swart, C.; Alseekh, S.; Scossa, F.; Jiang, L.; Obata, T.; Graf, A.; Fernie, A.R. The Extra-Pathway Interactome of the TCA Cycle: Expected and Unexpected Metabolic Interactions. Plant Physiol. 2018, 177, 966–979. [Google Scholar] [CrossRef] [PubMed]
- Okumoto, S.; Funck, D.; Trovato, M.; Forlani, G. Editorial: Amino Acids of the Glutamate Family: Functions beyond Primary Metabolism. Front. Plant Sci. 2016, 7, 318. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, T.M.; Nunes Nesi, A.; Araújo, W.L.; Braun, H.-P. Amino Acid Catabolism in Plants. Mol. Plant 2015, 8, 1563–1579. [Google Scholar] [CrossRef] [PubMed]
- Chapin, F.S., III; Kedrowski, R.A. Seasonal Changes in Nitrogen and Phosphorus Fractions and Autumn Retranslocation in Evergreen and Deciduous Taiga Trees. Ecology 1983, 64, 376–391. [Google Scholar] [CrossRef]
- Fife, D.N.; Nambiar, E.K.S.; Saur, E. Retranslocation of Foliar Nutrients in Evergreen Tree Species Planted in a Mediterranean Environment. Tree Physiol. 2008, 28, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Khare, S.; Singh, N.B.; Singh, A.; Hussain, I.; Niharika, K.; Yadav, V.; Bano, C.; Yadav, R.K.; Amist, N. Plant Secondary Metabolites Synthesis and Their Regulations under Biotic and Abiotic Constraints. J. Plant Biol. 2020, 63, 203–216. [Google Scholar] [CrossRef]
- Jan, R.; Asaf, S.; Numan, M.; Lubna; Kim, K.-M. Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to Biotic and Abiotic Stress Conditions. Agronomy 2021, 11, 968. [Google Scholar] [CrossRef]
- Novaes, E.; Kirst, M.; Chiang, V.; Winter-Sederoff, H.; Sederoff, R. Lignin and Biomass: A Negative Correlation for Wood Formation and Lignin Content in Trees. Plant Physiol. 2010, 154, 555–561. [Google Scholar] [CrossRef]
- Huang, X.-Q.; Li, R.; Fu, J.; Dudareva, N. A Peroxisomal Heterodimeric Enzyme Is Involved in Benzaldehyde Synthesis in Plants. Nat. Commun. 2022, 13, 1352. [Google Scholar] [CrossRef]
- Li, J.; Zhou, W.; Francisco, P.; Wong, R.; Zhang, D.; Smith, S.M. Inhibition of Arabidopsis Chloroplast β-Amylase BAM3 by Maltotriose Suggests a Mechanism for the Control of Transitory Leaf Starch Mobilisation. PLoS ONE 2017, 12, e0172504. [Google Scholar] [CrossRef]
- Gillaspy, G.E. The Cellular Language of Myo-Inositol Signaling. New Phytol. 2011, 192, 823–839. [Google Scholar] [CrossRef]
- Valluru, R.; Van den Ende, W. Myo-Inositol and beyond–Emerging Networks under Stress. Plant Sci. 2011, 181, 387–400. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, X.; Luo, Z.; Yang, Y.; You, J.; Chen, D.; He, W. Spatial and Temporal Dynamic Analysis of Bare Soil Area in Maoxian Arid Valley Based on RS. J. Sichuan For. Sci. Technol. 2023, 44, 91–97. (In Chinese) [Google Scholar]
- Robinson, D. δ15N as an Integrator of the Nitrogen Cycle. Trends Ecol. Evol. 2001, 16, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Hobbie, E.A.; Högberg, P. Nitrogen Isotopes Link Mycorrhizal Fungi and Plants to Nitrogen Dynamics. New Phytol. 2012, 196, 367–382. [Google Scholar] [CrossRef]
- Handley, L.L.; Austin, A.T.; Stewart, G.R.; Robinson, D.; Scrimgeour, C.M.; Raven, J.A.; Heaton, T.H.E.; Schmidt, S. The 15N Natural Abundance (δ15N) of Ecosystem Samples Reflects Measures of Water Availability. Funct. Plant Biol. 1999, 26, 185–199. [Google Scholar] [CrossRef]
- Rennenberg, H.; Loreto, F.; Polle, A.; Brilli, F.; Fares, S.; Beniwal, R.S.; Gessler, A. Physiological Responses of Forest Trees to Heat and Drought. Plant Biol. 2006, 8, 556–571. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.R.; Clarke, V.C. The Nitrogen Cost of Photosynthesis. J. Exp. Bot. 2019, 70, 7–15. [Google Scholar] [CrossRef]
- Du, B.; Haensch, R.; Alfarraj, S.; Rennenberg, H. Strategies of Plants to Overcome Abiotic and Biotic Stresses. Biol. Rev. 2024, 99, 1524–1536. [Google Scholar] [CrossRef] [PubMed]
- Heinonsalo, J.; Sun, H.; Santalahti, M.; Bäcklund, K.; Hari, P.; Pumpanen, J. Evidences on the Ability of Mycorrhizal Genus Piloderma to Use Organic Nitrogen and Deliver It to Scots Pine. PLoS ONE 2015, 10, e0131561. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ngoc Ha, V.; Shen, Z.; Zhu, H.; Zhao, F.; Zhao, Z. Characteristics of Bulk and Rhizosphere Soil Microbial Community in an Ancient Platycladus Orientalis Forest. Appl. Soil Ecol. 2018, 132, 91–98. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, S.; Cao, X.; Chen, M.; Chen, J.; Xu, G.; Shi, Z. The Effects of Ectomycorrhizal and Saprotropic Fungi on Soil Nitrogen Mineralization Differ from Those of Arbuscular and Ericoid Mycorrhizal Fungi on the Eastern Qinghai-Tibetan Plateau. Front. Plant Sci. 2023, 13, 1069730. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, Y.; Zhang, Q.; Tang, J.; Liu, Y.; Chen, X. Changes in Soil Organic Carbon, Total Nitrogen, and Abundance of Arbuscular Mycorrhizal Fungi along a Large-Scale Aridity Gradient. Catena 2011, 87, 70–77. [Google Scholar] [CrossRef]
- Rennenberg, H.; Dannenmann, M.; Gessler, A.; Kreuzwieser, J.; Simon, J.; Papen, H. Nitrogen Balance in Forest Soils: Nutritional Limitation of Plants under Climate Change Stresses. Plant Biol. 2009, 11, 4–23. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wu, C.; Duan, B.; Korpelainen, H.; Luukkanen, O. Age-Related Nutrient Content and Carbon Isotope Composition in the Leaves and Branches of Quercus aquifolioides along an Altitudinal Gradient. Trees 2009, 23, 1109–1121. [Google Scholar] [CrossRef]
- Steppe, K.; Niinemets, Ü.; Teskey, R.O. Tree Size- and Age-Related Changes in Leaf Physiology and Their Influence on Carbon Gain. In Size- and Age-Related Changes in Tree Structure and Function; Meinzer, F.C., Lachenbruch, B., Dawson, T.E., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 235–253. ISBN 978-94-007-1242-3. [Google Scholar]
- Albert, L.P.; Wu, J.; Prohaska, N.; de Camargo, P.B.; Huxman, T.E.; Tribuzy, E.S.; Ivanov, V.Y.; Oliveira, R.S.; Garcia, S.; Smith, M.N. Age-Dependent Leaf Physiology and Consequences for Crown-Scale Carbon Uptake during the Dry Season in an Amazon Evergreen Forest. New Phytol. 2018, 219, 870–884. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.; Zhu, L.; Liu, L.; Kreuzwieser, J.; Werner, C.; Du, B. Comparison of Growth and Metabolomic Profiles of Two Afforestation Cypress Species Cupressus chengiana and Platycladus orientalis Grown at Minjiang Valley in Southwest China. Metabolites 2024, 14, 453. https://doi.org/10.3390/metabo14080453
Liao Z, Zhu L, Liu L, Kreuzwieser J, Werner C, Du B. Comparison of Growth and Metabolomic Profiles of Two Afforestation Cypress Species Cupressus chengiana and Platycladus orientalis Grown at Minjiang Valley in Southwest China. Metabolites. 2024; 14(8):453. https://doi.org/10.3390/metabo14080453
Chicago/Turabian StyleLiao, Zhengqiao, Lijun Zhu, Lei Liu, Jürgen Kreuzwieser, Christiane Werner, and Baoguo Du. 2024. "Comparison of Growth and Metabolomic Profiles of Two Afforestation Cypress Species Cupressus chengiana and Platycladus orientalis Grown at Minjiang Valley in Southwest China" Metabolites 14, no. 8: 453. https://doi.org/10.3390/metabo14080453
APA StyleLiao, Z., Zhu, L., Liu, L., Kreuzwieser, J., Werner, C., & Du, B. (2024). Comparison of Growth and Metabolomic Profiles of Two Afforestation Cypress Species Cupressus chengiana and Platycladus orientalis Grown at Minjiang Valley in Southwest China. Metabolites, 14(8), 453. https://doi.org/10.3390/metabo14080453