Adaptive Effects of Endocrine Hormones on Metabolism of Macronutrients during Fasting and Starvation: A Scoping Review
Abstract
:1. Introduction
2. Methods
2.1. Search Terms
2.2. Search Strategy
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Selection Process
2.6. Data Extraction and Synthesis
3. Results
3.1. Characteristics of Included Work
3.2. Release of Cortisol from Adrenal Glands during Fasting and Starvation
3.3. Release of Glucagon and Insulin from Pancreas during Fasting and Starvation
3.4. Release of Thyroid Hormones from Thyroid Gland during Fasting and Starvation
3.5. Cortisol’s Roles during Time-Specific Food Deprivation
3.5.1. Fasting: Food Deprivation within 24 h
3.5.2. Starvation: Food Deprivation beyond One Day
3.6. Glucagon and Insulin’s Roles during Time-Specific Food Deprivation
3.6.1. Fasting: Food Deprivation within 24 h
3.6.2. Starvation: Food Deprivation beyond One Day
3.7. Thyroid Hormones’ Roles during Time-Specific Food Deprivation
3.7.1. Fasting: Food Deprivation within 24 h
3.7.2. Starvation: Food Deprivation beyond One Day
4. Discussions
4.1. Interpretation of Findings and Identified Areas for Future Research Studies
4.2. Food Deprivation beyond 60 Days
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guyenet, S.J.; Schwartz, M.W. Clinical review: Regulation of food intake, energy balance, and body fat mass: Implications for the pathogenesis and treatment of obesity. J. Clin. Endocrinol. Metab. 2012, 97, 745–755. [Google Scholar] [CrossRef] [PubMed]
- McGrath, K.H.; Haller, W.; Bines, J.E. Starvation and Fasting: Biochemical Aspects. In Encyclopedia of Human Nutrition; Elsevier: Amsterdam, The Netherlands, 2023; pp. 645–656. ISBN 978-0-323-90816-0. [Google Scholar] [CrossRef]
- Karimi, R.; Cleven, A.; Elbarbry, F.; Hoang, H. The Impact of Fasting on Major Metabolic Pathways of Macronutrients and Pharmacokinetics Steps of Drugs. Eur. J. Drug Metab. Pharmacokinet. 2021, 46, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Anton, S.D.; Moehl, K.; Donahoo, W.T.; Marosi, K.; Lee, S.A.; Mainous, A.G.; Leeuwenburgh, C.; Mattson, M.P. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity 2018, 26, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Neale, J.; Hudson, L.D. Anorexia nervosa in adolescents. Br. J. Hosp. Med. 2020, 81, 1–8. [Google Scholar] [CrossRef]
- American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013; ISBN 978-0-89042-555-8.
- Miller, K.K.; Grinspoon, S.K.; Ciampa, J.; Hier, J.; Herzog, D.; Klibanski, A. Medical findings in outpatients with anorexia nervosa. Arch. Intern. Med. 2005, 165, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Steinhausen, H.C. The outcome of anorexia nervosa in the 20th century. Am. J. Psychiatry 2002, 159, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Lucas, A.R.; Beard, C.M.; O’Fallon, W.M.; Kurland, L.T. 50-year trends in the incidence of anorexia nervosa in Rochester, Minn.: A population-based study. Am. J. Psychiatry 1991, 148, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, J.H. Anorexia nervosa with special reference to the physical constitution. Lancet 1937, 229, 369–373. [Google Scholar] [CrossRef]
- Nakamura, Y.; Walker, B.R.; Ikuta, T. Systematic review and meta-analysis reveals acutely elevated plasma cortisol following fasting but not less severe calorie restriction. Stress 2016, 19, 151–157. [Google Scholar] [CrossRef]
- Cay, M.; Ucar, C.; Senol, D.; Cevirgen, F.; Ozbag, D.; Altay, Z.; Yildiz, S. Effect of increase in cortisol level due to stress in healthy young individuals on dynamic and static balance scores. North Clin. Istanb. 2018, 29, 295–301. [Google Scholar] [CrossRef]
- Rix, I.; Nexøe-Larsen, C.; Bergmann, N.C.; Lund, A.; Knop, F.K. Glucagon Physiology. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279127/ (accessed on 12 June 2023).
- Besse-Patin, A.; Jeromson, S.; Levesque-Damphousse, P.; Secco, B.; Laplante, M.; Estall, J.L. PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin. Proc. Natl. Acad. Sci. USA 2019, 116, 4285–4290. [Google Scholar] [CrossRef]
- Blickle, J.F.; Reville, P.; Stephan, F.; Meyer, P.; Demangeat, C.; Sapin, R. The role of insulin, glucagon and growth hormone in the regulation of plasma glucose and free fatty acid levels in anorexia nervosa. Horm. Metab. Res. 1984, 16, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Misra, M.; Klibanski, A. Endocrine consequences of anorexia nervosa. Lancet Diabetes Endocrinol. 2014, 2, 581–592. [Google Scholar] [CrossRef]
- Schreiber, W.; Schweiger, U.; Werner, D.; Brunner, G.; Tuschl, R.J.; Laessle, R.G.; Krieg, J.C.; Fichter, M.M.; Pirke, K.M. Circadian pattern of large neutral amino acids, glucose, insulin, and food intake in anorexia nervosa and bulimia nervosa. Metabolism 1991, 40, 503–507. [Google Scholar] [CrossRef]
- de Rosa, G.; Corsello, S.M.; de Rosa, E.; Della Casa, S.; Ruffilli, M.P.; Grasso, P.; Pasargiklian, E. Endocrine study of anorexia nervosa. Exp. Clin. Endocrinol. 1983, 82, 160–172. [Google Scholar] [CrossRef]
- Fonseca, V.; Ball, S.; Marks, V.; Havard, C.W. Hypoglycaemia associated with anorexia nervosa. Postgrad. Med. J. 1991, 67, 460–461. [Google Scholar] [CrossRef] [PubMed]
- Douyon, L.; Schteingart, D.E. Effect of obesity and starvation on thyroid hormone, growth hormone, and cortisol secretion. Endocrinol. Metab. Clin. N. Am. 2002, 31, 173–189. [Google Scholar] [CrossRef] [PubMed]
- Curran-Celentano, J.; Erdman, J.W., Jr.; Nelson, R.A.; Grater, S.J. Alterations in vitamin A and thyroid hormone status in anorexia nervosa and associated disorders. Am. J. Clin. Nutr. 1985, 42, 1183–1191. [Google Scholar] [CrossRef]
- Komaki, G.; Tamai, H.; Mukuta, T.; Kobayashi, N.; Mori, K.; Nakagawa, T.; Kumagai, L.F. Alterations in endothelium-associated proteins and serum thyroid hormone concentrations in anorexia nervosa. Br. J. Nutr. 1992, 68, 67–75. [Google Scholar] [CrossRef]
- Bannai, C.; Kuzuya, N.; Koide, Y.; Fujita, T.; Itakura, M.; Kawai, K.; Yamashita, K. Assessment of the relationship between serum thyroid hormone levels and peripheral metabolism in patients with anorexia nervosa. Endocrinol. JPN 1988, 35, 455–462. [Google Scholar] [CrossRef]
- Leslie, R.D.; Isaacs, A.J.; Gomez, J.; Raggatt, P.R.; Bayliss, R. Hypothalamo-pituitary-thyroid function in anorexia nervosa: Influence of weight gain. Br. Med. J. 1978, 19, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.; Mills, I.H. Serum T3 and T4 levels in patients with anorexia nervosa showing transient hyperthyroidism during weight gain. Clin. Endocrinol. 1979, 10, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Tamai, H.; Mori, K.; Matsubayashi, S.; Kiyohara, K.; Nakagawa, T.; Okimura, M.C.; Walter, R.M., Jr.; Kumagai, L.F.; Nagataki, S. Hypothalamic-pituitary-thyroidal dysfunctions in anorexia nervosa. Psychother. Psychosom. 1986, 46, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Moshang, T., Jr.; Parks, J.S.; Baker, L.; Vaidya, V.; Utiger, R.D.; Bongiovanni, A.M.; Snyder, P.J. Low serum triiodothyronine in patients with anorexia nervosa. J. Clin. Endocrinol. Metab. 1975, 40, 470–473. [Google Scholar] [CrossRef] [PubMed]
- de Rosa, G.; Della Casa, S.; Corsello, S.M.; Ruffilli, M.P.; de Rosa, E.; Pasargiklian, E. Thyroid function in altered nutritional state. Exp. Clin. Endocrinol. 1983, 82, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.L.; Heist, K.; DePaoli, A.M.; Veldhuis, J.D.; Mantzoros, C.S. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J. Clin. Investig. 2003, 111, 1409–1421. [Google Scholar] [CrossRef]
- Blüher, S.; Mantzoros, C.S. The Role of Leptin in Regulating Neuroendocrine Function in Humans. J. Nutr. 2004, 134, 2469S–2474S. [Google Scholar] [CrossRef]
- Kuo, T.; Harris, C.A.; Wang, J.C. Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol. Cell. Endocrinol. 2013, 380, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Koutkia, P.; Canavan, B.; Johnson, M.L.; DePaoli, A.; Grinspoon, S. Characterization of leptin pulse dynamics and relationship to fat mass, growth hormone, cortisol, and insulin. Am. J. Physiol. Endocrinol. Metab. 2003, 285, 72–379. [Google Scholar] [CrossRef]
- Reinehr, T.; Isa, A.; de Sousa, G.; Dieffenbach, R.; Andler, W. Thyroid hormones and their relation to weight status. Horm. Res. 2008, 70, 51–57. [Google Scholar] [CrossRef]
- Popovic, V.; Duntas, L.H. Leptin TRH and ghrelin: Influence on energy homeostasis at rest and during exercise. Horm. Metab. Res. 2005, 37, 533–537. [Google Scholar] [CrossRef]
- Klover, P.J.; Mooney, R.A. Hepatocytes: Critical for glucose homeostasis. Int. J. Biochem. Cell Biol. 2004, 36, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Amorim, T.; Khiyami, A.; Latif, T.; Fazeli, P.K. Neuroendocrine adaptations to starvation. Psychoneuroendocrinology 2023, 157, 106365. [Google Scholar] [CrossRef] [PubMed]
- Vardarli, M.C.; Hammes, H.P.; Vardarli, İ. Possible metabolic impact of Ramadan fasting in healthy men. Turk. J. Med. Sci. 2014, 44, 1010–1020. [Google Scholar] [CrossRef]
- Martinez, B.; Ortiz, R.M. Thyroid Hormone Regulation and Insulin Resistance: Insights From Animals Naturally Adapted to Fasting. Physiology 2017, 32, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Das, E.; Moon, J.H.; Lee, J.H.; Thakkar, N.; Pausova, Z.; Sung, H.K. Adipose Tissue and Modulation of Hypertension. Curr. Hypertens. Rep. 2018, 20, 96. [Google Scholar] [CrossRef]
- Peters, M.D.; Godfrey, C.M.; Khalil, H.; McInerney, P.; Parker, D.; Soares, C.B. Guidance for conducting systematic scoping reviews. Int. J. Evid. Based Healthc. 2015, 13, 141–146. [Google Scholar] [CrossRef]
- Aromataris, E.; Riitano, D. Constructing a search strategy and searching for evidence. Am. J. Nurs. 2014, 114, 49–56. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Gamble, K.L.; Berry, R.; Frank, S.J.; Young, M.E. Circadian clock control of endocrine factors. Nat. Rev. Endocrinol. 2014, 10, 466–475. [Google Scholar] [CrossRef]
- Bergendahl, M.; Iranmanesh, A.; Pastor, C.; Evans, W.S.; Veldhuis, J.D. Homeostatic joint amplification of pulsatile and 24-hour rhythmic cortisol secretion by fasting stress in midluteal phase women: Concurrent disruption of cortisol-growth hormone, cortisol-luteinizing hormone, and cortisol-leptin synchrony. J. Clin. Endocrinol. Metab. 2000, 85, 4028–4035. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Xia, F.; Lam, K.S.; Wang, Y.; Bao, Y.; Zhang, J.; Gu, Y.; Zhou, P.; Lu, J.; Jia, W.; et al. Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in fatty acids in humans. Clin. Chem. 2011, 57, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.J.; Han, H.S.; Kim, M.J.; Koo, S.H. CREB and FoxO1: Two transcription factors for the regulation of hepatic gluconeogenesis. BMB Rep. 2013, 46, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, G.D.; Maratou, E.; Kountouri, A.; Board, M.; Lambadiari, V. Regulation of Postabsorptive and Postprandial Glucose Metabolism by Insulin-Dependent and Insulin-Independent Mechanisms: An Integrative Approach. Nutrients 2021, 13, 159. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.J.; Han, H.S.; Kim, M.J.; Koo, S.H. Transcriptional regulators of hepatic gluconeogenesis. Arch. Pharm. Res. 2013, 36, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Casanueva, F.F.; Dieguez, C. Neuroendocrine regulation and actions of leptin. Front. Neuroendocrinol. 1999, 20, 317–363. [Google Scholar] [CrossRef] [PubMed]
- Magyar, B.P.; Santi, M.; Sommer, G.; Nuoffer, J.M.; Leichtle, A.; Grössl, M.; Fluck, C.E. Short-Term Fasting Attenuates Overall Steroid Hormone Biosynthesis in Healthy Young Women. J. Endocr. Soc. 2022, 6, bvac075. [Google Scholar] [CrossRef] [PubMed]
- Paszynska, E.; Dmitrzak-Weglarz, M.; Tyszkiewicz-Nwafor, M.; Slopien, A. Salivary alpha-amylase, secretory IgA and free cortisol as neurobiological components of the stress response in the acute phase of anorexia nervosa. World J. Biol. Psychiatry. 2016, 17, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Herpertz, S.; Albers, N.; Wagner, R.; Pelz, B.; Köpp, W.; Mann, K.; Blum, W.; Senf, W.; Hebebrand, J. Longitudinal changes of circadian leptin, insulin and cortisol plasma levels and their correlation during refeeding in patients with anorexia nervosa. Eur. J. Endocrinol. 2000, 142, 373–379. [Google Scholar] [CrossRef]
- Wassif, W.S.; Ross, A.R. Steroid metabolism and excretion in anorexia nervosa. Vitam. Horm. 2013, 92, 125–140. [Google Scholar] [CrossRef]
- Thavaraputta, S.; Ungprasert, P.; Witchel, S.F.; Fazeli, P.K. Anorexia nervosa and adrenal hormones: A systematic review and meta-analysis. Eur. J. Endocrinol. 2023, 189, S64–S73. [Google Scholar] [CrossRef] [PubMed]
- Boyar, R.M.; Hellman, L.D.; Roffwarg, H.; Katz, J.; Zumoff, B.; O’Connor, J.; Bradlow, H.L.; Fukushima, D.K. Cortisol secretion and metabolism in anorexia nervosa. N. Engl. J. Med. 1977, 296, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Takahara, J.; Hosogi, H.; Yunoki, S.; Hashimoto, K.; Uneki, T. Hypothalamic pituitary adrenal function in patients with anorexia nervosa. Endocrinol. Jpn. 1976, 23, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Gwirtsman, H.E.; Kaye, W.H.; George, D.T.; Jimerson, D.C.; Ebert, M.H.; Gold, P.W. Central and peripheral ACTH and cortisol levels in anorexia nervosa and bulimia. Arch. Gen. Psychiatry 1989, 46, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Casper, R.C.; Chattertonm, R.T., Jr.; Davis, J.M. Alterations in serum cortisol and its binding characteristics in anorexia nervosa. J. Clin. Endocrinol. Metab. 1979, 49, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Elegido, A.; Gheorghe, A.; Sepúlveda, A.R.; Andrés, P.; Díaz-Prieto, L.E.; Graell, M.; Marcos, A.; Nova, E. Adipokines, cortisol and cytokine alterations in recent onset anorexia nervosa. A case-control study. Endocrinol. Diabetes Nutr. 2019, 66, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Gold, P.W.; Gwirtsman, H.; Avgerinos, P.C.; Nieman, L.K.; Gallucci, W.T.; Kaye, W.; Jimerson, D.; Ebert, M.; Rittmaster, R.; Loriaux, D.L.; et al. Abnormal hypothalamic-pituitary-adrenal function in anorexia nervosa. Pathophysiologic mechanisms in underweight and weight-corrected patients. N. Engl. J. Med. 1986, 22, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, J.J.; Mitchell, J.E. Bone mineral density and anorexia nervosa in women. Am. J. Psychiatry 1991, 148, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Misra, M.; Klibanski, A. Neuroendocrine consequences of anorexia nervosa in adolescents. Endocr. Dev. 2010, 17, 197–214. [Google Scholar] [CrossRef]
- Moyano, D.; Vilaseca, M.A.; Artuch, R.; Lambruschini, N. Plasma amino acids in anorexia nervosa. Eur. J. Clin. Nutr. 1998, 52, 684–689. [Google Scholar] [CrossRef]
- Goldstein, I.; Hager, G.L. The Three Ds of Transcription Activation by Glucagon: Direct, Delayed, and Dynamic. Endocrinology 2018, 159, 206–216. [Google Scholar] [CrossRef]
- Andersen, D.B.; Holst, J.J. Peptides in the regulation of glucagon secretion. Peptides 2022, 148, 170683. [Google Scholar] [CrossRef]
- Saltiel, A.R. Insulin Signaling in the Control of Glucose and Lipid Homeostasis. Handb. Exp. Pharmacol. 2016, 233, 51–71. [Google Scholar] [CrossRef]
- Nakata, M.; Yada, T. PACAP in the glucose and energy homeostasis: Physiological role and therapeutic potential. Curr. Pharm. Des. 2007, 13, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yao, W.; Xia, J.; Wang, T.; Huang, F. Glucagon-Induced Acetylation of Energy-Sensing Factors in Control of Hepatic Metabolism. Int. J. Mol. Sci. 2019, 20, 1885. [Google Scholar] [CrossRef] [PubMed]
- Massa, M.L.; Gagliardino, J.J.; Francini, F. Liver glucokinase: An overview on the regulatory mechanisms of its activity. IUBMB Life 2011, 63, 1–6. [Google Scholar] [CrossRef]
- van den Berghe, G. The role of the liver in metabolic homeostasis: Implications for inborn errors of metabolism. J. Inherit. Metab. Dis. 1991, 14, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Taborsky, G.J., Jr. The physiology of glucagon. J. Diabetes Sci. Technol. 2010, 4, 1338–1344. [Google Scholar] [CrossRef]
- Sharabi, K.; Tavares, C.D.J.; Puigserver, P. Regulation of Hepatic Metabolism, Recent Advances, and Future Perspectives. Curr. Diab Rep. 2019, 19, 98. [Google Scholar] [CrossRef]
- Docherty, K.; Clark, A.R. Nutrient regulation of insulin gene expression. FASEB J. 1994, 8, 20–27. [Google Scholar] [CrossRef]
- Habegger, K.M. Cross Talk Between Insulin and Glucagon Receptor Signaling in the Hepatocyte. Diabetes 2022, 71, 1842–1851. [Google Scholar] [CrossRef] [PubMed]
- Ahima, R.S. Adipose tissue as an endocrine organ. Obesity 2006, 14 (Suppl. S5), 242S–249S. [Google Scholar] [CrossRef] [PubMed]
- Kamagate, A.; Dong, H.H. FoxO1 integrates insulin signaling to VLDL production. Cell Cycle 2008, 7, 3162–3170. [Google Scholar] [CrossRef] [PubMed]
- Bröer, S.; Bröer, A. Amino acid homeostasis and signaling in mammalian cells and organisms. Biochem. J. 2017, 474, 1935–1963. [Google Scholar] [CrossRef] [PubMed]
- Ahima, R.S.; Qi, Y.; Singhal, N.S. Adipokines that link obesity and diabetes to the hypothalamus. Prog. Brain Res. 2006, 153, 155–174. [Google Scholar] [CrossRef] [PubMed]
- Daval, M.; Foufelle, F.; Ferré, P. Functions of AMP-activated protein kinase in adipose tissue. J. Physiol. 2006, 574, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Carlson, M.G.; Snead, W.L.; Campbell, P.J. Fuel and energy metabolism in fasting humans. Am. J. Clin. Nutr. 1994, 60, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Heruc, G.A.; Little, T.J.; Kohn, M.R.; Madden, S.; Clarke, S.D.; Horowitz, M.; Feinle-Bisset, C. Effects of starvation and short-term refeeding on gastric emptying and postprandial blood glucose regulation in adolescent girls with anorexia nervosa. Am. J. Physiol. Endocrinol. Metab. 2018, 315, E565–E573. [Google Scholar] [CrossRef] [PubMed]
- Kumai, M.; Tamai, H.; Fujii, S.; Nakagawa, T.; Aoki, T.T. Glucagon secretion in anorexia nervosa. Am. J. Clin. Nutr. 1988, 47, 239–242. [Google Scholar] [CrossRef]
- Casper, R.C. Carbohydrate metabolism and its regulatory hormones in anorexia nervosa. Psychiatry Res. 1996, 62, 85–96. [Google Scholar] [CrossRef]
- Weinbrenner, T.; Züger, M.; Jacoby, G.E.; Herpertz, S.; Liedtke, R.; Sudhopm, T.; Gouni-Berthold, I.; Axelson, M.; Berthold, H.K. Lipoprotein metabolism in patients with anorexia nervosa: A case-control study investigating the mechanisms leading to hypercholesterolaemia. Br. J. Nutr. 2004, 91, 959–969. [Google Scholar] [CrossRef] [PubMed]
- Misra, M.; Miller, K.K.; Almazan, C.; Ramaswamy, K.; Lapcharoensap, W.; Worley, M.; Neubauer, G.; Herzog, D.B.; Klibanski, A. Alterations in cortisol secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism. J. Clin. Endocrinol. Metab. 2004, 89, 4972–4980. [Google Scholar] [CrossRef] [PubMed]
- Mocanu, V.; Vergely, N.; Voitellier, P.; Rachidi-Kousa, A.; Estour, B. Correlations between carbohydrate metabolism and corticotrop axis parameters in anorexia nervosa. Pathophysiology 2003, 10, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Franssila-Kallunki, A.; Rissanen, A.; Ekstrand, A.; Eriksson, J.; Saloranta, C.; Widén, E.; Schalin-Jäntti, C.; Groop, L. Fuel metabolism in anorexia nervosa and simple obesity. Metabolism 1991, 40, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Tural, U.; Iosifescu, D.V. Adiponectin in anorexia nervosa and its modifiers: A meta-regression study. Int. J. Eat. Disord. 2022, 55, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Dostálová, I.; Smitka, K.; Papežová, H.; Kvasnicková, H.; Nedvídková, J. Increased insulin sensitivity in patients with anorexia nervosa: The role of adipocytokines. Physiol. Res. 2007, 56, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.Y.; Veldhuis, J.D.; Johnson, M.L.; Furlanetto, R.; Evans, W.S.; Alberti, K.G.; Thorner, M.O. Fasting enhances growth hormone secretion and amplifies the complex rhythms of growth hormone secretion in man. J. Clin. Investig. 1988, 81, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Fehm, H.L.; Kern, W.; Peters, A. The selfish brain: Competition for energy resources. Prog. Brain Res. 2006, 153, 129–140. [Google Scholar] [CrossRef]
- Alderdice, J.T.; Dinsmore, W.W.; Buchanan, K.D.; Adams, C. Gastrointestinal hormones in anorexia nervosa. J. Psychiatr. Res. 1985, 19, 207–213. [Google Scholar] [CrossRef]
- Ilyas, A.; Hübel, C.; Stahl, D.; Stadler, M.; Ismail, K.; Breen, G.; Treasure, J.; Kan, C. The metabolic underpinning of eating disorders: A systematic review and meta-analysis of insulin sensitivity. Mol. Cell. Endocrinol. 2019, 497, 110307. [Google Scholar] [CrossRef]
- van der Spek, A.H.; Fliers, E.; Boelen, A. The classic pathways of thyroid hormone metabolism. Mol. Cell. Endocrinol. 2017, 458, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Iwen, K.A.; Oelkrug, R.; Brabant, G. Effects of thyroid hormones on thermogenesis and energy partitioning. J. Mol. Endocrinol. 2018, 60, R157–R170. [Google Scholar] [CrossRef] [PubMed]
- Boelen, A.; Wiersinga, W.M.; Fliers, E. Fasting-induced changes in the hypothalamus-pituitary-thyroid axis. Thyroid 2008, 18, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Lechan, R.M.; Fekete, C. The TRH neuron: A hypothalamic integrator of energy metabolism. Prog. Brain Res. 2006, 153, 209–235. [Google Scholar] [CrossRef] [PubMed]
- Fekete, C.; Lechan, R.M. Negative feedback regulation of hypophysiotropic thyrotropin-releasing hormone (TRH) synthesizing neurons: Role of neuronal afferents and type 2 deiodinase. Front. Neuroendocrinol. 2007, 28, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Janeckova, R. The role of leptin in human physiology and pathophysiology. Physiol. Res. 2001, 50, 443–459. [Google Scholar] [PubMed]
- Støving, R.K.; Hangaard, J.; Hansen-Nord, M.; Hagen, C. A review of endocrine changes in anorexia nervosa. J. Psychiatr. Res. 1999, 33, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Croxson, M.S.; Ibbertson, H.K. Low serum triiodothyronine (T3) and hypothyroidism in anorexia nervosa. J. Clin. Endocrinol. Metab. 1977, 44, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Capo-chichi, C.D.; Guéant, J.L.; Lefebvre, E.; Bennani, N.; Lorentz, E.; Vidailhet, C.; Vidailhet, M. Riboflavin and riboflavin-derived cofactors in adolescent girls with anorexia nervosa. Am. J. Clin. Nutr. 1999, 69, 672–678. [Google Scholar] [CrossRef]
- Onur, S.; Haas, V.; Bosy-Westphal, A.; Hauer, M.; Paul, T.; Nutzinger, D.; Klein, H.; Müller, M.J. L-tri-iodothyronine is a major determinant of resting energy expenditure in underweight patients with anorexia nervosa and during weight gain. Eur. J. Endocrinol. 2005, 152, 179–184. [Google Scholar] [CrossRef]
- Miyai, K.; Yamamoto, T.; Azukizawa, M.; Ishibashi, K.; Kumahara, Y. Serum thyroid hormones and thyrotropin in anorexia nervosa. J. Clin. Endocrinol. Metab. 1975, 40, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Schorr, M.; Miller, K.K. The endocrine manifestations of anorexia nervosa: Mechanisms and management. Nat. Rev. Endocrinol. 2017, 13, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Kiyohara, K.; Tamai, H.; Takaichi, Y.; Nakagawa, T.; Kumagai, L.F. Decreased thyroidal triiodothyronine secretion in patients with anorexia nervosa: Influence of weight recovery. Am. J. Clin. Nutr. 1989, 50, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Pannacciulli, N.; Vettor, R.; Milan, G.; Granzotto, M.; Catucci, A.; Federspil, G.; De Giacomo, P.; Giorgino, R.; De Pergola, G. Anorexia nervosa is characterized by increased adiponectin plasma levels and reduced nonoxidative glucose metabolism. J. Clin. Endocrinol. Metab. 2003, 88, 1748–1752. [Google Scholar] [CrossRef] [PubMed]
- Manoogian, E.N.C.; Panda, S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res. Rev. 2017, 39, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Loudon, A.S.I. Circadian biology: A 2.5 billion year old clock. Curr. Biol. 2012, 22, 570–571. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.S.; Green, E.W.; Zhao, Y.; Van Ooijen, G.; Olmedo, M.; Qin, X.; Xu, Y.; Pan, M.; Valekunja, U.K.; Feeney, K.A.; et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 2012, 485, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Ramamoorthy, S.; Cidlowski, J.A. Corticosteroids: Mechanisms of Action in Health and Disease. Rheum. Dis. Clin. N. Am. 2016, 42, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Kann, P.H.; Münzel, M.; Hadji, P.; Daniel, H.; Flache, S.; Nyarango, P.; Wilhelm, A. Alterations of cortisol homeostasis may link changes of the sociocultural environment to an increased diabetes and metabolic risk in developing countries: A prospective diagnostic study performed in cooperation with the Ovahimba people of the Kunene region/northwestern Namibia. J. Clin. Endocrinol. Metab. 2015, 100, 482–486. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Caruso, C.M.; Kellogg, M.D.; Kramer, F.M.; Lieberman, H.R. Appetite and Endocrine Regulators of Energy Balance After 2 Days of Energy Restriction: Insulin, Leptin, Ghrelin, and DHEA-S. Obesity 2011, 19, 1124–1130. [Google Scholar] [CrossRef]
- Molina, P. Endocrine Physiology; McGraw Hill Education: New York, NY, USA, 2023; ISBN 1-264-27845-4. [Google Scholar]
- Dickmeis, T. Glucocorticoids and the circadian clock. J. Endocrinol. 2009, 200, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.J.; Aeschbach, D.; Scheer, F.A. Circadian system, sleep and endocrinology. Mol. Cell. Endocrinol. 2012, 349, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Born, J.; Hansen, K.; Marshall, L.; Mo¨lle, M.; Fehm, H.L. Timing the end of nocturnal sleep. Nature 1999, 397, 29–30. [Google Scholar] [CrossRef] [PubMed]
- Benedict, C.; Kern, W.; Schmid, S.M.; Schultes, B.; Born, J.; Hallschmid, M. Early morning rise in hypothalamic-pituitary-adrenal activity: A role for maintaining the brain’s energy balance. Psychoneuroendocrinology 2009, 34, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Beer, S.F.; Bircham, P.M.M.; Bloom, S.R.; Clark, P.M.; Hales, C.N.; Hughes, C.M.; Jones, C.T.; Marsh, D.R.; Raggatt, P.R.; Findlay, A.L.R. The effect of a 72-h fast on plasma levels of pituitary, adrenal, thyroid, pancreatic and gastrointestinal hormones in healthy men and women. J. Endocrinol. 1989, 120, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Vance, M.L.; Thorner, M.O. Fasting alters pulsatile and rhythmic cortisol release in normal man. J. Clin. Endocrinol. Metab. 1989, 68, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Maduka, I.C.; Neboh, E.E.; Ufelle, S.A. The relationship between serum cortisol, adrenaline, blood glucose and lipid profile of undergraduate students under examination stress. Afr. Health Sci. 2015, 15, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Bahijri, S.; Borai, A.; Ajabnoor, G.; Abdul Khaliq, A.; AlQassas, I.; Al-Shehri, D.; Chrousos, G. Relative metabolic stability, but disrupted circadian cortisol secretion during the fasting month of Ramadan. PLoS ONE 2013, 18, 60917. [Google Scholar] [CrossRef] [PubMed]
- Ajabnoor, G.M.; Bahijri, S.; Shaik, N.A.; Borai, A.; Alamoudi, A.A.; Al-Aama, J.Y.; Chrousos, G.P. Ramadan fasting in Saudi Arabia is associated with altered expression of CLOCK, DUSP and IL-1alpha genes, as well as changes in cardiometabolic risk factors. PLoS ONE 2017, 6, 0174342. [Google Scholar] [CrossRef]
- Al-Hadramy, M.S.; Zawawi, T.H.; Abdelwahab, S.M. Altered cortisol levels in relation to Ramadan. Eur. J. Clin. Nutr. 1988, 42, 359–362. [Google Scholar]
- Riat, A.; Suwandi, A.; Ghashang, S.K.; Buettner, M.; Eljurnazi, L.; Grassl, G.A.; Gutenbrunner, C.; Nugraha, B. Ramadan Fasting in Germany (17–18 h/Day): Effect on Cortisol and Brain-Derived Neurotrophic Factor in Association With Mood and Body Composition Parameters. Front. Nutr. 2021, 8, 697920. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, M.; Sato, M.; Rutkowski, R.; Zawada, A.; Juchacz, A.; Mahadea, D.; Grzymislawski, M.; Dobrowolska, A.; Kawka, E.; Korybalska, K.; et al. Effect of the one-day fasting on cortisol and DHEA daily rhythm regarding sex, chronotype, and age among obese adults. Front. Nutr. 2023, 10, 1078508. [Google Scholar] [CrossRef] [PubMed]
- Fichter, M.M.; Pirke, K.M.; Holsboer, F. Weight loss causes neuroendocrine disturbances: Experimental study in healthy starving subjects. Psychiatry Res. 1986, 17, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, I.; Nagamitsu, S.; Okamura, H.; Komatsu, H.; Ozono, S.; Yamashita, Y.; Matsuishi, T. Changes in salivary cortisol levels as a prognostic predictor in children with anorexia nervosa. Int. J. Psychophysiol. 2011, 82, 196–201. [Google Scholar] [CrossRef]
- Vanderschueren, S.; Geens, E.; Knockaert, D.; Bobbaers, H. The diagnostic spectrum of unintentional weight loss. Eur. J. Intern. Med. 2005, 16, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Whitworth, J.A.; Williamson, P.M.; Mangos, G.; Kelly, J.J. Cardiovascular consequences of cortisol excess. Vasc. Health Risk Manag. 2005, 1, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Heim, C.; Ehlert, U.; Hellhammer, D.H. The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology 2000, 25, 1–35. [Google Scholar] [CrossRef]
- Hannibal, K.E.; Bishop, M.D. Chronic stress, cortisol dysfunction, and pain: A psychoneuroendocrine rationale for stress management in pain rehabilitation. Phys. Ther. 2014, 94, 1816–1825. [Google Scholar] [CrossRef]
- Invitti, C.; Redaelli, G.; Baldi, G.; Cavagnini, F. Glucocorticoid receptors in anorexia nervosa and Cushing’s disease. Biol. Psychiatry 1999, 45, 1467–1471. [Google Scholar] [CrossRef]
- Kuo, T.; McQueen, A.; Chen, T.C.; Wang, J.C. Regulation of Glucose Homeostasis by Glucocorticoids. Adv. Exp. Med. Biol. 2015, 872, 99–126. [Google Scholar] [CrossRef]
- Laycock, J.; Meeran, K. Integrated Endocrinology; John Wiley and Sons: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Licinio, C.; Mantzoros, A.B.; NegraÄo, G.; Cizza, M.L.; Wong, P.B.; Bongiorno, G.P.; Chrousos, B.; Karp, C.; Allen, J.S.; Flier, P.W.; et al. Human leptin levels are pulsatile and inversely related to pituitary-adrenal function. Nat. Med. 1997, 3, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Flier, J.S. Clinical review 94. What’s in a name? In search of leptin’s physiologic role. J. Clin. Endocrinol. Metab. 1998, 83, 1407–1413. [Google Scholar] [CrossRef] [PubMed]
- Prolo, P.; Wong, M.; Licinio, J. Leptin. Int. J. Biochem. Cell Biol. 1998, 30, 1285–1290. [Google Scholar] [CrossRef] [PubMed]
- Malczyk, Z.; Roczniak, W.; Mazur, B.; Kwiecien, J.; Ziora, K.; Górska-Flak, K.; Oswiecimska, J. Exocrine Pancreatic Function in Girls with Anorexia Nervosa. Nutrients 2021, 13, 3280. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.E.; Drucker, D.J. Islet alpha cells and glucagon-critical regulators of energy homeostasis. Nat. Rev. Endocrinol. 2015, 11, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.N.; Gong, L.; Lv, S.; Li, J.; Tai, X.; Cao, W.; Peng, B.; Qu, S.; Li, W.; Zhang, C.; et al. SIK2 regulates fasting-induced PPARα activity and ketogenesis through p300. Sci. Rep. 2016, 6, 23317. [Google Scholar] [CrossRef] [PubMed]
- Rah, S.Y.; Joe, Y.; Park, J.; Ryter, S.W.; Park, C.; Chung, H.T.; Kim, U.H. CD38/ADP-ribose/TRPM2-mediated nuclear Ca2+ signaling is essential for hepatic gluconeogenesis in fasting and diabetes. Exp. Mol. Med. 2023, 55, 1492–1505. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Zhang, B.B. Glucagon and regulation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E671–E678. [Google Scholar] [CrossRef]
- Galsgaard, K.D.; Pedersen, J.; Knop, F.K.; Holst, J.J.; Wewer Albrechtsen, N.J. Glucagon Receptor Signaling and Lipid Metabolism. Front. Physiol. 2019, 10, 413. [Google Scholar] [CrossRef]
- Wahren, J.; Ekberg, K. Splanchnic regulation of glucose production. Annu. Rev. Nutr. 2007, 27, 329–345. [Google Scholar] [CrossRef]
- Rothman, D.L.; Magnusson, I.; Katz, L.D.; Shulman, R.G.; Shulman, G.I. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science 1991, 254, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Schauder, P.; Herbertz, L.; Langenbeck, U. Serum branched chain amino and keto acid response to fasting in humans. Metabolism 1985, 34, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Omura, D.; Yamane, M.; Son, R.; Hasegawa, K.; Honda, H.; Obika, M.; Minao, N.; Edahiro, S.; Yamada, N.; et al. Recurrence of Hypoglycemic Coma in a Patient with Anorexia Nervosa. Acta Med. Okayama 2021, 75, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Anyetei-Anum, C.S.; Roggero, V.R.; Allison, L.A. Thyroid hormone receptor localization in target tissues. J. Endocrinol. 2018, 237, R19–R34. [Google Scholar] [CrossRef] [PubMed]
- Galasko, G.T. Pituitary, Thyroid, and Parathyroid Pharmacology. In Pharmacology and Therapeutics for Dentistry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 417–428. ISBN 978-0-323-39307-2. [Google Scholar] [CrossRef]
- Sinha, R.; Yen, P.M. Cellular Action of Thyroid Hormone. In Endotext [Internet]; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Brent, G.A. Mechanisms of thyroid hormone action. J. Clin. Investig. 2012, 122, 3035–3043. [Google Scholar] [CrossRef] [PubMed]
- Eom, Y.S.; Wilson, J.R.; Bernet, V.J. Links between Thyroid Disorders and Glucose Homeostasis. Diabetes Metab. J. 2022, 46, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Fedail, S.S.; Murphy, D.; Salih, S.Y.; Bolton, C.; Harvey, R.F. Changes in certain blood constituents during Ramadan. Am. J. Clin. Nutr. 1982, 36, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Basolo, A.; Begaye, B.; Hollstein, T.; Vinales, K.L.; Walter, M.; Santini, F.; Krakoff, J.; Piaggi, P. Effects of Short-Term Fasting and Different Overfeeding Diets on Thyroid Hormones in Healthy Humans. Thyroid 2019, 29, 1209–1219. [Google Scholar] [CrossRef] [PubMed]
- Samuels, M.; Kramer, P. Differential effects of short-term fasting on pulsatile thyrotropin, gonadotropin, and alpha-subunit secretion in healthy men—A clinical research center study. J. Clin. Endocrinol. Metab. 1996, 81, 32–36. [Google Scholar] [CrossRef]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef]
- Tabuchi, C.; Sul, H.S. Signaling Pathways Regulating Thermogenesis. Front. Endocrinol. 2021, 12, 595020. [Google Scholar] [CrossRef] [PubMed]
- Yau, W.W.; Yen, P.M. Thermogenesis in Adipose Tissue Activated by Thyroid Hormone. Int. J. Mol. Sci. 2020, 21, 3020. [Google Scholar] [CrossRef] [PubMed]
- Ucci, S.; Renzini, A.; Russi, V.; Mangialardo, C.; Cammarata, I.; Cavioli, G.; Santaguida, M.G.; Virili, C.; Centanni, M.; Adamo, S.; et al. Thyroid Hormone Protects from Fasting-Induced Skeletal Muscle Atrophy by Promoting Metabolic Adaptation. Int. J. Mol. Sci. 2019, 20, 5754. [Google Scholar] [CrossRef] [PubMed]
- Tomova, A.; Kumanov, P. Sex differences and similarities of hormonal alterations in patients with anorexia nervosa. Andrologia 1999, 31, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Joo, Y.; Kim, M.S.; Choe, H.K.; Tong, Q.; Kwon, O. Effects of Intermittent Fasting on the Circulating Levels and Circadian Rhythms of Hormones. Endocrinol. Metab. 2021, 36, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Agnihothri, R.V.; Courville, A.B.; Linderman, J.D.; Smith, S.; Brychta, R.; Remaley, A.; Chen, K.Y.; Simchowitz, L.; Celi, F.S. Moderate weight loss is sufficient to affect thyroid hormone homeostasis and inhibit its peripheral conversion. Thyroid 2014, 24, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Jada, K.; Djossi, S.K.; Khedr, A.; Neupane, B.; Proskuriakova, E.; Mostafa, J.A. The Pathophysiology of Anorexia Nervosa in Hypothalamic Endocrine Function and Bone Metabolism. Cureus 2021, 13, 20548. [Google Scholar] [CrossRef] [PubMed]
- Azizi, F. Islamic fasting and thyroid hormones. Intl J. Endocrinol. Metab. 2015, 13, 29248. [Google Scholar] [CrossRef] [PubMed]
- Flier, J.S.; Maratos-Flier, E. Leptin’s Physiologic Role: Does the Emperor of Energy Balance Have No Clothes? Cell Metab. 2017, 26, 24–26. [Google Scholar] [CrossRef]
- Flier, J.S.; Harris, M.; Hollenberg, A.N. Leptin, nutrition, and the thyroid; the why, the wherefore, and the wiring. J. Clin. Investig. 2000, 105, 859–8661. [Google Scholar] [CrossRef]
- Herpertz, S.; Wagner, R.; Albers, N.; Blum, W.F.; Pelz, B.; Langkafel, M.; Köpp, W.; Henning, A.; Oberste-Berghaus, C.; Mann, K.; et al. Circadian plasma leptin levels in patients with anorexia nervosa: Relation to insulin and cortisol. Horm. Res. 1998, 50, 197–204. [Google Scholar] [CrossRef]
- Park, H.K.; Ahima, R. Physiology of leptin: Energy homeostasis, neuroendocrine function and metabolism. Metabolism 2015, 64, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Himms-Hagen, J. Brown adipose tissue thermogenesis: Interdisciplinary studies. FASEB J. 1990, 4, 2890–2898. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.L.; Mantzoros, C.S. Role of leptin in energy-deprivation states: Normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet 2005, 366, 74–85. [Google Scholar] [CrossRef]
- Rupert, J.E.; Jengelley, D.H.A.; Zimmers, T.A. In Vitro, In Vivo, and In Silico Methods for Assessment of Muscle Size and Muscle Growth Regulation. Shock 2020, 53, 605–615. [Google Scholar] [CrossRef]
- Chandramouli, V.; Ekberg, K.; Schumann, W.C.; Kalhan, S.C.; Wahren, J.; Landau, B.R. Quantifying gluconeogenesis during fasting. Am. J. Physiol. 1997, 273, 1209–1215. [Google Scholar] [CrossRef]
- Lithell, H.; Boberg, J.; Hellsing, K.; Lundqvist, G.; Vessby, G. Lipoproteinlipase activity in human skeletal muscle and adipose tissue in the fasting and the fed states. Atherosclerosis 1978, 30, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Samra, J.S.; Clark, M.L.; Humphreys, S.M.; Macdonald, I.A.; Frayn, K.N. Regulation of lipid metabolism in adipose tissue during early starvation. Am. J. Physiol. 1996, 271, 541–546. [Google Scholar] [CrossRef]
- Lass, A.; Zimmermann, R.; Oberer, M.; Zechner, R. Lipolysis—A highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog. Lipid Res. 2011, 50, 14–27. [Google Scholar] [CrossRef]
- Djurhuus, C.B.; Gravholt, C.H.; Nielsen, S.; Mengel, A.; Christiansen, J.S.; Schmitz, O.E.; Møller, N. Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans. Am. J. Physiol. Endocrinol. Metab. 2002, 283, 172–177. [Google Scholar] [CrossRef]
- Fong, H.F.; Divasta, A.D.; Difabio, D.; Ringelheim, J.; Jonas, M.M.; Gordon, C.M. Prevalence and predictors of abnormal liver enzymes in young women with anorexia nervosa. J. Pediatr. 2008, 153, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Walsh, B.T.; Katz, J.L.; Levin, J.; Kream, J.; Fukushima, D.K.; Hellman, L.D.; Weiner, H.; Zumoff, B. Adrenal activity in anorexia nervosa. Psychosom. Med. 1978, 40, 499–506. [Google Scholar] [CrossRef]
- Peters, A.; Rohloff, D.; Kohlmann, T.; Renner, F.; Jantschek, G.; Kerner, W.; Fehm, H.L. Fetal hemoglobin in starvation ketosis of young women. Blood 1998, 91, 691–694. [Google Scholar] [CrossRef]
- Salti, I.; Bénard, E.; Detournay, B.; Bianchi-Biscay, M.; Le Brigand, C.; Voinet, C.; Jabbar, A. Results of the Epidemiology of Diabetes and Ramadan 1422/2001 (EPIDIAR) study. Diabetes Care 2004, 27, 2306–2311. [Google Scholar] [CrossRef] [PubMed]
- Velayudhan, M. Managing diabetes during the Muslim fasting month of Ramadan. Med. J. Malaysia. 2012, 67, 353–354, quiz 355. [Google Scholar]
- Bakiner, O.; Ertorer, M.E.; Bozkirli, E.; Tutuncu, N.B.; Demirag, N.G. Repaglinide plus single-dose insulin glargine: A safe regimen for low-risk type 2 diabetic patients who insist on fasting in Ramadan. Acta Diabetol. 2009, 46, 63–65. [Google Scholar] [CrossRef]
- Toni, G.; Berioli, M.G.; Cerquiglini, L.; Ceccarini, G.; Grohmann, U.; Principi, N.; Esposito, S. Eating Disorders and Disordered Eating Symptoms in Adolescents with Type 1 Diabetes. Nutrients 2017, 9, 906. [Google Scholar] [CrossRef]
- Ji, J.; Sundquist, J.; Sundquist, K. Association between anorexia nervosa and type 2 diabetes in Sweden: Etiological clue for the primary prevention of type 2 diabetes. Endocr. Res. 2016, 41, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, L.; Geller, S.; Hébert, A.; Repond, C.; Fioramonti, X.; Leloup, C.; Pellerin, L. Hypothalamic sensing of ketone bodies after prolonged cerebral exposure leads to metabolic control dysregulation. Sci. Rep. 2016, 6, 34909. [Google Scholar] [CrossRef]
- Haines, M.S. Endocrine complications of anorexia nervosa. J. Eat. Disord. 2023, 11, 24. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, R.; Ye, J.; Zhang, V.; Wu, C.; Cheng, G.; Jia, J.; Wang, L. Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila. eLife 2016, 5, 15693. [Google Scholar] [CrossRef] [PubMed]
- Hatting, M.; Tavares, C.D.; Sharabi, K.; Rines, A.K.; Puigserver, P. Insulin regulation of gluconeogenesis. Ann. N. Y. Acad. Sci. 2018, 1411, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Rodwell, V.W.; Bender, D.A.; Botham, K.M.; Kennelly, P.J.; Weil, P.A. Harper’s Illustrated Biochemistry, 31st ed.; McGraw-Hill Education: New York, NY, USA, 2018. [Google Scholar]
- Stratton, M.T.; Albracht-Schulte, K.; Harty, P.S.; Siedler, M.R.; Rodriguez, C.; Tinsley, G.M. Physiological responses to acute fasting: Implications for intermittent fasting programs. Nutr. Rev. 2022, 80, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Ohwada, R.; Hotta, M.; Oikawa, S.; Takano, K. Etiology of hypercholesterolemia in patients with anorexia nervosa. Int. J. Eat. Disord. 2006, 39, 598–601. [Google Scholar] [CrossRef] [PubMed]
- Kraus-Friedmann, N. Hormonal regulation of hepatic gluconeogenesis. Physiol. Rev. 1984, 64, 170–259. [Google Scholar] [CrossRef] [PubMed]
- Spaulding, S.W.; Chopra, I.J.; Sherwin, R.S.; Lyall, S.S. Effect of caloric restriction and dietary composition of serum T3 and reverse T3 in man. J. Clin. Endocrinol. Metab. 1976, 42, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Schebendach, J.E.; Golden, N.H.; Jacobson, M.S.; Hertz, S.; Shenker, I.R. The metabolic responses to starvation and refeeding in adolescents with anorexia nervosa. Ann. N. Y. Acad. Sci. 1997, 817, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Hübel, C.; Yilmaz, Z.; Schaumberg, K.E.; Breithaupt, L.; Hunjan, A.; Horne, E.; García-González, J.; O’Reilly, P.F.; Bulik, C.M.; Breen, G. Body composition in anorexia nervosa: Meta-analysis and meta-regression of cross-sectional and longitudinal studies. Int. J. Eat. Disord. 2019, 52, 1205–1223. [Google Scholar] [CrossRef] [PubMed]
- Misra, M.; Miller, K.K.; Kuo, K.; Griffin, K.; Stewart, V.; Hunter, E.; Herzog, D.B.; Klibanski, A. Secretory dynamics of leptin in adolescent girls with anorexia nervosa and healthy adolescents. Am. J. Physiol. Endocrinol. Metab. 2005, 289, 373–381. [Google Scholar] [CrossRef]
- Bianco, A.C.; Maia, A.L.; da Silva, W.S.; Christoffolete, M.A. Adaptive activation of thyroid hormone and energy expenditure. Biosci. Rep. 2005, 25, 191–208. [Google Scholar] [CrossRef]
- Araujo, R.L.; de Andrade, B.M.; de Figueiredo, Á.S.P.; da Silva, M.L.; Marassi, M.P.; dos Santos, V.; Bouskela, E.; Carvalho, D.P. Low replacement doses of thyroxine during food restriction restores type 1 deiodinase activity in rats and promotes body protein loss. J. Endocrinol. 2008, 198, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, U.; Steegborn, C. New insights into the structure and mechanism of iodothyronine deiodinases. J. Mol. Endocrinol. 2015, 55, 37–52. [Google Scholar] [CrossRef] [PubMed]
- da Silveira, C.D.; de Vasconcelos, F.P.; Moura, E.B.; da Silveira, B.T.; Amorim, F.F.; Shintaku, L.S.; de Santana, R.B.; Argotte, P.L.; da Silva, S.F.; de Oliveira, M.; et al. Thyroid Function, Reverse Triiodothyronine, and Mortality in Critically Ill Clinical Patients. Indian. J. Crit. Care Med. 2021, 25, 1161–1166. [Google Scholar] [CrossRef] [PubMed]
- Elliott, B.; Mina, M.; Ferrier, C. Complete and Voluntary Starvation of 50 days. Clin. Med. Insights Case Rep. 2016, 9, 67–70. [Google Scholar] [CrossRef] [PubMed]
- BBC. The Full Story of Thailand’s Extraordinary Cave Rescue. Available online: https://www.bbc.com/news/world-asia-44791998 (accessed on 15 March 2024).
- Bailer, U.F.; Kaye, W.H. A review of neuropeptide and neuroendocrine dysregulation in anorexia and bulimia nervosa. Curr. Drug Targets CNS Neurol. Disord. 2003, 2, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Randle, P.J. Metabolic fuel selection: General integration at the whole body level. Proc. Nutr. Soc. 1995, 54, 317–327. [Google Scholar] [CrossRef]
- Peters, A. The selfish brain: Competition for energy resources. Am. J. Hum. Biol. 2011, 23, 29–34. [Google Scholar] [CrossRef]
Fasting (Food Deprivation for <24 h) | Starvation (Food Deprivation for >1 Day) | |
---|---|---|
Characteristics | Often follows a cyclic feeding/fasting pattern | Usually does not follow any pattern |
Temporary, usually short-term, partial or complete abstinence from food | Long-term or persistent food deprivation | |
Exemplified by a religious commitment or a cultural belief; can be utilized for diagnostic and treatment purposes of various disease states | Exemplified by a hunger strike, drought, war, famine, natural disaster, and anorexia nervosa | |
Metabolic Effects on Humans [2,3,4,37,38,39] | Triggers a short-term metabolic adaptation | Challenges metabolic homeostasis |
Reduces peripheral glucose uptake/usage | Reduces peripheral glucose uptake/usage | |
Triggers glycogenolysis | Triggers proteolysis and gluconeogenesis | |
Spares essential proteins | Proteolysis of essential and expendable proteins | |
Causes negligible ketogenesis | Triggers significant ketogenesis | |
May provide health benefits | Leads to exhaustion of endogenous energy reserves |
Endocrine Organ (Hormone) | Fasting or Starvation | Key Findings That Relate to the Study Question | Reference |
---|---|---|---|
Adrenal glands (cortisol) | Fasting | ↑Cortisol | [29,32,43,44,45] |
↑Gluconeogenesis | [46] | ||
↓Peripheral tissue glucose uptake and utilization | [47] | ||
↑Glycogenolysis | [48] | ||
↓Leptin leading to ↑Cortisol | [49] | ||
↓Cortisol | [50] | ||
Starvation | ↑Cortisol | [20,36,51,52,53,54,55,56,57,58,59,60,61] | |
↑Gluconeogenesis | [62] | ||
↑Amino acids | [63] * | ||
Pancreas (glucagon and insulin) | Fasting | ↑Glucagon | [64,65,66,67,68,69] |
Fasting benefits | [37] | ||
↑Glycogenolysis | [70,71,72] | ||
↓Glycogenesis | [35] | ||
↓Insulin | [73,74] | ||
↑Glucagon ↓Insulin ↑Glycogenolysis ↑Lipolysis ↑Ketogenesis | [75] | ||
↑Gluconeogenesis ↑Amino acids oxidation ↑Ureagenesis | [76,77] | ||
↓Insulin ↑Cortisol ↓Leptin | [34,78] | ||
↑Lipolysis | [79] | ||
↑Proteolysis | [80] | ||
Starvation | ↑Glucagon | [15,81,82] | |
↑Lipolysis ↑Ketogenesis | [83] | ||
↓Insulin | [19,84,85,86,87,88,89] | ||
↑Fatty acid oxidation ↑Ketogenesis | [90] | ||
↑Lipolysis ↑Gluconeogenesis | [16] | ||
↑Competition for energy resources | [91] | ||
↓Glucagon | [92] | ||
↑Insulin sensitivity | [93] | ||
Fasting and Starvation | ↑Glucagon ↓Insulin ↓T3 | [38] | |
Thyroid gland (thyroid hormones) | Fasting | ↓T3 ↓TSH ↓TRH | [94,95] |
↓TSH | [96] | ||
↓TRH | [97,98] | ||
Fasting’s benefits | [39] | ||
↓Leptin leading to ↓T3 | [99] | ||
Starvation | ↓T3 | [17,22,23,24,25,27,28,100,101,102,103,104] | |
↑rT3 | [18,21,105] | ||
↓TSH | [33,106] | ||
↓TBG | [26] | ||
↓Leptin | [107] |
Tissue/Organ | T3 Effect |
---|---|
GI | ↑ gastric motility, which results in enhanced glucose absorption |
Pancreas | ↑ β cell development to produce insulin and amylin |
Liver | ↑ gluconeogenesis and glycogenolysis |
WAT | ↑ lipolysis by increasing the release of fatty acids to support gluconeogenesis. |
BAT | ↑ thermogenesis by increasing the UCP1 expression |
Skeletal muscle | ↑ glucose uptake; ↑ thermogenesis by increasing the UCP3 expression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karimi, R.; Yanovich, A.; Elbarbry, F.; Cleven, A. Adaptive Effects of Endocrine Hormones on Metabolism of Macronutrients during Fasting and Starvation: A Scoping Review. Metabolites 2024, 14, 336. https://doi.org/10.3390/metabo14060336
Karimi R, Yanovich A, Elbarbry F, Cleven A. Adaptive Effects of Endocrine Hormones on Metabolism of Macronutrients during Fasting and Starvation: A Scoping Review. Metabolites. 2024; 14(6):336. https://doi.org/10.3390/metabo14060336
Chicago/Turabian StyleKarimi, Reza, Alina Yanovich, Fawzy Elbarbry, and Anita Cleven. 2024. "Adaptive Effects of Endocrine Hormones on Metabolism of Macronutrients during Fasting and Starvation: A Scoping Review" Metabolites 14, no. 6: 336. https://doi.org/10.3390/metabo14060336
APA StyleKarimi, R., Yanovich, A., Elbarbry, F., & Cleven, A. (2024). Adaptive Effects of Endocrine Hormones on Metabolism of Macronutrients during Fasting and Starvation: A Scoping Review. Metabolites, 14(6), 336. https://doi.org/10.3390/metabo14060336