Mediterranean Plants as Potential Source of Biopesticides: An Overview of Current Research and Future Trends
Abstract
:1. Introduction
2. Mediterranean Plants That Have Been Recently Investigated for Biopesticidal Activity
2.1. Lamiaceae
- Species that mainly produce volatile terpenoids in their essential oils;
- Species that mainly produce nonvolatile metabolites and poor essential oils [19].
2.2. Asteraceae
2.3. Apiaceae
2.4. Cistaceae
2.5. Cupressaceae
2.6. Brassicacae
Family/Plant Species | Extraction Methods * | Major Isolated Compounds | References |
---|---|---|---|
Acanthaceae | |||
Acanthus dioscoridis L. | m | n.a. ** | [44] |
Amaranthaceae | |||
Achyranthes aspera L. | se | Flavonoids; saponins; tannins; steroids; cardiac glycosides; alkaloids; anthrequinones; terpenoids | [68] |
Anacardiaceae | se | ||
Pistacia atlantica Desf. | h | EO leaves: terpinen-4-ol; (p)-cymene; α-pinene; spathulenol EO fruits: terpinen-4-ol; sabinene; α-pinene. EO bark: α-pinene; myrtenol; verbenol (rans-); β-pinene | [69] |
Pistacia atlantica Desf. | h | [70] | |
Pistacia khinjuk Stocks. | h | Fruit oil: b-pinene; sabinene; leaf oil: spathulenol; b-pinene | [70] |
Pistacia lentiscus L. | se | n.a. | [71] |
Apiaceae | |||
Anethum graveolens L. | h | L-phellandrene; carvone; limonene | [72] |
Bifora radians M. Bieb. | m | n.a. | [44] |
Carum carvi L. | h | Carvone; D-limonene; α-myrcene; dihydrocarvone | [73] |
Carum carvi L. | p | Limonene; carvone | [46] |
Carum carvi L. | m, sub | (+) Carvone; d-limonene | [45] |
Coriandrum sativum L. | m | n.a. | |
Crithmum maritimum L. | h | Dill apiole; γ-terpinene; carvacrol methyl ether | [74] |
Crithmum maritimum L. | h | Dillapiole; γ-terpinene (French EO), limonene; γ-terpinene (central Italy EO); thymol methyl ether; γ-terpinene (Sicilian EO) | [75] |
Cuminum cyminum L. | h | α-Pinene; o-cymene; cuminaldehyde; ç-terpinene | [73] |
Cuminum cyminum L. | p | Cuminic acid | [76] |
Daucus carota L. | h | α-Pinene; β-pinene; borneol; myrcene | [77] |
Daucus lopadusanus Tineo | m | n.a. | [78] |
Foeniculum vulgare Mill. | h | Anethole | [79] |
Foeniculum vulgare Mill. | h | α-Pinene; anethole; D-limonene; L-fenchone | [73] |
Foeniculum vulgare Mill. | p | Trans-anethole; limonene; fenchone | [80] |
Helosciadium nodiflorum (L.) W.D.J. Koch | h | Myristicin; (Z)-β-ocimene | [81] |
Heracleum sphondylium L. | h | Octyl acetate; octyl butyrate; octyl hexanoate | [74] |
Pimpinella anisum L. | h | Anethole; D-limonene; estragole; o-cymene | [73] |
Pimpinella anisum L. | p | Transanethole | [80] |
Pimpinella anisum L. | h | (E)-anethole; methyl chavicol | [74] |
Smyrnium olusatrum L. | h | Curzerene; iso-furanodiene; furanoeremophil-1-one; germacrone; myrcene | [81] |
Apocynaceae | |||
Calotropis procera (Aiton) W.T. Aiton | se | n.a. | [82] |
Nerium oleander L. | m | n.a. | [83] |
Nerium oleander L. | se | n.a. | [83] |
Asclepiadaceae | |||
Periploca angustifolia Labill. | m | n.a. | [78] |
Asphodelaceae | n.a. | ||
Asphodelus ramosus L. subsp. ramosus | m, ultra | n.a. | [58] |
Asteraceae | [71] | ||
Achillea millefolium L. | h | Chamazulene; 1,8-cineole | [36] |
Achillea millefolium L. | m | n.a. | [44] |
Achillea millefolium L. | m, sub | n.a. | [45] |
Achillea ptarmica L. | m | n.a. | [84] |
Achillea millefolium L. | m | n.a. | [84] |
Anthemis deserti Boiss. | m | n.a. | [85] |
Arctium lappa L. | m | n.a. | [84] |
Artemisia inculta Delile | h | Camphor (19); 1,8-cineole (12); p-cymeneborneol | [28] |
Artemisia absinthium L. | h | Sabinene (23.8%); β-myrcene (15.5%) | [36] |
Bidens tripartite L. | m | n.a. | [84] |
Carduus acanthoides L. | m | n.a. | [84] |
Carduus nutans subsp. leiophyllus (Petrović) Stoj. & Stef. | m | n.a. | [84] |
Centaurea cyanus L. | m | n.a. | [84] |
Centaurea jacea L. | m | n.a. | [84] |
Centaurea scabiosa L. | m | n.a. | [84] |
Cirsium arvense (L.) Scop. | m | n.a. | [84] |
Cynara cardunculus L. var. altilis DC. | m | Caffeoylquinic acids; apigenin; luteolins; lactone cynaropicrin | [86] |
Dittrichia viscosa (L.) Greuter | m | α-Costic acid; inuloxin A | [87] |
Dittrichia viscosa (L.) Greuter | n.a. ** | α-Costic acid; inuloxin A; inuloxin C | [88] |
Echinops ritro L. var. tenuifolius | m | n.a. | [84] |
Echinops spinosissimus Turra | m | n.a. | [78] |
Gnaphalium uliginosum L. | m | n.a. | [84] |
Glebionis coronaria (L.) Spach | se | Camphor | [89] |
Leontodon hispidus L. | m | n.a. | [84] |
Pentanema britannica (L.) D. Gut. Larr., Santos-Vicente, Anderb., E. Rico & M.M. Mart. Ort. | m | n.a. | [84] |
Pulicaria crispa (Forssk.) Oliv. | m | n.a. | [90] |
Santolina chamaecyparissus L. | h | Artemisia ketone; β-phellandrene; vulgarone B; β-myrcene | [36] |
Santolina chamaecyparissus L. | h | 1,8-Cineole; 8-methylene-3-oxatricyclo [5.2.0.02,4] nonane | [91] |
Silybum marianum (L.) Gaertn. | m | n.a. | [84] |
Sonchus arvensis L. | m | n.a. | [84] |
Tanacetum vulgare L. | m | n.a. | [92] |
Tanacetum vulgare L. | h | α-Thujone; 1,8-cineole | [36] |
Taraxacum officinale F.H. Wigg. subsp. officinale | m, sub | n.a. | [45] |
Tripleurospermum inodorum (L.) Sch. Bip. | m | n.a. | [84] |
Solidago virgaurea L. | h | Pentadecanol; germacrene D | [29] |
Boraginaceae | |||
Glandora prostrata (Loisel.) D.C.Thomas | se | n.a. | [93] |
Onosma visianii Clementi | se | Isobutylshikonin; isovalerylshikonin | [94] |
Brassicaceae | |||
Brassica rapa L. | se | n.a. | [71] |
Diplotaxis erucoides (L.) DC. | se | n.a. | [71] |
Diplotaxis virgata (Cav.) DC. | se | n.a. | [71] |
Hirschfeldia incana (L.) Lagr.-Foss. | se | n.a. | [71] |
Sinapis alba L. | m | n.a. | [66] |
Cannabaceae | |||
Humulus lupulus L. | m, sub | n.a. | [45] |
Humulus lupulus L. | m | α-Humulene; myrcene; trans-caryophyllene | [95] |
Caryophyllaceae | |||
Saponaria officinalis L. | m | n.a. | [96] |
Chenopodiaceae | |||
Atriplex halimus L. | m | n.a. | [78] |
Chenopodium murale (L.) S. Fuentes & al. | se | Flavonoids; saponins; tannins; steroids; cardiac glycosides; alkaloids; anthrequinones; terpenoids | [68] |
Cistaceae | |||
Cistus albidus L. | se | n.a. | [71] |
Cistus albidus L. | m | n.a. | [54] |
Cistus criticus L. | m | n.a. | [54] |
Cistus crispus L. | m | n.a. | [54] |
Cistus ladanifer L. | se | n.a. | [71] |
Cistus ladanifer L. | m | n.a. | [54] |
Cistus laurifolius L. | se | n.a. | [71] |
Cistus laurifolius L. | m | n.a. | [54] |
Cistus monspeliensis L. | m | n.a. | [54] |
Cistus populifolius L. | m | n.a. | [54] |
Cistus salviifolius L. | m | n.a. | [54] |
Convolvulaceae | |||
Convolvulus arvensis L. | se | Flavonoids; saponins; tannins; steroids; cardiac glycosides; alkaloids; anthrequinones; terpenoids | [68] |
Cupressaceae | |||
Juniperus communis L. | h | α-Pinene; sabinene; β-myrcene; limonene; terpinen-4-ol; germacrene D; δ-cadinene | [59] |
Juniperus communis L. | p | α-Pinene; myrcene | [60] |
Juniperus communis L. | n.a. | α-Pinene; sabinene; limonene | [97] |
Juniperus communis var. saxatilis Pall. | h | α-Pinene; sabinene; b-pinene; terpinen-4-ol; β-elemene | [59] |
Juniperus excelsa M. Bieb. | h | α-Cedrol; α-limonene; α-pinene | [61] |
Juniperus oxycedrus L. | h | α-Pinene; limonene; β-caryophyllene | [59] |
Juniperus phoenicea L. | m, ultra | n.a. | [58] |
Juniperus sabina L. | h | Sabinene | [61] |
Dennstaedtiaceae | |||
Pteridium αquilinum (L.) Kuhn | m | Linolenic acid; phytol; palmitic acid; stearic acid; citronellol | [98] |
Eqoisetaceae | |||
Equisetum αrvense L. | m, sub | n.a. | [45] |
Fabaceae | |||
Cassia senna L. | m | n.a. | [85] |
Retama raetam (Forssk.) Webb | m | Alpinumisoflavone; hydroxyalpinumisoflavone; laburnetin; licoflavone C; retamasin B; ephedroidin | [99] |
Sophora alopecuroides L. | m | Alcaloids | [100] |
Ulex europaeus L. | se | n.a. | [93] |
Hypericaceae | |||
Hypericum aegypticum L. | m | n.a. | [78] |
Hypericum perforatum L. | m, sub | n.a. | [45] |
Juncaceae | |||
Juncus compressus Jacq. | p | Effusol; juncusol | [101] |
Lamiaceae | |||
Calamintha menthifolia Host | m | Gallic acid; caffeic acid; 2-hidroxy-cinnamic acid; kaempferol; callistephin chloride; p-coumaric acid; idaenin chloride; (+)-catechin hydrate | [102] |
Hyssopus officinalis L. | h | Cis-pinocamphone; b-phellandrene; b-pinene | [60] |
Hyssopus officinalis L. | h | 1,8-Cineole; b-pinene | [91] |
Lavandula intermedia Emeric ex Loisel. | h | Linalyl acetate; linalool | [91] |
Lavandula angustifolia Mill. | h | Linalyl acetate; linalool; geranyl acetate; terpineol | [28] |
Lavandula angustifolia Mill. | h | Linalool; coumarin; α-terpineol; caryophyllene oxide; coumarin | [103] |
Lavandula angustifolia Mill. | m, sub | n.a. | [45] |
Lavandula dentata L. | h | Eucalyptol; fenchone; camphor | [104] |
Lavandula angustifolia Mill. | n.a. | β-phellandrene; 1,8-cineole; terpinen-4-ol; caryophyllene | [97] |
Lavandula canariensis Mill. | m | n.a. | [105] |
Melissa officinalis L. | h | Geranial; neral; citronellal | [29] |
Mentha piperita L. | m | n.a. | [106] |
Mentha piperita L. | h | Menthone; menthol; limonene | [28] |
Mentha piperita L. | h | Menthol; menthone | [46] |
Mentha piperita L. | m, sub | n.a. | [45] |
Mentha piperita L. | n.a. | Menthofuran; menthol | [97] |
Mentha spicata L. | h | Carvone; 1,8-cineole; menthol | [28] |
Mentha spicata L. | m | n.a. | [107] |
Mentha suaveolens Ehrh. | h | Piperitenone oxide; bornel | [69] |
Mentha suaveolens Ehrh. | h | Piperitenone oxide; piperitenone; limonene; D-germacrone; t-caryophyllene | [28] |
Mentha suaveolens Ehrh. | m, ultra | n.a. | [58] |
Mentha x verticillata L. | se | n.a. | [71] |
Mentha viridis (L.) L. | m | n.a. | [85] |
Nepeta cataria L. | h | n.a. | [108] |
Nepeta curviflora Webb & Berthel. | h | 2-Isopropyl-5-methyl-3-cyclohexen-1-one; (-)-spathulenol; cis-Z-α-bisabolene epoxide; widdrol; (E,Z)-5,7-dodecadiene; dihydronepetalactone; 4-propyl-cyclohexene | [109] |
Nepeta nuda L. subsp. pubescens | h | Pinene; 1-ethyl-1H-pyrrole; 1-cycloethyl-1-(2-methylenecyclohexyl ethanol; 3-methyl-2-cyclohexen-1-one; 2,3-dimethyl-3-hexanol | [109] |
Origanum elongatum (Bonnet) Emb. & Maire | h | Carvacrol; p-cymene; g-terpinene | [110] |
Origanum majorana L. | h | n.a. | [108] |
Origanum syriacum L. subsp. syriacum | h | Carvacrol | [25] |
Origanum virens Hoffmanns. & Link | h | p-Cymene; carvacrol; linalool; a-terpinene; myrcene; b-caryophyllene | [28] |
Origanum vulgare L. | h | [108] | |
Origanum vulgare L. | h | Terpinene; cis-p-menth-2-en-1-ol; terpinen-4-ol; thymol; α-terpinene | [111] |
Origanum vulgare L. | se | n.a. | [71] |
Phlomis tuberosa L. | m | n.a. | [44] |
Prasium majus L. | M | n.a. | [78] |
Rosmarinus officinalis L. | h | Verbenone, a-pinene | [112] |
Rosmarinus officinalis L. | h | Camphor; 1,8-cineole; a-pinene; endoborneol; camphene; verbenone | [28] |
Rosmarinus officinalis L. | h | Camphor; verbenone; eucalyptol (1,8-cineole) | [103] |
Rosmarinus officinalis L. | n.a. | α-Pinene; linalool; piperitone | [97] |
Rosmarinus officinalis L. | m | n.a. | [106] |
Rosmarinus officinalis L. | m, sub | n.a. | [45] |
Salvia officinalis L. | m | n.a. | [90] |
Salvia officinalis L. | h | Thujone (trans); camphor; cineole,1,8 | [110] |
Salvia officinalis L. | h | Cis-thujone; camphor; viridiflorol; 1,8-cineole; trans-thujone; camphene; manool | [29] |
Salvia officinalis L. | h | Camphor; thujone; isothujone | [103] |
Satureja hortensis L. | h | Carvacrol; gamma-terpinene; paracymene | [72] |
Satureja hortensis L. | h | Carvacrol; o-cymene; γ-terpinene; thymol | [113] |
Satureja hortensis L. | m, sub | n.a. | [45] |
Satureja montana L. | h | Carvacrol; p-cymene; borneol; thymoquinone; 1-octen-3-ol | [28] |
Satureja montana L. | h | Carvacrol, followed by its precursor p-cymene | [114] |
Thymus leucotrichus Halácsy | h | Thymol; p-cymene; g-terpinene; carvacrol | [28] |
Thymus leucotrichus Halácsy | h | o-Cymene; α-pinene; ç-terpinene; camphene | [73] |
Thymus leucotrichus Halácsy | h | p-Cymene; geraniol; thymol; carvacrol | [29] |
Thymus leucotrichus Halácsy | p | Thymol; p-cymene; linalool; caryophyllene oxide | [26] |
Thymus leucotrichus Halácsy | h | Thymol; p-cymene; γ-terpinene; caryophyllene oxide | [30] |
Thymus leucotrichus Halácsy | h | Thymol; p-cymene; γ-terpinene | [60] |
Thymus leucotrichus Halácsy | se | n.a. | [71] |
Thymus leucotrichus Halácsy | m, sub | Thymol; p-cymene; carvacrol; γ-terpinene | [45] |
Thymus atticus Čelak. | h | Carvacrol; o-cymene | [110] |
Thymus atticus Čelak. | h | Thymol; p-cymene; g-terpinene; carvacrol | [28] |
Ziziphora clinopodioides Lam. | h | Pulegone; piperitenone; isomenthone | [115] |
Lauraceae | |||
Laurus nobilis L. | sfe | n.a. | [116] |
Laurus nobilis L. | se | n.a. | [71] |
Myrtaceae | |||
Myrtus communis L. | h | α-Pinene; 1,8-cineole | [79] |
Oleaceae | |||
Olea europaea cv. Lechín de Sevilla | se | n.a. | [71] |
Olea europea cv. Arbequina | se | n.a. | [71] |
Olea europea cv. Cornicabra | se | n.a. | [71] |
Olea europea cv. Empeltre | se | n.a. | [71] |
Olea europea cv. Erantoio | se | n.a. | [71] |
Olea europea cv. Picual | se | n.a. | [71] |
Papaveraceae | |||
Glaucium flavum Crantz | m | n.a. | [78] |
Poaceae | |||
Echinochloa crus-galli (L.) P. Beauv. | m | Loliolide; tricin | [117] |
Elytrigia repens (L.) Nevski | m, sub | n.a. | [45] |
Polygonaceae | |||
Polygonum aviculare L. | m, sub | n.a. | [45] |
Polygonum bistorta (L.) Samp. | m, sub | n.a. | [45] |
Pinaceae | |||
Cedrus atlantica (Endl.) Carrière | n.a. | α-Pinene; himachalane; β-himachalene | [97] |
Picea abies (L.) H. Karst. | n.a. | Limonene; bornyl acetate; δ-cadinene; α-muurolol; δ-cadinol | [97] |
Pinus pinea L. | se | n.a. | [71] |
Plantaginaceae | |||
Plantago albicans L. | m | n.a. | [85] |
Poaceae | |||
Echinochloa crus-galli (L.) P. Beauv. | m | Loliolide and tricin | [117] |
Punicaceae | |||
Punica granatum L. | se | n.a. | [93] |
Rosaceae | |||
Prunus dulcis (Mill.) D.A. Webb | n.a. | Fatty acids | [97] |
Ranunculaceae | |||
Nigella sativa L. | m, sub | n.a. | [45] |
Rutaceae | |||
Ruta chalepensis L. | m | n.a. | [105] |
Ruta chalepensis L. | n.a. | [118] | |
Ruta graveolens L. | se | n.a. | [93] |
Salicaceae | |||
Populus nigra L. | m | Alkanes; sterols; aliphatic and triterpenoic alcohols; acidic compounds | [119] |
Populus tremula L. | m | n.a. | [120] |
Solanaceae | |||
Hyoscyamus niger L. | m | Vanillic acid | [121] |
Solanum villosum Mill. | m | n.a. | [85] |
Urticaceae | |||
Urtica dioica L. | m | n.a. | [122] |
Urtica dioica L. | m, sub | n.a. | [45] |
Urtica sp. | se | n.a. | [71] |
Verbenaceae | |||
Lantana camara L. | m | n.a. | [118] |
Zygophyllaceae | |||
Tribulus terrestris L. | m | Flavonoids; saponins; tannins; steroids; cardiac glycosides; alkaloids; anthrequinones; terpenoids | [68] |
Zygophyllum eichwaldii C.A. Mey. | m | n.a. | [85] |
3. Extraction Methods and Determination of the Chemical Composition of Plant Extracts/Essential Oils
- Hydrodistillation: This is a traditional, simple method for the extraction of active compounds and especially essential oils from plants. Even though it can be used in fresh plant material, is is preferrable to use the method with dried plant material in order to preserve it from enzymatic degradation [126]. As some volatile components may be lost at high extraction temperatures, this method cannot be used for thermolabile compounds [127]. In this method, water and oil are exclusively separated through condensation to retain all the essential properties of the plant part used for the extraction [128]. It involves three main physicochemical processes: hydrodiffusion, hydrolysis, and heat decomposition [129]. Three types of hydrodistillation can be distinguished: (a) water distillation, (b) water and steam distillation, and (c) direct steam distillation [124]. Umpiérrez et al. [130] reported that the essential oils produced by different distillation methods did not differ in their chemical content in two Asteraceae plants. Hydrodistillation with the Clevenger-type apparatus has been used in most of the extractions, as can be seen in Table 1. It is a steam distillation technique with which the active compounds are extracted with the use of steam generated outside the tank in a steam generator or in a boiler. It can determine the percentage of volatile oils present in the oil-bearing material [131]. This method is preferred because (i) the released steam can easily be controlled and (ii) no thermal decomposition of oil constituents occurs because the temperature does not exceed 100 °C. On the other hand, it has been reported to require equipment that increases the cost of the method [128].
- Soxhlet extraction or hot continuous extraction: This is a continuous extraction method with high extraction efficiency that requires less time and solvent consumption than other methods (maceration or percolation) [132]. It is used for plant material that is partially soluble in the chosen solvent and for plant material with insoluble impurities [133]. There is also no need for filtration of the extract [126]. On the other hand, the device must not be shaken, and the long extraction time may lead to the degradation of thermolabile compounds [134].
- Maceration: This is a solid–liquid extraction and one of the most widely used techniques in the medicinal and aromatic plant industry. It is a separation technique to remove a solute from a solid mixture with the help of a solvent [126]. It is an appropriate method for thermolabile compounds [133]. The success of the method depends on the solvent, the plant part, and the starting material and extraction time. On the other hand, the large volume of solvents used and the long extraction time are the main disadvantages of the method [128].
4. Biological Activity of Plant Extracts and Essential Oils
4.1. Commonly Used Assays for Evaluating Antimicrobial Activity
Insects Tested | Family | Plant | Parts Used for Extraction | References |
---|---|---|---|---|
Acrobasis advenella | Lamiaceae | Satureja hortensis L. | Aerial parts | [113] |
Acromyrmex octospinosus | Apocynaceae | Nerium oleander L. | Leaves | [83] |
Aedes aegypti L. | Apiaceae | Daucus carota L. | Umbels | [77] |
Amblyseius swirskii | Lamiaceae | Satureja hortensis L. | Aerial parts | [72] |
Myzus persicae | Asteraceae | Artemisia absinthium L. | Aerial parts | [36] |
Santolina chamaecyparissus L. | Aerial parts | |||
Tanacetum vulgare L. | Aerial parts | |||
Compositeae | Achillea millefolium L. | Aerial parts | ||
Fabaceae | Sophora alopecuroides L. | Aerial parts | [100] | |
Lamiaceae | Origanum syriacum L. subsp. syriacum | Leaves | [25] | |
Lamiaceae | Satureja montana L. | Leaves and flowers | [114] | |
Experimental model of aphids’ nervous system | Lamiaceae | Lavandula angustifolia Mill. | Aerial parts | [103] |
Satureja montana L. | Aerial parts | |||
Salvia officinalis L. | Aerial parts | |||
Aphis craccivora | Resedaceae | Ochradenus baccatus Delile | Leaves | [90] |
Asteraceae | Pulicaria crispa (Forssk.) Oliv. (Forssk.) Oliv. | Leaves | ||
Lamiaceae | Salvia officinalis L. | Leaves | ||
Apis mellifera | Asteraceae | Artemisia absinthium L. | Aerial parts | [130] |
Aphis citricola | Fabaceae | Sophora alopecuroides L. | Aerial parts | [100] |
Macrosiphum rosirvorum | Fabaceae | Sophora alopecuroides L. | Aerial parts | [100] |
Sitobion avenae | Cupressaceae | Juniperus communis L. | n.a. * | [59] |
Brevicoryne brassicae | Juniperus oxycedrus L. | n.a. | ||
Brassicogethes aeneus | Juniperus communis var. satilis Pall. | n.a. | ||
Callosobruchus maculatus | Anacardiaceae | Pistacia atlantica Desf. | Fruits, leaves and gum | [70] |
Pistacia khinjuk Stocks | Fruits and leaves | |||
Ceratitis capitata | Labiatae | Origanum elongatum (Bonnet) Emb. & Maire | Aerial parts | [110] |
Anacardiaceae | Pistacia atlantica Desf. | n.a. | [69] | |
Lamiaceae | Mentha suaveolens Ehrh. | n.a. | [146] | |
Salvia officinalis L. | n.a. | |||
Thymus atticus Čelak. | n.a. | |||
Chaitophorus populialbae | Dennstaedtiaceae | Pteridium aquilinum (L.) Kuhn | Leaves | [98] |
Chrysoperla carnea | Lamiaceae | Salvia officinalis L. | Leaves | [90] |
Resedaceae | Ochradenus baccatus Delile | Leaves | ||
Asteraceae | Pulicaria crispa (Forssk.) Oliv. | Leaves | ||
Culex pipiens L. | Apiaceae | Daucus carota L. | n.a. | [77] |
Culex quinquefasciatus | Apiaceae | Smyrnium olusatrum L. | Umbels | [81] |
Helosciadium nodiflorum (L.) W.D.J. Koch | Aerial parts | |||
Chenopodiaceae | Chenopodium murale (L.) S. Fuentes et al. | Whole plant | [68] | |
Amaranthaceae | Achyranthes aspera L. | Whole plant | ||
Zygophyllaceae | Tribulus terrestris L. | Whole plant | ||
Convolvulaceae | Convolvulus arvensis L. | Whole plant | ||
Apiaceae | Crithmum maritimum L. | Aerial parts, leaves, flowers, and seeds | [75] | |
Lamiaceae | Ziziphora clinopodioides Lam. | Aerial parts | [115] | |
Culex restuans Theobald | Apiaceae | Daucus carota L. | Umbels | [77] |
Cydia pomonella L. | Cannabaceae | Humulus lupulus L. | n.a. | [67] |
Dendrolimus pini L. | Brassicaceae | Sinapis alba L. | n.a. | [67] |
Diaphorina citri | Asteraceae | Artemisia absinthium L. | Leaves and flowers | [147] |
Epicauta atomaria | Lamiaceae | Lavandula dentata L. | Leaves and green stems | [104] |
Harmonia axyridis | Lamiaceae | Origanum syriacum L. subsp. syriacum | Leaves | [25] |
Leptinotarsa decemlineata | Lamiaceae | Phlomis tuberosa L. | Stems, leaves, and flowers | [44] |
Apiaceae | Bifora radians M. Bieb. | Leaves and stems | ||
Apiaceae | Heracleum platytaenium Boiss. | Leaves and stems | ||
Acanthaceae | Acanthus dioscoridis L. | Stems, leaves, and flowers | ||
Cannabaceae | Humulus lupulus L. | Cone | ||
Asteraceae | Achillea millefolium L. | Stems, leaves, and flowers | ||
Lamiaceae | Satureja montana L. | Leaves and flowers | [114] | |
Asteraceae | Santolina chamaecyparissus L. | Aerial parts | [91] | |
Lamiaceae | Hyssopus officinalis L. | Aerial parts | ||
Lamiaceae | Lavandula intermedia Emeric ex Loisel. | Aerial parts | ||
Macrosiphum euphorbiae | Apiaceae | Foeniculum vulgare Mill. Mill. | n.a. | [80] |
Apiaceae | Pimpinella anisum L. | n.a. | ||
Musca domestica | Lamiaceae | Origanum syriacum L. subsp. syriacum | Leaves | [25] |
Phthorimaea operculella | Plantaginaceae | Plantago albicans L. | n.a. | [85] |
Solanaceae | Solanum villosum Mill. | n.a. | ||
Zygophyllaceae | Zygophyllum eichwaldii C.A. Mey. | n.a. | ||
Rhopalosiphum maidis | Apiaceae | Foeniculum vulgare Mill. | n.a. | [79] |
Myrtaceae | Myrtus communis L. | n.a. | ||
Rhopalosiphum padi | Cupressaceae | Juniperus communis L. | n.a. | [59] |
Cupressaceae | Juniperus oxycedrus L. | |||
Cupressaceae | Juniperus pygmaea M.-Bieb. | |||
Lamiaceae | Hyssopus officinalis L. | Aerial parts | [91] | |
Lamiaceae | Lavandula intermedia Emeric ex Loisel. | Aerial parts | ||
Asteraceae | Santolina chamaecyparissus L. | n.a. | ||
Rhyzopertha dominica | Asteraceae | Glebionis coronaria (L.) Spach | n.a. | [89] |
Sitophilus oryzae | Lamiaceae | Mentha longifolia (L.) Huds. | n.a. | [148] |
Sitophilus zeamais | Lamiaceae | Lavandula dentata L. | Leaves and green stems | [104] |
Spodoptera exigua | Brassicaceae | Sinapis alba L. | n.a. | [67] |
Spodoptera frugiperda | Fabaceae | Ulex europaeus L. | Leaves and flowers | [93] |
Punicaceae | Punica granatum L. | Fruit peel | ||
Rutaceae | Ruta graveolens L. | Leaves | ||
Boraginaceae | Glandora prostrata (Loisel.) D.C. Thomas | Leaves and flowers | ||
Labiatae | Origanum majorana L. | Leaves and stems | [108] | |
Lamiaceae | Nepeta cataria L. | Leaves and stems | ||
Origanum vulgare L. | Leaves and stems | |||
Lythraceae | Punica granatum L. | Fruit peel | ||
Spodoptera littoralis | Labiatae | Origanum virens Hoffmanns. & Link | Aerial parts | [28] |
Lamiaceae | Lavandula angustifolia Mill. | Aerial parts | ||
Lamiaceae | Satureja montana L. | Aerial parts | ||
Lamiaceae | Thymus leucotrichus Halácsy | Aerial parts | ||
Lamiaceae | Thymus atticus Čelak. | Aerial parts | ||
Lamiaceae | Mentha piperita L. | Aerial parts | ||
Lamiaceae | Satureja montana L. | Aerial parts | ||
Lamiaceae | Mentha spicata L. | Aerial parts | ||
Lamiaceae | Mentha suaveolens Ehrh. | Aerial parts | ||
Asteraceae | Artemisia inculta Delile | Aerial parts | ||
Lamiaceae | Origanum syriacum L. subsp. syriacum | Aerial parts | [25] | |
Lamiaceae | Satureja montana L. | Aerial parts | ||
Lamiaceae | Hyssopus officinalis L. | Aerial parts | [91] | |
Lamiaceae | Lavandula intermedia Emeric ex Loisel. | Aerial parts | ||
Asteraceae | Santolina chamaecyparissus L. | Aerial parts | ||
Tetranychus cinnabarinus | Asteraceae | Artemisia capillaris Thunb. | n.a. | [149] |
Tetranychus turkestani | Lamiaceae | Mentha longifolia (L.) Huds. L. | n.a. | [150] |
Lamiaceae | Rosmarinus officinalis L. | n.a. | ||
Tetranychus urticae | Lamiaceae | Satureja hortensis L. | Aerial parts | [72] |
Apiaceae | Anethum graveolens L. | Aerial parts | ||
Boraginaceae | Onosma visianii Clementi | Roots | [94] | |
Caryophyllaceae | Saponaria officinalis L. | n.a. | [96] | |
Thrips tabaci | Lamiaceae | Satureja montana L. | Leaves and stems | [112] |
Trialeurodes vaporariorum | Asteraceae | Artemisia absinthium L. | Aerial parts | [130] |
Tribolium castaneum | Cupressaceae | Juniperus phoenicea L. | Leaves | [58] |
Cupressus sempervirens L. | Leaves | |||
Asphodelaceae | Asphodelus microcarpus Salzm. & Viv. | Leaves | ||
Lamiaceae | Mentha rotundifolia (L.) Huds | Leaves | ||
Lamiaceae | Lavandula dentata L. | Leaves and green stems | [104] | |
Asteraceae | Glebionis coronaria (L.) Spach | Leaves and flowers | [89] | |
Lamiaceae | Mentha spicata L. | Plant samples | [107] | |
Tribolium confusum | Lamiaceae | Lavandula angustifolia Mill. | n.a. | [97] |
Lamiaceae | Mentha piperita L. | n.a. | ||
Lamiaceae | Satureja montana L. | n.a. | ||
Pinaceae | Picea abies (L.) H. Karst. | n.a. | ||
Rosaceae | Prunus dulcis (Mill.) D.A. Webb | n.a. | ||
Trichoplusia ni | Lamiaceae | Thymus leucotrichus Halácsy | n.a. | [26] |
Trogoderma granarium | Rutaceae | Ruta chalepensis L. | Aerial parts | [118] |
Verbenaceae | Lantana camara L. | Aerial parts | ||
Apocynaceae | Calotropis procera (Aiton) W.T. Aiton | Leaves | [82] | |
Tuta absoluta | Asteraceae | Tanacetum vulgare L. | Flowers, leaves, and buds | [92] |
Lamiaceae | Mentha suaveolens Ehrh. | n.a. | [146] | |
Lamiaceae | Salvia officinalis L. | n.a. | [110] | |
Lamiaceae | Thymus atticus Čelak. | n.a. | ||
Anacardiaceae | Pistacia atlantica Desf. | Leaves, fruit, and barks | [69] | |
Asteraceae | Tanacetum vulgare L. | Flowers, leaves, and buds | [92] |
4.2. Bioassays for Determining Pesticidal or Repellent Activity
Weeds Tested | Family | Plant | Parts Used for Extraction | References |
Abutilon theophrasti Medik. | Compositeae | Solidago virgaurea L. | Leaves and flowers | [29] |
Lamiaceae | Melissa officinalis L. | Leaves | ||
Salvia officinalis L. | Leaves and flowers | |||
Thymus leucotrichus Halácsy | Arial parts | |||
Amaranthus powellii S. Watson | Brassicaceae | Sinapis alba L. | Seeds | [66] |
Amaranthus retroflexus L. | Asteraceae | Cynara cardunculus L. | Leaves | [86] |
Amaranthus spinosus L. | Poaceae | Echinochloa crus-galli (L.) P. Beauv. | Leaves | [117] |
Anagallis arvensis L. | Asteraceae | Cynara cardunculus L. | Leaves | [86] |
Brassica rapa L. | Salicaceae | Populus tremula L. | Bark mass, including both inner and outer layers | [120] |
Capsicum annuum L. | Lamiaceae | Calamintha menthifolia Host | n.a. * | [102] |
Cyperus iria L. | Poaceae | Echinochloa crus-galli (L.) P. Beauv. | Leaves | [117] |
Echinochloa crus-galli (L.) P. Beauv. | Apiaceae | Carum carvi L. | Seeds | [46] |
Apiaceae | Mentha piperita L. | n.a. | ||
Lolium perenne L. | Asteraceae | Santolina chamaecyparissus L. | Aerial parts | [91] |
Lamiaceae | Hyssopus officinalis L. | Aerial parts | ||
Lavandula intermedia Emeric ex Loisel. | Aerial parts | |||
Melilotus officinalis L. | Cupressaceae | Juniperus excelsa M. Bieb. | Leaves | [61] |
Cupressaceae | Juniperus sabina | Leaves | [61] | |
Myosotis arvensis (L.) Hill | Cupressaceae | Juniperus excelsa M. Bieb. | Leaves | [61] |
Juniperus sabina L. | Leaves | |||
Orobanche cumana Wallr. | Fabaceae | Retama raetam (Forssk.) Webb | Aerial parts | [99] |
Portulaca oleracea L. | Asteraceae | Cynara cardunculus L. | Leaves | [86] |
Setaria viridis (L.) P. Beauv. | Brassicaceae | Sinapis alba L. | Seeds | [66] |
Solanum nigrum L. | Lamiaceae | Clinopodium menthifolium (Host) | [102] | |
Stellaria media (L.) Vill. | Asteraceae | Cynara cardunculus L. | Leaves | [86] |
Trigonella besseriana Ser. | Cupressaceae | Juniperus excelsa M. Bieb. | Leaves | [61] |
Juniperus sabina L. | Leaves | |||
Plants Tested for Phytotoxicity | Family | Plant | Parts Used for Extraction | References |
Solanum lycopersicum L. (Mirella and Cetia seeds) | Lamiaceae | Prasium majus L. | n.a. | [78] |
Papaveraceae | Glaucium flavum Crantz | |||
Apiaceae | Daucus lopadusanus Tineo | |||
Asclepiadaceae | Periploca angustifolia Labill. | |||
Asteraceae | Echinops spinosissimus Turra | |||
Chenopodiaceae | Atriplex halimus L. | |||
Clusiaceae | Hypericum aegypticum L. | |||
Asteraceae | Artemisia absinthium L. | Aerial parts | [130] | |
Arabidopsis thaliana (L.) Heynh. | Juncaceae | Juncus compressus Jacq. | n.a. | [101] |
4.3. Bioassays for Determining Herbicidal Activity
4.4. Current and Future Research Trends in Biological Assays
Control | Target Tested | Family | Plant | Parts Used for Extraction | References |
---|---|---|---|---|---|
Bacteria | Clavibacter michiganensis | Asteraceae | Achillea ptarmica L. | Aerial parts | [84] |
Achillea millefolium L. | Aerial parts | ||||
Arctium lappa L. | Aerial parts | ||||
Bidens tripartite L. | Aerial parts | ||||
Carduus acanthoides L. | Aerial parts | ||||
Carduus nutans subsp. leiophyllus (Petrović) Stoj. & Stef. | Aerial parts | ||||
Centaurea cyanus L. | Aerial parts | ||||
Centaurea jacea L. | Aerial parts | ||||
Centaurea scabiosa L. | Aerial parts | ||||
Cirsium arvense (L.) Scop. | Aerial parts | ||||
Echinops ritro L. | Aerial parts | ||||
Gnaphalium uliginosum L. | Aerial parts | ||||
Pentanema britannica (L.) D. Gut. Larr., Santos-Vicente, Anderb., E.Rico & M.M.Mart.Ort. | Aerial parts | ||||
Sonchus arvensis L. | Aerial parts | ||||
Tripleurospermum inodorum (L.) Sch. Bip. | Aerial parts | ||||
Compositae | Leontodon hispidus L. | Aerial parts | |||
Silybum marianum (L.) Gaertn. | Aerial parts | ||||
Pectobacterium carotovorum | Apiaceae | Carum carvi L. | Seeds | [45] | |
Asteraceae | Achillea millefolium L. | Stems, leaves, and flowers | |||
Asteraceae | Taraxacum officinale F.H. Wigg. subsp. officinale | Leaves and stems | |||
Cannabaceae | Humulus lupulus L. | Inflorescences | |||
Clusiaceae | Hypericum perforatum L. | Root | |||
Eqoisetaceae | Equisetum arvense L. | Leaves and stems | |||
Lamiaceae | Lavandula angustifolia Mill. | Flower buds | |||
Mentha piperita L. | Leaves, stems | ||||
Rosmarinus officinalis L. | Leaves, stems | ||||
Salvia officinalis L. | Stems | ||||
Satureja hortensis L. | Leaves and stems | ||||
Thymus leucotrichus Halácsy | Seeds | ||||
Poaceae | Echinochloa crus-galli (L.) P. Beauv. | Leaves | [117] | ||
Poaceae | Elymus repens (L.) | Leaves and stems | [45] | ||
Polygonaceae | Polygonum aviculare L. | Leaves and stems | |||
Polygonaceae | Polygonum bistorta L. Samp. | Leaves and stems | |||
Ranunculaceae | Nigella sativa L. | Seeds | |||
Urticaceae | Urtica dioica L. | Stems | |||
Virus | Tobacco Mosaic Virus | Solanaceae | Hyoscyamus niger L. | Seeds | [121] |
Clitellata | Eisenia fetida | Asteraceae | Artemisia absinthium L. (var. Candial) | n.a. * | [165] |
Lamiaceae | Origanum syriacum L. subsp. syriacum | Leaves | [25] | ||
Panagrolaimus rigidus | Lamiaceae | Nepeta curviflora Webb & Berthel. | Flowering tops, seeds, and leaves | [109] | |
Lamiaceae | Nepeta nuda L. ssp. pubescens | Flowering tops, seeds, and leaves | |||
Nematodes | Meloidogyne incognita | Urticaceae | Urtica dioica L. | Whole plant | [122] |
Meloidogyne javanica | Lamiaceae | Satureja montana L. | Leaves and flowers | [114] |
5. Toxicity and Safety Concerns
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions: The European Green Deal. 2019. Available online: https://ec.europa.eu/info/sites/default/files/european-green-deal-communication_en.pdf (accessed on 15 May 2023).
- European Commission. Farm to Fork. 2019. Available online: https://ec.europa.eu/food/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 20 May 2023).
- FAO. Guidelines for the Registration of Microbial, Botanical and Semiochemical Pest Control Agents for Plant Protection and Public Health Uses: International Code of Conduct on Pesticide Management. 2017. Available online: https://www.fao.org/documents/card/en?details=4e84d2c6-df73-430a-82ef-0aed35856e0e%2f (accessed on 20 May 2023).
- Tomasz, T. Herbicides and Pesticide. Encyclopedia of Analytical Science, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 391–392. [Google Scholar]
- Zhang, W. Global pesticide use: Profile, trend, cost/benefit and more. Proc. Int. Acad. Ecol. Environ. Sci. 2018, 8, 1–27. [Google Scholar]
- Triantafyllidis, V.; Kosma, C.; Karabagias, I.K.; Zotos, A.; Pittaras, A.; Kehayias, G. Fungicides in Europe during the Twenty-first Century: A Comparative Assessment Using Agri-environmental Indices of EU27. Water Air Soil Pollut. 2022, 233, 52. [Google Scholar] [CrossRef]
- Aktar, M.d.W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllidis, V.; Hela, D.; Patakioutas, G. Environmental behavior of the fungicide metalaxyl in experimental tobacco field. J. Environ. Sci. Health B 2013, 48, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllidis, V.; Zotos, A.; Kosma, C.; Kokkotos, E. Environmental implications from long-term citrus cultivation and wide use of Cu fungicides in Mediterranean soils. Water Air Soil Pollut. 2020, 231, 218. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef]
- Dimetry, N.Z. Different plant families as bioresource for pesticides. In Advances in Plant Biopesticides; Singh, D., Ed.; Springer: New Delhi, India, 2014; pp. 1–20. [Google Scholar]
- Boate, U.; Abalis, O. Review on the bio-insecticidal properties of some plant secondary metabolites: Types, formulations, modes of action, advantages and limitations. Asian J. Res. Zool. 2020, 3, 27–60. [Google Scholar] [CrossRef]
- Assadpour, E.; Can Karaça, A.; Fasamanesh, M.; Mahdavi, S.A.; Shariat-Alavi, M.; Feng, J.; Kharazmi, M.S.; Rehman, A.; Jafari, S.M. Application of essential oils as natural biopesticides; recent advances. Crit. Rev. Food Sci. Nutr. 2023, 1–21. [Google Scholar] [CrossRef]
- Smith, A.E.; Secoy, D.M. Forerunners of Pesticides in Classical Greece and Rome. J. Agric. Food Chem. 1975, 23, 1050–1055. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef]
- Pichersky, E.; Gang, D.R. Genetics and biochemistry of secondary metabolites in plants: An evolutionary perspective. Trends Plant Sci. 2000, 5, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Heywood, V.H.; Brummitt, R.K.; Culham, A.; Seberg, O. Flowering Plants Families of the World; Royal Botanic Gardens Kew: Richmond, UK, 2007. [Google Scholar]
- Harley, R.M.; Atkins, S.; Budantsev, A.L.; Cantino, P.D.; Conn, B.J.; Grayer, R.; Harley, M.M.; De Kok, R.D.; Krestovskaja, T.D.; Morales, R. Labiatae. In Flowering Plants Dicotyledons; The Families and Genera of Vascular Plants; Kadereit, J.W., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 167–275. [Google Scholar]
- Frezza, C.; Venditti, A.; Serafini, M.; Bianco, A. Phytochemistry, chemotaxonomy, ethnopharmacology, and nutraceutics of Lamiaceae. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; Volume 62, pp. 125–178. [Google Scholar]
- Ramos da Silva, L.R.; Ferreira, O.O.; Cruz, J.N.; de Jesus Pereira Franco, C.; Oliveira dos Anjos, T.; Cascaes, M.M.; Almeida da Costa, W.; Helena de Aguiar Andrade, E.; Santana de Oliveira, M. Lamiaceae essential oils, phytochemical profile, antioxidant, and biological activities. Evid. Based Complement. Alternat. Med. 2021, 2021, 6748052. [Google Scholar] [CrossRef] [PubMed]
- Bekut, M.; Brkić, S.; Kladar, N.; Dragović, G.; Gavarić, N.; Božin, B. Potential of selected Lamiaceae plants in anti (retro) viral therapy. Pharmacol. Res. 2018, 133, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Çelik, G.; Kılıç, G.; Kanbolat, Ş.; Özlem Şener, S.; Karaköse, M.; Yaylı, N.; Karaoğlu, Ş.A. Biological activity, and volatile and phenolic compounds from five Lamiaceae species. Flavour Fragr. J. 2021, 36, 223–232. [Google Scholar] [CrossRef]
- Ainane, A.; Khammour, F.; Charaf, S.; Elabboubi, M.; Bennani, L.; Talbi, M.; Cherroud, S.; Ainane, T. Chemical composition and anti-insecticidal activity of the essential oils of Thymus of Morocco: Thymus capitates, Thymus bleicherianus and Thymus satureioides. Org. Med. Chem. Int. J. 2018, 6, 54–59. [Google Scholar] [CrossRef]
- Tabassum, N.; Vidyasagar, G.M. Antifungal investigations on plant essential oils. A review. Int. J. Pharm. Pharm. Sci. 2013, 5, 19–28. [Google Scholar]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellacci, L.; Bartolucci, F.; Canale, A.; Maggi, F. Origanum syriacum subsp. syriacum: From an ingredient of Lebanese ‘manoushe’ to a source of effective and eco-friendly botanical insecticides. Ind. Crops Prod. 2019, 134, 26–32. [Google Scholar] [CrossRef]
- Tak, J.H.; Isman, M.B. Enhanced cuticular penetration as the mechanism of synergy for the major constituents of thyme essential oil in the cabbage looper, Trichoplusia ni. Ind. Crops Prod. 2017, 101, 29–35. [Google Scholar] [CrossRef]
- Gobbo-Neto, L.; Lopes, N.P. Plantas medicinais: Fatores de influência no conteúdo de metabólitos secundários. Quim. Nova 2007, 30, 374–381. [Google Scholar] [CrossRef]
- Valcárcel, F.; Olmeda, A.S.; González, M.G.; Andrés, M.F.; Navarro-Rocha, J.; González-Coloma, A. Acaricidal and insect antifeedant effects of essential oils from selected aromatic plants and their main components. Front. Agron. 2021, 3, 662802. [Google Scholar] [CrossRef]
- Sarić-Krsmanović, M.; Gajić Umiljendić, J.; Radivojević, L.; Šantrić, L.; Potočnik, I.; Đurović-Pejčev, R. Bio-herbicidal effects of five essential oils on germination and early seedling growth of velvetleaf (Abutilon theophrasti Medik.). J. Environ. Sci. Health B 2019, 54, 247–251. [Google Scholar] [CrossRef]
- Ben Jabeur, M.; Somai-Jemmali, L.; Hamada, W. Thyme essential oil as an alternative mechanism: Biofungicide-causing sensitivity of Mycosphaerella graminicola. J. Appl. Microbiol. 2017, 122, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Funk, V.A.; Bayer, R.J.; Keeley, S.; Chan, R.; Watson, L.; Gemeinholzer, B.; Schilling, E.; Panero, J.L.; Baldwin, B.G.; Garcia-Jacas, N.; et al. Everywhere but Antarctica: Using a supertree to understand the diversity and distribution of the compositae. Biol. Skr. 2005, 55, 343–373. [Google Scholar]
- Dempewolf, H.; Rieseberg, L.H.; Cronk, Q.C. Crop domestication in the compositae: A family-wide trait assessment. Genet. Resour. Crop Evol. 2008, 55, 1141–1157. [Google Scholar] [CrossRef]
- Okunade, A.L. Ageratum conyzoides L.(asteraceae). Fitoterapia 2002, 73, 1–16. [Google Scholar] [CrossRef]
- Bohm, B.A.; Stuessy, T.F. Flavonoids of the Sunflower Family (Asteraceae); Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Rolnik, A.; Olas, B. The Plants of the Asteraceae Family as Agents in the Protection of Human Health. Int. J. Mol. Sci. 2021, 22, 3009. [Google Scholar] [CrossRef]
- Czerniewicz, P.; Chrzanowski, G.; Sprawka, I.; Sytykiewicz, H. Aphicidal activity of selected Asteraceae essential oils and their effect on enzyme activities of the green peach aphid, Myzus persicae (Sulzer). Pestic. Biochem. Physiol. 2018, 145, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Umpiérrez, M.L.; Lagreca, M.E.; Cabrera, R.; Grille, G.; Rossini, C. Essential oils from Asteraceae as potential biocontrol tools for tomato pests and diseases. Phytochem. Rev. 2012, 11, 339–350. [Google Scholar] [CrossRef]
- Koc, S.; Isgor, B.S.; Isgor, Y.G.; Shomali Moghaddam, N.; Yildirim, O. The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets. Pharm. Biol. 2015, 53, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Gladikostić, N.; Ikonić, B.; Teslić, N.; Zeković, Z.; Božović, D.; Putnik, P.; Bursać Kovačević, D.; Pavlić, B. Essential Oils from Apiaceae, Asteraceae, Cupressaceae and Lamiaceae Families Grown in Serbia: Comparative Chemical Profiling with In Vitro Antioxidant Activity. Plants 2023, 12, 745. [Google Scholar] [CrossRef]
- Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010, 29, 913–920. [Google Scholar] [CrossRef]
- Rustaiyan, A.; Faridchehr, A. Constituents and biological activities of selected genera of the Iranian Asteraceae family. J. Herb. Med. 2021, 25, 100405. [Google Scholar] [CrossRef]
- Christenhusz, M.J.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef]
- Aćimović, M.G.; Kostadinović, L.M.; Popović, S.J.; Dojčinović, N.S. Apiaceae seeds as functional food. J. Agric. Sci. 2015, 60, 237–246. [Google Scholar]
- Alkan, M.; Gökçe, A. Toxicological and behavioral effects of some plant extract on Colorado potato beetle, Leptinotarsa decemlineata Say, 1824 (Coleoptera: Chrysomelidae). Turk. J. Entomol. 2017, 41, 309–317. [Google Scholar] [CrossRef]
- Steglińska, A.; Bekhter, A.; Wawrzyniak, P.; Kunicka-Styczyńska, A.; Jastrząbek, K.; Fidler, M.; Śmigielski, K.; Gutarowska, B. Antimicrobial Activities of Plant Extracts against Solanum tuberosum L. Phytopathogens. Molecules 2022, 27, 1579. [Google Scholar] [CrossRef]
- Synowiec, A.; Możdżeń, K.; Krajewska, A.; Landi, M.; Araniti, F. Carum carvi L. essential oil: A promising candidate for botanical herbicide against Echinochloa crus-galli (L.) P. Beauv. in maize cultivation. Ind. Crops Prod. 2019, 140, 111652. [Google Scholar] [CrossRef]
- Sayed-Ahmad, B.; Talou, T.; Saad, Z.; Hijazi, A.; Merah, O. The Apiaceae: Ethnomedicinal family as source for industrial uses. Ind. Crops Prod. 2017, 109, 661–671. [Google Scholar] [CrossRef]
- Aćimović, M. Nutraceutical potential of Apiaceae. In Bioactive Molecules in Food; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1311–1341. [Google Scholar]
- Thiviya, P.; Gunawardena, N.; Gamage, A.; Madhujith, T.; Merah, O. Apiaceae family as a valuable source of biocidal components and their potential uses in agriculture. Horticulturae 2022, 8, 614. [Google Scholar] [CrossRef]
- Arrington, J.M.; Kubitzki, K. Cistaceae. In Flowering Plants·Dicotyledons: Malvales, Capparales and Non-Betalain Caryophyllales; Springer: Berlin/Heidelberg, Germany, 2003; pp. 62–70. [Google Scholar]
- Thanos, C.A.; Georghiou, K.; Kadis, C.; Pantazi, C. Cistaceae: A plant family with hard seeds. Isr. J. Plant Sci. 1992, 41, 251–263. [Google Scholar]
- Zalegh, I.; Akssira, M.; Bourhia, M.; Mellouki, F.; Rhallabi, N.; Salamatullah, A.M.; Alkaltham, M.S.; Khalil Alyahya, H.; Mhand, R.A. A review on Cistus sp.: Phytochemical and antimicrobial activities. Plants 2021, 10, 1214. [Google Scholar] [CrossRef] [PubMed]
- Barrajón-Catalán, E.; Tomás-Menor, L.; Morales-Soto, A.; Bruñá, N.M.; López, D.S.; Segura-Carretero, A.; Micol, V. Rockroses (Cistus sp.) oils. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016; pp. 649–658. [Google Scholar]
- Karim, H.; Boubaker, H.; Askarne, L.; Cherifi, K.; Lakhtar, H.; Msanda, F.; Boudyach, E.H.; Aoumar, A.A.B. Use of Cistus aqueous extracts as botanical fungicides in the control of Citrus sour rot. Microb. Pathog. 2017, 104, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Page, C.N. Cupressaceae. In Pteridophytes and Gymnosperms; Kramer, K.U., Green, P.S., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 302–316. [Google Scholar]
- Bhardwaj, K.; Silva, A.S.; Atanassova, M.; Sharma, R.; Nepovimova, E.; Musilek, K.; Sharma, R.; Alghuthaymi, M.A.; Dhanjal, D.S.; Nicoletti, M.; et al. Conifers phytochemicals: A valuable forest with therapeutic potential. Molecules 2021, 26, 3005. [Google Scholar] [CrossRef] [PubMed]
- Akaberi, M.; Boghrati, Z.; Amiri, M.S.; Khayyat, M.H.; Emami, S.A. A Review of Conifers in Iran: Chemistry, Biology and their importance in Traditional and Modern Medicine. Curr. Pharm. Des. 2020, 26, 1584–1613. [Google Scholar] [CrossRef] [PubMed]
- Saada, I.; Mahdi, K.; Boubekka, N.; Benzitoune, N.; Salhi, O. Variability of insecticidal activity of Cupressus sempervirens L., Juniperus phoenicea L., Mentha rotundifolia (L.) Huds, and Asphodelus microcarpus Salzm. & Viv. extracts according to solvents and extraction systems. Biochem. Syst. Ecol. 2022, 105, 104502. [Google Scholar]
- Semerdjieva, I.; Zheljazkov, V.D.; Radoukova, T.; Dincheva, I.; Piperkova, N.; Maneva, V.; Astatkie, T.; Kačániová, M. Biological activity of essential oils of four juniper species and their potential as biopesticides. Molecules 2021, 26, 6358. [Google Scholar] [CrossRef] [PubMed]
- Chrapačienė, S.; Rasiukevičiūtė, N.; Valiuškaitė, A. Control of seed-borne fungi by selected essential oils. Horticulturae 2022, 8, 220. [Google Scholar] [CrossRef]
- Semerdjieva, I.; Atanasova, D.; Maneva, V.; Zheljazkov, V.; Radoukova, T.; Astatkie, T.; Dincheva, I. Allelopathic effects of Juniper essential oils on seed germination and seedling growth of some weed seeds. Ind. Crops Prod. 2022, 180, 114768. [Google Scholar] [CrossRef]
- Warwick, S.I. Brassicaceae in Agriculture. In Genetics and Genomics of the Brassicaceae; Plant Genetics and Genomics: Crops and Models; Schmidt, R., Bancroft, I., Eds.; Springer: New York, NY, USA, 2011; Volume 9, pp. 33–65. [Google Scholar]
- Franzke, A.; Lysak, M.A.; Al-Shehbaz, I.A.; Koch, M.A.; Mummenhoff, K. Cabbage family affairs: The evolutionary history of Brassicaceae. Trends Plant Sci. 2011, 16, 108–116. [Google Scholar] [CrossRef]
- Avato, P.; Argentieri, M.P. Brassicaceae: A rich source of health improving phytochemicals. Phytochem. Rev. 2015, 14, 1019–1033. [Google Scholar] [CrossRef]
- Björkman, M.; Klingen, I.; Birch, A.N.; Bones, A.M.; Bruce, T.J.; Johansen, T.J.; Meadow, R.; Mølmann, J.; Seljåsen, R.; Smart, L.; et al. Pytochemicals of Brassicaceae in plant protection and human health--influences of climate, environment and agronomic practice. Phytochemistry 2011, 72, 538–556. [Google Scholar] [CrossRef] [PubMed]
- Morra, M.J.; Popova, I.E.; Boydston, R.A. Bioherbicidal activity of Sinapis alba seed meal extracts. Ind. Crops Prod. 2018, 115, 174–181. [Google Scholar] [CrossRef]
- Konecka, E.; Kaznowski, A.; Marcinkiewicz, W.; Tomkowiak, D.; Maciag, M.; Stachowiak, M. Insecticidal activity of Brassica alba mustard oil against lepidopteran pests Cydia pomonella (Lepidoptera: Tortricidae), Dendrolimus pini (Lepidoptera: Lasiocampidae), and Spodoptera exigua (Lepidoptera: Noctuidae). J. Plant Prot. Res. 2018, 58, 206–209. [Google Scholar] [CrossRef]
- Zulhussnain, M.; Zahoor, M.K.; Rizvi, H.; Zahoor, M.A.; Rasul, A.; Ahmad, A.; Majeed, H.N.; Rasul, A.; Ranian, K.; Jabeen, F. Insecticidal and Genotoxic effects of some indigenous plant extracts in Culex quinquefasciatus Say Mosquitoes. Sci. Rep. 2020, 10, 6826. [Google Scholar] [CrossRef] [PubMed]
- Zerkani, H.; Amalich, S.; Tagnaout, I.; Bouharroud, R.; Zair, T. Chemical composition, pharmaceutical potential and toxicity of the essential oils extracted from the leaves, fruits and barks of Pistacia atlantica. Biocatal. Agric. Biotechnol. 2022, 43, 102431. [Google Scholar] [CrossRef]
- Pourya, M.; Sadeghi, A.; Ghobari, H.; Taning, C.N.T.; Smagghe, G. Bioactivity of Pistacia atlantica desf. Subsp. Kurdica (Zohary) Rech. F. and Pistacia khinjuk Stocks stocks essential oils against Callosobruchus maculatus (F, 1775)(Coloeptera: Bruchidae) under laboratory conditions. J. Stored Prod. Res. 2018, 77, 96–105. [Google Scholar] [CrossRef]
- Varo, A.; Mulero-Aparicio, A.; Adem, M.; Roca, L.F.; Raya-Ortega, M.C.; López-Escudero, F.J.; Trapero, A. Screening water extracts and essential oils from Mediterranean plants against Verticillium dahliae in olive. Crop Prot. 2017, 92, 168–175. [Google Scholar] [CrossRef]
- Ghasemzadeh, S.; Messelink, G.J.; Avila, G.A.; Zhang, Y. Sublethal impacts of essential plant oils on biochemical and ecological parameters of the predatory mite Amblyseius swirskii. Front. Plant Sci. 2022, 13, 923802. [Google Scholar] [CrossRef]
- Willow, J.; Soonvald, L.; Sulg, S.; Kaasik, R.; Silva, A.I.; Taning, C.N.T.; Christiaens, O.; Smagghe, G.; Veromann, E. First evidence of bud feeding-induced RNAi in a crop pest via exogenous application of dsRNA. Insects 2020, 11, 769. [Google Scholar] [CrossRef]
- Tabari, M.A.; Khodashenas, A.; Jafari, M.; Petrelli, R.; Cappellacci, L.; Nabissi, M.; Maggi, F.; Pavela, R.; Youssefi, M.R. Acaricidal properties of hemp (Cannabis sativa L.) essential oil against Dermanyssus gallinae and Hyalomma dromedarii. Ind. Crops Prod. 2020, 147, 112238. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Lupidi, G.; Cianfaglione, K.; Dauvergne, X.; Bruno, M.; Benelli, G. Efficacy of sea fennel (Crithmum maritimum L. L., Apiaceae) essential oils against Culex quinquefasciatus Say and Spodoptera littoralis (Boisd.). Ind. Crops Prod. 2017, 109, 603–610. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Xie, Z.; Guo, E.; Han, L.; Zhang, X.; Feng, J. Activity and biochemical characteristics of plant extract cuminic acid against Sclerotinia sclerotiorum. Crop Prot. 2017, 101, 76–83. [Google Scholar] [CrossRef]
- Muturi, E.J.; Doll, K.; Ramirez, J.L.; Rooney, A.P. Bioactivity of wild carrot (Daucus carota, Apiaceae) essential oil against mosquito larvae. J. Med. Entomol. 2019, 56, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Di Lecce, R.; Mérindol, N.; Pérez, M.G.; Karimzadegan, V.; Berthoux, L.; Boari, A.; Zidorn, C.; Vurro, M.; Surico, G.; Desgagné-Penix, I.; et al. Biochemical Analyses of Bioactive Extracts from Plants Native to Lampedusa, Sicily Minor Island. Plants 2022, 11, 3447. [Google Scholar] [CrossRef] [PubMed]
- Benddine, H.; Zaid, R.; Babaali, D.; Daoudi-Hacini, S. Biological activity of essential oils of Myrtus communis (Myrtaceae, Family) and Foeniculum vulgare (Apiaceae, Family) on open fields conditions against corn aphids Rhopalosiphum maidis (Fitch, 1856) in western Algeria. J. Saudi Soc. Agric. Sci. 2023, 22, 78–88. [Google Scholar] [CrossRef]
- Dunan, L.; Malanga, T.; Bearez, P.; Benhamou, S.; Monticelli, L.S.; Desneux, N.; Michel, T.; Lavoir, A.V. Biopesticide evaluation from lab to greenhouse scale of essential oils used against Macrosiphum euphorbiae. Agriculture 2021, 11, 867. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Iannarelli, R.; Petrelli, R.; Cappellacci, L.; Cianfaglione, K.; Afshar, F.H.; Nicoletti, M.; Canale, A.; Maggi, F. Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: Larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind. Crops Prod. 2017, 96, 186–195. [Google Scholar] [CrossRef]
- Khan, S.A.; Ranjha, M.H.; Khan, A.A.; Sagheer, M.; Abbas, A.; Hassan, Z. Insecticidal efficacy of wild medicinal plants, Dhatura alba and Calotropis procera, against Trogoderma granarium (Everts) in wheat store grains. Pak. J. Zool. 2019, 51, 289–294. [Google Scholar] [CrossRef]
- Boulogne, I.; Desfontaine, L.; Ozier-Lafontaine, H.; Loranger-Merciris, G. Sustainable Management of Acromyrmex octospinosus (Reich): How Botanical Insecticides and Fungicides Should Promote an Ecofriendly Control Strategy. Sociobiology 2018, 65, 348–357. [Google Scholar] [CrossRef]
- Sharonova, N.L.; Terenzhev, D.A.; Lyubina, A.P.; Fadeeva, I.D.; Zakirov, A.T. Substances for biological protection, regulation of growth and development of agricultural crops based on secondary plant metabolites. IOP Conf. Ser. Earth Environ. Sci. 2022, 949, 012049. [Google Scholar] [CrossRef]
- Sharaby, A.M.F.; Gesraha, M.A.; Fallatah, S.A.B. Botanical extracts against the potato tuber moth, Phthorimaea operculella (Zeller 1873) (Lepidoptera: Gelechiidae), during storage conditions. Egypt J. Biol. Pest. Control 2020, 30, 93. [Google Scholar] [CrossRef]
- Scavo, A.; Pandino, G.; Restuccia, A.; Mauromicale, G. Leaf extracts of cultivated cardoon as potential bioherbicide. Sci. Hortic. 2020, 261, 109024. [Google Scholar] [CrossRef]
- Freda, F.; Masi, M.; Kashefi, J.; Cristofaro, M.; Musmeci, S.; Evidente, A. Acaricidal activity of the plant sesquiterpenoids α-costic acid and inuloxin A against the cattle ectoparasitic tick, Rhipicephalus (Boophilus) annulatus. Int. J. Acarol. 2020, 46, 409–413. [Google Scholar] [CrossRef]
- Masi, M.; Cimmino, A.; Tabanca, N.; Becnel, J.J.; Bloomquist, J.R.; Evidente, A. A survey of bacterial, fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae), the vector of yellow and dengue fevers and Zika virus. Open Chem. 2017, 15, 156–166. [Google Scholar] [CrossRef]
- Hazafa, A.; Jahan, N.; Zia, M.A.; Rahman, K.U.; Sagheer, M.; Naeem, M. Evaluation and optimization of nanosuspensions of Chrysanthemum coronarium and Azadirachta indica using Response Surface Methodology for pest management. Chemosphere 2022, 292, 133411. [Google Scholar] [CrossRef] [PubMed]
- Sayed, S.M.; Alotaibi, S.S.; Gaber, N.; Elarrnaouty, S.A. Evaluation of five medicinal plant extracts on Aphis craccivora (Hemiptera: Aphididae) and its predator, Chrysoperla carnea (Neuroptera: Chrysopidae) under laboratory conditions. Insects 2020, 11, 398. [Google Scholar] [CrossRef] [PubMed]
- de Elguea-Culebras, G.O.; Sánchez-Vioque, R.; Berruga, M.I.; Herraiz-Peñalver, D.; González-Coloma, A.; Andrés, M.F.; Santana-Méridas, O. Biocidal potential and chemical composition of industrial essential oils from Hyssopus officinalis, Lavandula× intermedia var. super, and Santolina chamaecyparissus. Chem. Biodivers. 2018, 15, e1700313. [Google Scholar] [CrossRef]
- Erdogan, P.; Mustafa, Z. Larvacidal effect of some plant extracts against tomato leaf miner (Tuta absoluta meyrick; lepidoptera: Gelehiidae). J. Glob. Innov. Agric. Sci. 2021, 9, 101–107. [Google Scholar] [CrossRef]
- Lopes, A.I.; Monteiro, M.; Araújo, A.R.; Rodrigues, A.R.O.; Castanheira, E.M.; Pereira, D.M.; Olim, P.; Fortes, A.G.; Gonçalves, M.S.T. Cytotoxic plant extracts towards insect cells: Bioactivity and nanoencapsulation studies for application as biopesticides. Molecules 2020, 25, 5855. [Google Scholar] [CrossRef]
- Sut, S.; Pavela, R.; Kolarčik, V.; Cappellacci, L.; Petrelli, R.; Maggi, F.; Dall’Acqua, S.; Benelli, G. Identification of Onosma visianii Clementi roots extract and purified shikonin derivatives as potential acaricidal agents against Tetranychus urticae. Molecules 2017, 22, 1002. [Google Scholar] [CrossRef]
- Bocquet, L.; Rivière, C.; Dermont, C.; Samaillie, J.; Hilbert, J.L.; Halama, P.; Siah, A.; Sahpaz, S. Antifungal activity of hop extracts and compounds against the wheat pathogen Zymoseptoria tritici. Ind. Crops Prod. 2018, 122, 290–297. [Google Scholar] [CrossRef]
- Pavela, R.; Murugan, K.; Canale, A.; Benelli, G. Saponaria officinalis-Synthesized Silver Nanocrystals as Effective Biopesticides and Oviposition Inhibitors against Tetranychus urticae Koch. Ind. Crops Prod. 2017, 97, 338–344. [Google Scholar] [CrossRef]
- Martynov, V.O.; Titov, O.G.; Kolombar, T.M.; Brygadyrenko, V.V. Influence of essential oils of plants on the migration activity of Tribolium confusum (Coleoptera, Tenebrionidae). Biosyst. Divers. 2019, 27, 177–185. [Google Scholar] [CrossRef]
- Zaid, R.; Mouhouche, F.; Canela-Garayoa, R.; Benddine, H.; Ortega Chacón, N.M. Chemical composition and insecticidal activity of two eagle fern (Pteridium aquilinum (L.) Kuhn) extracts on the poplar aphid Chaitophorus populialbae (Hemiptera-Aphididae). J. Cent. Eur. Agric. 2022, 23, 773–781. [Google Scholar] [CrossRef]
- Soriano, G.; Petrillo, C.; Masi, M.; Bouafiane, M.; Khelil, A.; Tuzi, A.; Isticato, R.; Fernández-Aparicio, M.; Cimmino, A. Specialized metabolites from the allelopathic plant Retama raetam as potential biopesticides. Toxins 2022, 14, 311. [Google Scholar] [CrossRef]
- Ma, T.; Yan, H.; Shi, X.; Liu, B.; Ma, Z.; Zhang, X. Comprehensive evaluation of effective constituents in total alkaloids from Sophora alopecuroides L. and their joint action against aphids by laboratory toxicity and field efficacy. Ind. Crops Prod. 2018, 111, 149–157. [Google Scholar] [CrossRef]
- Bakacsy, L.; Sípos, L.; Barta, A.; Stefkó, D.; Vasas, A.; Szepesi, Á. Concentration-dependent effects of effusol and juncusol from Juncus compressus on seedling development of Arabidopsis thaliana. Sci. Rep. 2022, 12, 13870. [Google Scholar] [CrossRef]
- Šućur, J.; Popović, A.; Petrović, M.; Bursić, V.; Anačkov, G.; Prvulović, D.; Malenčić, Đ. Chemical composition of Clinopodium menthifolium aqueous extract and its influence on antioxidant system in black nightshade (Solanum nigrum) and pepper (Capsicum annuum) seedlings and mortality rate of whitefly (Trialeurodes vaporariorum) adults. Bull. Chem. Soc. Ethiop. 2017, 31, 211–222. [Google Scholar] [CrossRef]
- Gaspar-Pintiliescu, A.; Mihai, E.; Ciucan, T.; Popescu, A.F.; Luntraru, C.; Tomescu, J.; Craciunescu, O. Antioxidant and acetylcholinesterase inhibition capacity of hyrosols from lamiaceae plants for biopesticide use: Role of phenolics. Int. J. Food Prop. 2022, 25, 996–1008. [Google Scholar] [CrossRef]
- Wagner, L.S.; Sequin, C.J.; Foti, N.; Campos-Soldini, M.P. Insecticidal, fungicidal, phytotoxic activity and chemical composition of Lavandula dentata essential oil. Biocatal. Agric. Biotechnol. 2021, 35, 102092. [Google Scholar] [CrossRef]
- Reyes, C.P.; Sabina, S.R.; López-Cabeza, R.; Montelongo, C.G.; Giménez, C.; Jiménez, I.A.; Cabrera, R.; Bazzochi, I.L. Antifungal Potential of Canarian Plant Extracts against High-Risk Phytopathogens. Plants 2022, 11, 2988. [Google Scholar] [CrossRef] [PubMed]
- Muthomi, J.W.; Lengai, G.M.; Wagacha, M.J.; Narla, R.D. In vitro activity of plant extracts against some important plant pathogenic fungi of tomato. Aust. J. Crop Sci. 2017, 11, 683–689. [Google Scholar] [CrossRef]
- Mangang, I.B.; Tiwari, A.; Rajamani, M.; Manickam, L. Comparative laboratory efficacy of novel botanical extracts against Tribolium castaneum. J. Sci. Food Agric. 2020, 100, 1541–1546. [Google Scholar] [CrossRef] [PubMed]
- Bibiano, C.S.; Alves, D.S.; Freire, B.C.; Bertolucci, S.K.V.; Carvalho, G.A. Toxicity of essential oils and pure compounds of Lamiaceae species against Spodoptera frugiperda (Lepidoptera: Noctuidae) and their safety for the nontarget organism Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). Crop Prot. 2022, 158, 106011. [Google Scholar] [CrossRef]
- Musso, L.; Scaglia, B.; Haj, G.A.; Arnold, N.A.; Adani, F.; Scarì, G.; Dallavalle, S.; Iriti, M. Chemical characterization and nematicidal activity of the essential oil of Nepeta nuda L. ssp. pubescens and Nepeta curviflora Boiss. from Lebanon. J. Essent. Oil Bear. Plants 2017, 20, 1424–1433. [Google Scholar] [CrossRef]
- Tagnaout, I.; Zerkani, H.; Bencheikh, N.; Amalich, S.; Bouhrim, M.; Mothana, R.A.; Alhuzani, M.R.; Bouharroud, R.; Hano, C.; Zair, T. Chemical Composition, Antioxidants, Antibacterial, and Insecticidal Activities of Origanum elongatum (Bonnet) Emberger & Maire Aerial Part Essential Oil from Morocco. Antibiotics 2023, 12, 174. [Google Scholar] [PubMed]
- Cibanal, I.L.; Fernandez, L.A.; Murray, A.P.; Pellegrini, C.N.; Gallez, L.M. Propolis extract and oregano essential oil as biofungicides for garlic seed cloves: In vitro assays and synergistic interaction against Penicillium allii. J. Appl. Microbiol. 2021, 131, 1909–1918. [Google Scholar] [CrossRef]
- Shaltiel-Harpaz, L.; Kreimer, T.; Dudai, N.; Kaspi, R.; Ben-Yakir, D.; Rytwo, G. Sepiolite-rosemary oil combination as an environmentally oriented insecticide. Appl. Clay Sci. 2023, 234, 106838. [Google Scholar] [CrossRef]
- Magierowicz, K.; Górska-Drabik, E.; Sempruch, C. The insecticidal activity of Satureja hortensis essential oil and its active ingredient-carvacrol against Acrobasis advenella (Zinck.) (Lepidoptera, Pyralidae). Pestic. Biochem. Physiol. 2019, 153, 122–128. [Google Scholar] [CrossRef]
- Navarro-Rocha, J.; Andrés, M.F.; Díaz, C.E.; Burillo, J.; González-Coloma, A. Composition and biocidal properties of essential oil from pre-domesticated Spanish Satureja montana L. Ind. Crops Prod. 2020, 145, 111958. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Pavela, R.; Bonacucina, G.; Baldassarri, C.; Spinozzi, E.; Torresi, J.; Petrelli, R.; Morshedloo, M.R.; Maggi, F.; Benelli, G.; et al. Development, characterization, insecticidal and sublethal effects of Bunium persicum and Ziziphora clinopodioides Lam.-based essential oil nanoemulsions on Culex quinquefasciatus. Ind. Crops Prod. 2022, 186, 115249. [Google Scholar] [CrossRef]
- Dėnė, L.; Valiuškaitė, A. Sensitivity of Botrytis cinerea isolates complex to plant extracts. Molecules 2021, 26, 4595. [Google Scholar] [CrossRef] [PubMed]
- Castrosanto, M.A.; Alvarez, M.R.; Salamanez, K.C.; Nacario, R.C.; Completo, G.C. Barnyard grass [Echinochloa crus-galli (L.) Beauv] leaves extract against tomato pests. J. Sci. Food Agric. 2021, 101, 6289–6299. [Google Scholar] [CrossRef] [PubMed]
- Asiry, K.A.; Zaitoun, A.A. Evaluation of the toxicity of three plant extracts against the Khapra beetle Trogoderma granarium Everts (Coleoptera: Dermestidae) under laboratory conditions. Rev. Soc. Entomol. Argent. 2020, 79, 1–10. [Google Scholar] [CrossRef]
- Kukina, T.P.; Elshin, I.A.; Salnikova, O.I.; Eltsov, I.V. Aliphatic and triterpene saponification products of essential extracts of Populus nigra L. Chem. Plant Mater. 2019, 3, 109–118. [Google Scholar] [CrossRef]
- Korkalo, P.; Hagner, M.; Jänis, J.; Mäkinen, M.; Kaseva, J.; Lassi, U.; Rasa, K.; Jyske, T. Pyroligneous acids of differently pretreated hybrid aspen biomass: Herbicide and fungicide performance. Front. Chem. 2022, 9, 1234. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Bo, X.; Sun, G.; Zhao, L.; Shi, C.; Huang, L.; Tian, X. Identification of vanillic acid and its new amide derivative from Hyoscyamus niger and their modes of action in controlling tobacco mosaic virus. Ind. Crops Prod. 2022, 189, 115853. [Google Scholar] [CrossRef]
- Ismail, M.; Fayyaz, S.; Kowsar, A.; Javed, S.; Ali, I.; Ali, S.; Hussain, F.; Ali, H. Evaluation of nematocidal effects of some medicinal plant extracts against root-knot nematodes (Meloidogyne incognita). Ital. J. Agron. 2020, 15, 63–69. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Stéphane, F.F.Y.; Jules, B.K.J.; Batiha, G.E.; Ali, I.; Bruno, L.N. Extraction of bioactive compounds from medicinal plants and herbs. In Natural Medicinal Plants; IntechOpen: London, UK, 2021. [Google Scholar]
- Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Extraction of polyphenols from aromatic and medicinal plants: An overview of the methods and the effect of extraction parameters. In Polyphenols in Plants; Academic Press: Cambridge, MA, USA, 2019; pp. 243–259. [Google Scholar]
- Handa, S.S. An overview of extraction techniques for medicinal and aromatic plants. Extr. Technol. Med. Aromat. Plants 2008, 1, 21–40. [Google Scholar]
- Vankar, P.S. Essential oils and fragrances from natural sources. Resonance 2004, 9, 30–41. [Google Scholar] [CrossRef]
- Umpiérrez, M.L.; Paullierb, J.; Porrinic, M.; Garridoc, M.; Santos, E.; Rossinia, C. Potential botanical pesticides from Asteraceae essential oils for tomato production: Activity against whiteflies, plants and bees. Ind. Crops Prod. 2017, 109, 686–692. [Google Scholar] [CrossRef]
- Kumar, R.; Tripathi, Y. Getting Fragrance from Plants. In Training Manual on Extraction Technology of Natural Dyes & Aroma Therapy and Cultivation Value Addition of Medicinal Plants, 1st ed.; Chapter: Getting Fragrance from Plants; Forest Research Institute: Dehradun, India, 2011; pp. 77–102. [Google Scholar]
- Manousi, N.; Sarakatsianos, I.; Samanidou, V. Extraction techniques of phenolic compounds and other bioactive compounds from medicinal and aromatic plants. In Engineering Tools in the Beverage Industry; Woodhead Publishing: Sawston, UK, 2019; pp. 283–314. [Google Scholar]
- Abubakar, A.R.; Haque, M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Tripathi, S. Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. J. Pharmacogn. Phytochem. 2014, 2, 115–119. [Google Scholar]
- Harborne, J.B. Phytochemical Methods, 3rd ed.; Chapmann and Hall: London, UK, 1998; 302p. [Google Scholar]
- Saab, A.M.; Tacchini, M.; Sacchetti, G.; Contini, C.; Schulz, H.; Lampronti, I.; Gambari, R.; Makhlouf, H.; Tannoury, M.; Venditti, A.; et al. Phytochemical analysis and potential natural compounds against SARS-CoV-2/COVID-19 in essential oils derived from medicinal plants originating from Lebanon. An information note. Plant Biosyst. 2022, 156, 855–864. [Google Scholar] [CrossRef]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Latha, L.Y. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef]
- Ding, C.H.; Wang, Q.B.; Guo, S.; Wang, Z.Y. The improvement of bioactive secondary metabolites accumulation in Rumex gmelini Turcz through co-culture with endophytic fungi. Braz. J. Microbiol. 2018, 49, 362–369. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Olivia, N.U.; Goodness, U.C.; Obinna, O.M. Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Future J. Pharm. Sci. 2021, 7, 59. [Google Scholar] [CrossRef]
- Santos, F.J.; Galceran, M.T. Modern developments in gas chromatography–mass spectrometry-based environmental analysis. J. Chromatogr. A 2003, 1000, 125–151. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Bhadha, J.H.; Rott, P.; Beuzelin, J.M.; Kanissery, R. Investigating the use of aquatic weeds as biopesticides towards promoting sustainable agriculture. PLoS ONE 2020, 15, e0237258. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Hao, X.; Wu, Y. Inhibitory effect of polysaccharide peptide (PSP) against Tobacco mosaic virus (TMV). Int. J. Biol. Macromol. 2015, 75, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Zerkani, H.; Kharchoufa, L.; Tagnaout, I.; Fakchich, J.; Bouhrim, M.; Amalich, S.; Addi, M.; Hano, C.; Cruz-Martins, N.; Bouharroud, R.; et al. Chemical Composition and Bioinsecticidal Effects of Thymus zygis L., Salvia officinalis L. and Mentha suaveolens Ehrh. Essential Oils on Medfly Ceratitis capitata and Tomato Leaf Miner Tuta absoluta. Plants 2022, 11, 3084. [Google Scholar] [CrossRef]
- Rizvi, S.A.H.; Ling, S.; Tian, F.; Xie, F.; Zeng, X. Toxicity and enzyme inhibition activities of the essential oil and dominant constituents derived from Artemisia absinthium L. against adult Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Ind. Crops Prod. 2018, 121, 468–475. [Google Scholar] [CrossRef]
- Imran, M.; Bashir, L.; Kubar, M.I.; Rind, S.H.; Sahto, J.G.M.; Gilal, A.A.; Mangi, S. Efficacy of Indigenous Crude Plant Extracts against Rice Weevil, Sitophilus oryzae L. 1763 (Coleoptera: Curculionidae): Crude plant extracts against rice weevil. Proc. Pakistan Acad. Sci. B. 2021, 58, 59–65. [Google Scholar] [CrossRef]
- Zhou, H.; Wan, F.; Guo, F.; Liu, J.; Ding, W. High value-added application of a renewable bioresource as acaricide: Investigation the mechanism of action of scoparone against Tetranychus cinnabarinus. J. Adv. Res. 2022, 38, 29–39. [Google Scholar] [CrossRef]
- Sohrabi, F.; Ziaee, M. Lethal and sublethal effects of several plant compounds compared to spiromesifen against. Hell. Plant Prot. J. 2021, 14, 89–98. [Google Scholar]
- Zhu, K.Y. of Insecticide Bioassay. In Encyclopedia Entomology; Capinera, J.L., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 1974–1976. [Google Scholar]
- Kobenan, K.C.; Kouakou, B.J.; Kouakou, M.; Kone, P.W.E.; Sinan, I.K.; Zengin, G.; Didi, R.; Ochou, G.E.C.; Bini, K.K.N.; Menozzi, P.; et al. Application of essential oils of Ocimum gratissimum and Cymbopogon citratus as bioinsecticides for the management of two major biting-sucking insects (Bemisia tabaci Gennadius and Jacobiella fascialis Jacobi) and the improvement of seed and fiber quality of cotton plants in Ivory Coast. Chem. Biodivers. 2022, 19, e202100801. [Google Scholar] [PubMed]
- Chaaban, A.; Richardi, V.S.; Carrer, A.R.; Brum, J.S.; Cipriano, R.R.; Martins, C.E.N.; Silva, M.A.N.; Deschamps, C.; Molento, M.B. Insecticide activity of Curcuma longa (leaves) essential oil and its major compound α-phellandrene against Lucilia cuprina larvae (Diptera: Calliphoridae): Histological and ultrastructural biomarkers assessment. Pestic. Biochem. Physiol. 2019, 153, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, A.; Khan, H.A.A.; Qadir, A. Effect of Essential Oils of some Indigenous Plants on Settling and Oviposition Responses of Peach Fruit Fly, Bactrocera zonata (Diptera: Tephritidae). Pak. J. Zool. 2017, 49, 1547–1553. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Eliopoulos, P.A. Endophytic entomopathogenic fungi: A valuable biological control tool against plant pests. Appl. Sci. 2020, 10, 360. [Google Scholar] [CrossRef]
- Pereira, G.A.; Araujo, N.M.P.; Arruda, H.S.; de Paulo Farias, D.; Molina, G.; Pastore, G.M. Phytochemicals and biological activities of mutamba (Guazuma ulmifolia Lam.): A review. Food Res. Int. 2019, 126, 108713. [Google Scholar] [CrossRef] [PubMed]
- Pour, S.A.; Shahriari, M.; Zibaee, A.; Mojarab-Mahboubkar, M.; Sahebzadeh, N.; Hoda, H. Toxicity, antifeedant and physiological effects of trans-anethole against Hyphantria cunea Drury (Lep: Arctiidae). Pestic. Biochem. Physiol. 2022, 185, 105135. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Yadav, M.P. Insights into the chemical composition and bioactivities of citrus peel essential oils. Food Res. Int. 2021, 143, 110231. [Google Scholar] [CrossRef]
- Takeda, Y.; Okuyama, Y.; Nakano, H.; Yaoita, Y.; Machida, K.; Ogawa, H.; Imai, K. Antiviral activities of Hibiscus sabdariffa L. tea extract against human influenza A virus rely largely on acidic pH but partially on a low-pH-independent mechanism. Food Environ. Virol. 2020, 12, 9–19. [Google Scholar] [CrossRef]
- Jabbar, A.A.; Abdullah, F.O.; Hassan, A.O.; Galali, Y.; Hassan, R.R.; Rashid, E.Q.; Salih, M.I.; Aziz, K.F. Ethnobotanical, Phytochemistry, and Pharmacological Activity of Onosma (Boraginaceae): An Updated Review. Molecules 2022, 27, 8687. [Google Scholar] [CrossRef]
- Younoussa, L.; Kenmoe, F.; Oumarou, M.K.; Batti, A.C.S.; Tamesse, J.L.; Nukenine, E.N. Combined effect of methanol extracts and essential oils of Callistemon rigidus (Myrtaceae) and Eucalyptus camaldulensis (Myrtaceae) against Anopheles gambiae Giles larvae (Diptera: Culicidae). Int. J. Zool. 2020, 2020, 4952041. [Google Scholar] [CrossRef]
- Yao, Q.; Dong, Y.; Li, W.; Chen, B. The effects of non-host plant extracts on the oviposition deterrent and ovicidal activity of Conopomorpha sinensis Bradley (Lepidoptera: Gracillariidae). Fla. Entomol. 2019, 102, 298–302. [Google Scholar] [CrossRef]
- Labdelli, F.; Bousmaha, F.; Mazrou, K.; Moulay, M.; Adamou-Djerbaoui, M.; Rabahi, H. Insecticidal effect of eucalyptus essential oils on mortalities of storage pests of grains Sitophilus oryzae and Sitophilus granarius in the region of tissemsilet Algeria. Indian J. Agric. Sci. 2022, 56, 755–758. [Google Scholar] [CrossRef]
- Zavala-Sánchez, M.Á.; Rodríguez-Chávez, J.L.; Figueroa-Brito, R.; Quintana-López, C.M.; Bah, M.M.; Campos-Guillén, J.; Bustos-Martínez, J.A.; Zamora-Avella, D.; Ramos-López, M.A. Bioactivity of 1-octacosanol from Senna crotalarioides (Fabaceae: Caesalpinioideae) to control Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla. Entomol. 2020, 102, 731–737. [Google Scholar] [CrossRef]
- Pino-Otín, M.R.; Val, J.; Ballestero, D.; Navarro, E.; Sánchez, E.; Mainar, A.M. Impact of Artemisia absinthium hydrolate extracts with nematicidal activity on non-target soil organisms of different trophic levels. Ecotoxicol. Environ. Saf. 2019, 180, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllidis, V.; Mavroeidis, A.; Kosma, C.; Karabagias, I.K.; Zotos, A.; Kehayias, G.; Beslemes, D.; Roussis, I.; Bilalis, D.; Economou, G.; et al. Herbicide Use in the Era of Farm to Fork: Strengths, Weaknesses, and Future Implications. Water Air Soil Pollut. 2023, 234, 94. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, J.L.; Rogers, L.L.; Anderson, J.E. The use of biological assays to evaluate botanicals. Drug Inf. J. 1998, 32, 513–524. [Google Scholar] [CrossRef]
- EC. European Commission. Regulation (EC) No 1107/2009 of the European parliament and of the council of 21 October 2009 concerning the placing of plant protection products on the market and repealing council directive 79/117/EEC and 91/414/EEC. Off. J. Eur. Union L 2009, 309, 1–50. [Google Scholar]
- US EPA. Ecological Effects Test Guidelines OCSPP 850.3020: Honey Bee Acute Toxicity; US EPA: Washington, DC, USA, 2012.
- Lanzerstorfer, P.; Sandner, G.; Pitsch, J.; Mascher, B.; Aumiller, T.; Weghuber, J. Acute, reproductive, and developmental toxicity of essential oils assessed with alternative in vitro and in vivo systems. Arch. Toxicol. 2021, 95, 673–691. [Google Scholar] [CrossRef]
Fungus Tested | Family | Plant | References |
---|---|---|---|
Alternaria alternata | Lamiaceae | Lavandula canariensis Mill. | [105] |
Rutaceae | Ruta chalepensis L. | ||
Alternaria solani | Lamiaceae | Mentha piperita L. | [106] |
Rosmarinus officinalis L. | |||
Poaceae | Echinochloa crus-galli (L.) P. Beauv. | [117] | |
Alternaria spp. | Lamiaceae | Thymus leucotrichus Halácsy | [60] |
Hyssopus officinalis L. | |||
Cupressaceae | Juniperus communis L. | ||
Botrytis cinerea | Cupressaceae | Juniperus communis L. | [59] |
Juniperus oxycedrus L. | |||
Juniperus communis L. var. saxatilis Pall. | |||
Lamiaceae | Lavandula canariensis Mill. | [105] | |
Rutaceae | Ruta chalepensis L. | ||
Lauraceae | Laurus nobilis L. | [116] | |
Cercospora kikuchii | Lamiaceae | Lavandula dentata L. | [104] |
Cercospora sojina | Lamiaceae | Lavandula dentata L. | [104] |
Colletotrichum spp. | Cupressaceae | Juniperus communis L. | [59] |
Juniperus oxycedrus L. | |||
Juniperus communis L. var. saxatilis Pall. | |||
Cylindrocarpon pauciseptatum | Cupressaceae | Juniperus communis L. | [59] |
Juniperus oxycedrus L. | |||
Juniperus communis L. var. saxatilis Pall. | |||
Fusarium culmorum | Salicaceae | Populus tremula L. | [120] |
Fusarium oxysporum f. sp. lycopersici. | Lamiaceae | Mentha piperita L. | [106] |
Lamiaceae | Rosmarinus officinalis L. | ||
Fusarium oxysporum | Lamiaceae | Lavandula canariensis Mill. | [105] |
Rutaceae | Ruta chalepensis L. | ||
Lamiaceae | Mentha piperita L. | [106] | |
Rosmarinus officinalis L. | |||
Fusarium spp. | Cupressaceae | Juniperus communis L. var. saxatilis Pall. | [59] |
Juniperus oxycedrus L. | |||
Juniperus communis L. | |||
Geotrichum candidum var. citri-aurantii | Cistaceae | Cistus albidus L. | [54] |
Cistus creticus L. | |||
Cistus crispus L. | |||
Cistus ladanifer L. | |||
Cistus laurifolius L. | |||
Cistus monspeliensis L. | |||
Cistus populifolius L. | |||
Cistus salviifolius L. | |||
Mycosphaerella graminicola | Lamiaceae | Thymus leucotrichus Halácsy | [30] |
Penicillium allii | Lamiaceae | Origanum vulgare L. | [111] |
Phoma exigua | Lamiaceae | Rosmarinus officinalis L. | [45] |
Salvia officinalis L. | |||
Satureja hortensis L. | |||
Thymus leucotrichus Halácsy L. | |||
Poaceae | Elytrigia repens (L.) Nevski | ||
Polygonaceae | Polygonum aviculare L. | ||
Persicaria bistorta (L.) Samp. | |||
Ranunculaceae | Nigella sativa L. | ||
Urticaceae | Urtica dioica L. | ||
Pythium ultimum | Lamiaceae | Rosmarinus officinalis L. | [106] |
Mentha piperita L. | |||
Rhizoctonia solani | Cupressaceae | Juniperus communis L. | [59] |
Juniperus oxycedrus L. | |||
Juniperus communis L. var. saxatilis Pall. | |||
Lamiaceae | Mentha piperita L. | [106] | |
Rosmarinus officinalis L. | |||
Sclerotinia sclerotiorum | Apiaceae | Cuminum cyminum L. | [76] |
Septoria glycines | Lamiaceae | Lavandula dentata L. | [104] |
Verticillium dahliae | Anacardiaceae | Pistacia lentiscus L. | [71] |
Apocynaceae | Nerium oleander L. | ||
Araliaceae | Hedera helix L. | ||
Asteraceae | Dittrichia viscosa (L.) Greuter | ||
Brassicaceae | Brassica rapa L. | ||
Diplotaxis erucoides (L.) DC. | |||
Diplotaxis virgata (Cav.) DC. | |||
Hirschfeldia incana (L.) Lagr.-Foss. | |||
Cistaceae | Cistus albidus L. | ||
Cistus ladanifer L. | |||
Cistus laurifolius L. | |||
Cupressaceae | Juniperus communis L. | ||
Fagaceae | Castanea sativa Mill. | ||
Junglandaceae | Juglans regia L. | ||
Lamiaceae | Marrubium vulgare L. | ||
Mentha x verticillata L. | |||
Origanum vulgare L. | |||
Rosmarinus officinalis L. | |||
Salvia officinalis L. | |||
Thymus leucotrichus Halácsy | |||
Laurus nobilis L. | |||
Oleaceae | Olea europaea cv. Lechín de Sevilla | ||
Olea europea cv. Arbequina | |||
Olea europea cv. Cornicabra | |||
Olea europea cv. Empeltre | |||
Olea europea cv. Frantoio | |||
Olea europea cv. Picual | |||
Papaveraceae | Papaver rhoeas L. | ||
Pinaceae | Pinus pinea L. | ||
Urticaceae | Urtica sp. | ||
Viburnaceae | Sambucus nigra L. | ||
Zymoseptoria tritici | Cannabaceae | Humulus lupulus L. | [95] |
Alternaria alternata/Alternaria solani/Alternaria tenuissima/Colletotrichum coccodes/Fusarium oxysporum/Fusarium sambucinum/Rhizoctonia solani/Streptomyces scabiei | Apiaceae | Carum carvi L. | [45] |
Lamiaceae | Thymus leucotrichus Halácsy L. | ||
Asteraceae | Achillea millefolium L. | ||
Taraxacum officinale (L.) Weber ex F.H.Wigg | |||
Cannabaceae | Humulus lupulus L. | ||
Clusiaceae | Hypericum perforatum L. | ||
Eqoisetaceae | Equisetum arvense L. | ||
Lamiaceae | Salvia officinalis L. | ||
Mentha piperita L. | |||
Rosmarinus officinalis L. | |||
Lavandula angustifolia Mill. | |||
Satureja hortensis L. | |||
Poaceae | Elytrigia repens (L.) Nevski | ||
Polygonaceae | Polygonum aviculare L. | ||
Persicaria bistorta (L.) Samp. | |||
Ranunculaceae | Nigella sativa L. | ||
Urticaceae | Urtica dioica L. |
Extract | Method/Organism | References |
---|---|---|
Prasium majus L., Glaucium flavum Crantz, Daucus lopadusanus Tineo, Periploca angustifolia Labill, Echinops spinosissimus Turra, Hypericum aegypticum L. | Solanum lycopersicum L. | [78] |
Prasium majus L., Glaucium flavum Crantz, Daucus lopadusanus Tineo, Periploca angustifolia Labill, Echinops spinosissimus Turra, Hypericum aegypticum L. | MTT-based colorimetric assay/hepatocarcinoma Huh7 cell lines/ideocecal colorectal adenocarcinoma HCT-8 cell lines | |
Artemisia absinthium L. | Solanum lycopersicum L. (Mirella and Cetia seeds) | [130] |
EPA OCSPP 850.3020 and complete exposure test/Apis mellifera L. | ||
Eupatorium buniifolium Hook. & Arn. | Solanum lycopersicum L. (Mirella and Cetia seeds) | |
EPA OCSPP 850.3020 and complete exposure test/Apis mellifera L. | ||
Greenhouse assay/Solanum lycopersicum L. (Cetia seeds) and whitflies | ||
Rosemary oil, citrus oil, eucalyptus oil | Resazurin-based in vitro toxicology assay/HeLa cell lines/Caco-2 cell lines/STF1 cell lines | [170] |
Caenorhabditis elegans | ||
Hen’s eggs (Lohmann classic brown chicken) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragkouli, R.; Antonopoulou, M.; Asimakis, E.; Spyrou, A.; Kosma, C.; Zotos, A.; Tsiamis, G.; Patakas, A.; Triantafyllidis, V. Mediterranean Plants as Potential Source of Biopesticides: An Overview of Current Research and Future Trends. Metabolites 2023, 13, 967. https://doi.org/10.3390/metabo13090967
Fragkouli R, Antonopoulou M, Asimakis E, Spyrou A, Kosma C, Zotos A, Tsiamis G, Patakas A, Triantafyllidis V. Mediterranean Plants as Potential Source of Biopesticides: An Overview of Current Research and Future Trends. Metabolites. 2023; 13(9):967. https://doi.org/10.3390/metabo13090967
Chicago/Turabian StyleFragkouli, Regina, Maria Antonopoulou, Elias Asimakis, Alexandra Spyrou, Chariklia Kosma, Anastasios Zotos, George Tsiamis, Angelos Patakas, and Vassilios Triantafyllidis. 2023. "Mediterranean Plants as Potential Source of Biopesticides: An Overview of Current Research and Future Trends" Metabolites 13, no. 9: 967. https://doi.org/10.3390/metabo13090967
APA StyleFragkouli, R., Antonopoulou, M., Asimakis, E., Spyrou, A., Kosma, C., Zotos, A., Tsiamis, G., Patakas, A., & Triantafyllidis, V. (2023). Mediterranean Plants as Potential Source of Biopesticides: An Overview of Current Research and Future Trends. Metabolites, 13(9), 967. https://doi.org/10.3390/metabo13090967