Current Biomarkers for Carotid Artery Stenosis: A Comprehensive Review of the Literature
Abstract
:1. Introduction
2. Methods and Literature Review
3. Protein Categorization
3.1. Inflammation and Immunity
3.1.1. High Sensitivity—C Reactive Protein
3.1.2. Interleukin-6
3.1.3. Tissue Necrosis Factor
3.1.4. Calgranulins
3.1.5. Chemerin
3.1.6. Soluble Vascular Cell Adhesion Molecule-1
3.1.7. High Mobility Group Box-1
3.1.8. Serum Lipopolysaccharide-Binding Protein
3.1.9. Interleukin-8
3.1.10. Legumain
3.1.11. Neopterin
3.2. Lipid Metabolism
3.2.1. Lipoprotein-Associated Phospholipase A2
3.2.2. Circulating Fatty Acid Synthase
3.2.3. Proprotein Convertase Subtilisin/Kexin Type 9
3.2.4. Paraoxonase-1
3.3. Haemostasis
3.3.1. Plasminogen Activator Inhibitor-1
3.3.2. Von Willebrand Factor
3.3.3. Factor VII Activating Protease
3.4. Markers of Cardiovascular and Kidney Function
3.4.1. Homocysteine
3.4.2. Lipoprotein(a)
3.4.3. Pregnancy-Associated Plasma Protein A (PAPP-A)
3.4.4. N-Terminal Pro B-Type Natriuretic Peptide
3.4.5. Neutrophil Gelatinase Associated Lipocalin
3.5. Bone Health
3.5.1. Osteoprotegrin
3.5.2. Osteopontin
3.5.3. Orosomucoid
3.6. Cellular Structure
3.6.1. Matrix Metalloproteinases
3.6.2. Vimentin
3.7. Growth Factors
3.7.1. Fibroblast Growth Factor—23
3.7.2. Hepatocyte Growth Factor
3.7.3. Platelet Derived Growth Factor
3.8. Hormones
3.8.1. Adiponectin
3.8.2. Leptin
3.8.3. Resistin
3.8.4. Chromogranin
3.8.5. Nesfatin-1
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Hashim, M.J.; Mustafa, H.; Baniyas, M.Y.; Al Suwaidi, S.K.B.M.; AlKatheeri, R.; Alblooshi, F.M.K.; Almatrooshi, M.E.A.H.; Alzaabi, M.E.H.; Al Darmaki, R.S.; et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus 2020, 12, e9349. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, S.; Han, S.; Rane, P.P.; Fox, K.M.; Qian, Y.; Suh, H.S. Prevalence and incidence of atherosclerotic cardiovascular disease and its risk factors in Korea: A nationwide population-based study. BMC Public Health 2019, 19, 1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kita, T.; Kume, N.; Minami, M.; Hayashida, K.; Murayama, T.; Sano, H.; Moriwaki, H.; Kataoka, H.; Nishi, E.; Horiuchi, H.; et al. Role of Oxidized LDL in Atherosclerosis. Ann. N. Y. Acad. Sci. 2001, 947, 199–206. [Google Scholar] [CrossRef]
- Rafieian-Kopaei, M.; Setorki, M.; Doudi, M.; Baradaran, A.; Nasri, H. Atherosclerosis: Process, Indicators, Risk Factors and New Hopes. Int. J. Prev. Med. 2014, 5, 927–946. [Google Scholar]
- Linton, M.F.; Yancey, P.G.; Davies, S.S.; Jerome, W.G.; Linton, E.F.; Song, W.L.; Doran, A.C.; Vickers, K.C. The Role of Lipids and Lipoproteins in Atherosclerosis. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Hershman, J.M., Hofland, J., Kalra, S., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Ilhan, F.; Kalkanli, S.T. Atherosclerosis and the role of immune cells. World J. Clin. Cases WJCC 2015, 3, 345–352. [Google Scholar] [CrossRef]
- Brophy, M.L.; Dong, Y.; Wu, H.; Rahman, H.N.A.; Song, K.; Chen, H. Eating the Dead to Keep Atherosclerosis at Bay. Front. Cardiovasc. Med. 2017, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Rudijanto, A. The Role of Vascular Smooth Muscle Cells on The Pathogenesis of Atherosclerosis. Acta Medica Indones 2007, 39, 8. [Google Scholar]
- Selwaness, M.; van den Bouwhuijsen, Q.; van Onkelen, R.S.; Hofman, A.; Franco, O.H.; van der Lugt, A.; Wentzel, J.J.; Vernooij, M. Atherosclerotic Plaque in the Left Carotid Artery Is More Vulnerable Than in the Right. Stroke 2014, 45, 3226–3230. [Google Scholar] [CrossRef] [Green Version]
- Sethi, D.; Gofur, E.M.; Munakomi, S. Anatomy, Head and Neck, Carotid Arteries. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/books/NBK545238/ (accessed on 29 October 2022).
- Dossabhoy, S.; Arya, S. Epidemiology of atherosclerotic carotid artery disease. Semin. Vasc. Surg. 2021, 34, 3–9. [Google Scholar] [CrossRef]
- Flaherty, M.L.; Kissela, B.; Khoury, J.C.; Alwell, K.; Moomaw, C.J.; Woo, D.; Khatri, P.; Ferioli, S.; Adeoye, O.; Broderick, J.P.; et al. Carotid Artery Stenosis as a Cause of Stroke. Neuroepidemiology 2013, 40, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Ricotta, J.J.; Aburahma, A.; Ascher, E.; Eskandari, M.; Faries, P.; Lal, B.K.; Society for Vascular Surgery. Updated Society for Vascular Surgery guidelines for management of extracranial carotid disease: Executive summary. J. Vasc. Surg. 2011, 54, 832–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ederle, J.; Brown, M.M. The evidence for medicine versus surgery for carotid stenosis. Eur. J. Radiol. 2006, 60, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.K.; Hermansson, A. The immune system in atherosclerosis. Nat. Immunol. 2011, 12, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-H.; Cheng, M.-L.; Shiao, M.-S.; Lin, C.-N. Metabolomics study in severe extracranial carotid artery stenosis. BMC Neurol. 2019, 19, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lioudaki, S.; Verikokos, C.; Kouraklis, G.; Kontopodis, N.; Markakis, G.; Ioannou, C.; Daskalopoulou, A.; Perrea, D.; Klonaris, C. Paraoxonase-1 and Symptomatic Status in Carotid Artery Disease. Ann. Vasc. Surg. 2020, 64, 355–360. [Google Scholar] [CrossRef]
- Yildirim, T.; Kiris, T.; Avci, E.; Yildirim, S.E.; Argan, O.; Safak, Ö.; Aktas, Z.; Toklu, O.; Esin, F.K. Increased Serum CRP-Albumin Ratio Is Independently Associated With Severity of Carotid Artery Stenosis. Angiology 2020, 71, 740–746. [Google Scholar] [CrossRef]
- Jia, J.; Wang, A.; Wang, J.; Wu, J.; Yan, X.; Zhou, Y.; Chen, S.; Zhao, X. Homocysteine and Its Relationship to Asymptomatic Carotid Stenosis in a Chinese Community Population. Sci. Rep. 2016, 6, 37361. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.; Tao, M.; Ding, K.; Yu, D.; King, W.; Deyneko, G.; Wang, X.; Longchamp, A.; Schoen, F.J.; Ozaki, C.K.; et al. Perivascular Adipose Adiponectin Correlates With Symptom Status of Patients Undergoing Carotid Endarterectomy. Stroke 2015, 46, 1696–1699. [Google Scholar] [CrossRef] [Green Version]
- Kuyumcu, A. The relationship between nesfatin-1 and carotid artery stenosis. Scand. Cardiovasc. J. 2018, 52, 328–334. [Google Scholar] [CrossRef]
- Lunde, N.N.; Holm, S.; Dahl, T.B.; Elyouncha, I.; Sporsheim, B.; Gregersen, I.; Abbas, A.; Skjelland, M.; Espevik, T.; Solberg, R.; et al. Increased levels of legumain in plasma and plaques from patients with carotid atherosclerosis. Atherosclerosis 2017, 257, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-L.; Tsai, T.-H.; Sung, P.-H.; Wang, H.-T.; Lin, H.-S.; Chang, W.-N.; Lu, C.-H.; Chen, S.-F.; Huang, C.-R.; Tsai, N.-W.; et al. Levels of circulating neopterin in patients with severe carotid artery stenosis undergoing carotid stenting. J. Atheroscler. Thromb. 2014, 21, 129–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Song, P.; Park, J.H.; Lee, Y.T.; Kim, W.S.; Park, Y.G.; Bang, O.Y.; Chung, C.-S.; Lee, K.H.; Kim, G.-M. Biomarkers of Asymptomatic Carotid Stenosis in Patients Undergoing Coronary Artery Bypass Grafting. Stroke 2011, 42, 734–739. [Google Scholar] [CrossRef] [Green Version]
- Eilenberg, W.; Stojkovic, S.; Kaider, A.; Piechota-Polanczyk, A.; Nanobachvili, J.; Domenig, C.M.; Wojta, J.; Huk, I.; Demyanets, S.; Neumayer, C. Neutrophil Gelatinase Associated Lipocalin (NGAL) for Identification of Unstable Plaques in Patients with Asymptomatic Carotid Stenosis. Eur. J. Vasc. Endovasc. Surg. 2019, 57, 768–777. [Google Scholar] [CrossRef]
- Ekmekçi, H.; Güngör Öztürk, Z.; Ekmekçi, O.B.; Işler Bütün, I.; Beşirli, K.; Gode, S.; Atukeren, P.; Sönmez, H. Significance of vitronectin and PAI-1 activity levels in carotid artery disease: Comparison of symptomatic and asymptomatic patients. Minerva Medica 2013, 104, 215–223. [Google Scholar]
- Heider, P.; Pfäffle, N.; Pelisek, J.; Wildgruber, M.; Poppert, H.; Rudelius, M.; Eckstein, H.-H. Is serum pregnancy-associated plasma protein A really a potential marker of atherosclerotic carotid plaque stability? Eur. J. Vasc. Endovasc. Surg. 2010, 39, 668–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parahuleva, M.S.; Worsch, M.; Euler, G.; Choukeir, M.; Mardini, A.; Parviz, B.; Kanse, S.M.; Portig, I.; Khayrutdinov, E.; Schieffer, B.; et al. Factor VII Activating Protease Expression in Human Platelets and Accumulation in Symptomatic Carotid Plaque. J. Am. Heart Assoc. 2020, 9, e016445. [Google Scholar] [CrossRef]
- Biscetti, F.; Straface, G.; De Cristofaro, R.; Lancellotti, S.; Rizzo, P.; Arena, V.; Stigliano, E.; Pecorini, G.; Egashira, K.; De Angelis, G.; et al. High-mobility group box-1 protein promotes angiogenesis after peripheral ischemia in diabetic mice through a VEGF-dependent mechanism. Diabetes 2010, 59, 1496–1505. [Google Scholar] [CrossRef] [Green Version]
- De Silva, G.S.; Desai, K.; Darwech, M.; Naim, U.; Jin, X.; Adak, S.; Harroun, N.; Sanchez, L.A.; Semenkovich, C.F.; Zayed, M.A. Circulating serum fatty acid synthase is elevated in patients with diabetes and carotid artery stenosis and is LDL-associated. Atherosclerosis 2019, 287, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.; Ghosh, J.; Slevin, M.; Smyth, J.V.; Alexander, M.Y.; Serracino-Inglott, F. A Comparative Study of Carotid Atherosclerotic Plaque Microvessel Density and Angiogenic Growth Factor Expression in Symptomatic Versus Asymptomatic Patients. Eur. J. Vasc. Endovasc. Surg. 2010, 39, 388–395. [Google Scholar] [CrossRef]
- Kammerer, A.; Staab, H.; Herberg, M.; Kerner, C.; Klöting, N.; Aust, G. Increased circulating chemerin in patients with advanced carotid stenosis. BMC Cardiovasc. Disord. 2018, 18, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachetti, T.; Ferrari Bardile, A.; Aloi, T.L.; Colombo, B.; Assi, E.; Savino, G.; Vercelli, A.; Colombo, R.; Corti, A. Plasma levels of vasostatin-1, a chromogranin A fragment, are associated with carotid artery maximum stenosis: A pilot study. Int. J. Cardiol. 2017, 236, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Kwon, A.; Choi, Y.-S.; Choi, Y.-W.; Chung, W.-B.; Park, C.-S.; Chung, W.-S.; Lee, M.-Y.; Youn, H.-J. Serum Osteoprotegerin Is Associated With Calcified Carotid Plaque. Medicine 2016, 95, e3381. [Google Scholar] [CrossRef]
- Serrano, M.; Moreno-Navarrete, J.M.; Puig, J.; Moreno, M.; Guerra, E.; Ortega, F.; Xifra, G.; Ricart, W.; Fernández-Real, J.M. Serum lipopolysaccharide-binding protein as a marker of atherosclerosis. Atherosclerosis 2013, 230, 223–227. [Google Scholar] [CrossRef]
- Abbas, A.; Aukrust, P.; Dahl, T.B.; Bjerkeli, V.; Sagen, E.B.L.; Michelsen, A.; Russell, D.; Krohg-Sørensen, K.; Holm, S.; Skjelland, M.; et al. High levels of S100A12 are associated with recent plaque symptomatology in patients with carotid atherosclerosis. Stroke 2012, 43, 1347–1353. [Google Scholar] [CrossRef] [Green Version]
- Sarlon-Bartoli, G.; Boudes, A.; Buffat, C.; Bartoli, M.A.; Piercecchi-Marti, M.D.; Sarlon, E.; Arnaud, L.; Bennis, Y.; Thevenin, B.; Squarcioni, C.; et al. Circulating Lipoprotein-associated Phospholipase A2 in High-grade Carotid Stenosis: A New Biomarker for Predicting Unstable Plaque. Eur. J. Vasc. Endovasc. Surg. 2012, 43, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Perl, M.L.; Finkelstein, A.; Revivo, M.; Berliner, S.; Herz, I.; Rabinovich, I.; Ziv-Baran, T.; Gotler, D.; Keren, G.; Bana, S.; et al. Variance in Biomarker Usefulness as Indicators for Carotid and Coronary Atherosclerosis. Isr. Med. Assoc. J. IMAJ 2016, 18, 80–84. [Google Scholar]
- Güven, H.; Sarıtaş, N.; Conkbayır, I.; Çomoğlu, S.S. The value of C-reactive protein in symptomatic versus asymptomatic carotid artery stenosis. Int. J. Neurosci. 2013, 123, 311–317. [Google Scholar] [CrossRef]
- Moreno-Ajona, D.; Irimia, P.; Rodríguez, J.A.; García-Velloso, M.J.; López-Fidalgo, J.; Fernández-Alonso, L.; Grochowitz, L.; Muñoz, R.; Domínguez, P.; Gállego-Culleré, J.; et al. Elevated circulating metalloproteinase 7 predicts recurrent cardiovascular events in patients with carotid stenosis: A prospective cohort study. BMC Cardiovasc. Disord. 2020, 20, 93. [Google Scholar] [CrossRef]
- Del Porto, F.; Cifani, N.; Proietta, M.; Toni, D.; Taurino, M. MMP-12 and TIMP Behavior in Symptomatic and Asymptomatic Critical Carotid Artery Stenosis. J. Stroke Cerebrovasc. Dis. 2017, 26, 334–338. [Google Scholar] [CrossRef]
- Bountouris, I.; Paraskevas, K.I.; Koutouzis, M.; Tzavara, V.; Nikolaou, N.; Nomikos, A.; Barbatis, C.; Andrikopoulos, V.; Mikhailidis, D.P.; Andrikopoulou, M.; et al. Serum Leptin Levels in Patients Undergoing Carotid Endarterectomy: A Pilot Study. Angiology 2009, 60, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Berntsson, J.; Östling, G.; Persson, M.; Smith, J.G.; Hedblad, B.; Engström, G. Orosomucoid, Carotid Plaque, and Incidence of Stroke. Stroke 2016, 47, 1858–1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, F.; Rigamonti, F.; Burger, F.; Roth, A.; Bertolotto, M.; Spinella, G.; Pane, B.; Palombo, D.; Pende, A.; Bonaventura, A.; et al. Serum levels of osteopontin predict major adverse cardiovascular events in patients with severe carotid artery stenosis. Int. J. Cardiol. 2018, 255, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Del Porto, F.; Proietta, M.; di Gioia, C.; Cifani, N.; Dito, R.; Fantozzi, C.; Ferri, L.; Fabriani, L.; Rossi, M.; Tritapepe, L.; et al. FGF-23 levels in patients with critical carotid artery stenosis. Intern. Emerg. Med. 2015, 10, 437–444. [Google Scholar] [CrossRef]
- Shindo, A.; Tanemura, H.; Yata, K.; Hamada, K.; Shibata, M.; Umeda, Y.; Asakura, F.; Toma, N.; Sakaida, H.; Fujisawa, T.; et al. Inflammatory Biomarkers in Atherosclerosis: Pentraxin 3 Can Become a Novel Marker of Plaque Vulnerability. PLoS ONE 2014, 9, e100045. [Google Scholar] [CrossRef]
- Štefanič, P.; Kopolovets, I.; Hertelyová, Z.; Tóth, Š.; Frankovičová, M. Lipoprotein associated phospholipase A2 as a marker of vulnerable atherosclerotic plaque in patients with internal carotid artery stenosis. Georgian Med. News 2017, 267, 27–34. [Google Scholar]
- Zhang, F.; Guo, J.; Yang, F.; Zhou, Y. Lp-PLA2 evaluates the severity of carotid artery stenosis and predicts the occurrence of cerebrovascular events in high stroke-risk populations. J. Clin. Lab. Anal. 2021, 35, e23691. [Google Scholar] [CrossRef]
- Sandstedt, J.; Vargmar, K.; Björkman, K.; Ruetschi, U.; Bergström, G.; Hultén, L.M.; Skiöldebrand, E. COMP (Cartilage Oligomeric Matrix Protein) Neoepitope. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 1218–1228. [Google Scholar] [CrossRef]
- Gasbarrino, K.; Mantzoros, C.; Gorgui, J.; Veinot, J.P.; Lai, C.; Daskalopoulou, S.S. Circulating Chemerin Is Associated With Carotid Plaque Instability, Whereas Resistin Is Related to Cerebrovascular Symptomatology. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1670–1678. [Google Scholar] [CrossRef] [Green Version]
- Puig, N.; Camps-Renom, P.; Camacho, M.; Aguilera-Simón, A.; Jiménez-Altayó, F.; Fernández-León, A.; Marín, R.; Martí-Fàbregas, J.; Sánchez-Quesada, J.L.; Jiménez-Xarrié, E.; et al. Plasma sICAM-1 as a Biomarker of Carotid Plaque Inflammation in Patients with a Recent Ischemic Stroke. Transl. Stroke Res. 2022, 13, 745–756. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, L.; Melander, O.; Orho-Melander, M.; Nilsson, J.; Borné, Y.; Engström, G. Circulating Vimentin Is Associated With Future Incidence of Stroke in a Population-Based Cohort Study. Stroke 2021, 52, 937–944. [Google Scholar] [CrossRef]
- Waissi, F.; Dekker, M.; Timmerman, N.; Hoogeveen, R.M.; van Bennekom, J.; Dzobo, K.E.; Schnitzler, J.G.; Pasterkamp, G.; Grobbee, D.E.; de Borst, G.J.; et al. Elevated Lp(a) (Lipoprotein[a]) Levels Increase Risk of 30-Day Major Adverse Cardiovascular Events in Patients Following Carotid Endarterectomy. Stroke 2020, 51, 2972–2982. [Google Scholar] [CrossRef] [PubMed]
- Jurin, I.; Paić, F.; Bulimbašić, S.; Rudež, I.; Đerek, L.; Jurin, H.; Knežević, A.; Starcevic, B.; Ajduk, M. Association between Circulatory and Plaque Resistin Levels with Carotid Plaque Instability and Ischemic Stroke Events. Heart Surg. Forum 2018, 21, E448–E463. [Google Scholar] [CrossRef] [Green Version]
- Duschek, N.; Skrinjar, E.; Waldhör, T.; Vutuc, C.; Daniel, G.; Hübl, W.; Assadian, A. N-terminal pro B-type natriuretic peptide (NT pro-BNP) is a predictor of long-term survival in male patients of 75 years and older with high-grade asymptomatic internal carotid artery stenosis. J. Vasc. Surg. 2011, 53, 1242–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pini, R.; Faggioli, G.; Fittipaldi, S.; Pasquinelli, G.; Tonon, C.; Beltrandi, E.; Mauro, R.; Stella, A. Inflammatory Mediators and Cerebral Embolism in Carotid Stenting: New Markers of Risk. J. Endovasc. Ther. 2013, 20, 684–694. [Google Scholar] [CrossRef]
- Fatemi, S.; Acosta, S.; Zarrouk, M.; Engström, G.; Melander, O.; Gottsäter, A. Circulating Biomarkers Predict Symptomatic but Not Asymptomatic Carotid Artery Stenosis. Cerebrovasc. Dis. 2022, 51, 623–629. [Google Scholar] [CrossRef]
- Liberale, L.; Carbone, F.; Bertolotto, M.; Bonaventura, A.; Vecchié, A.; Mach, F.; Burger, F.; Pende, A.; Spinella, G.; Pane, B.; et al. Serum PCSK9 levels predict the occurrence of acute coronary syndromes in patients with severe carotid artery stenosis. Int. J. Cardiol. 2018, 263, 138–141. [Google Scholar] [CrossRef]
- Dong, H.; Du, T.; Premaratne, S.; Zhao, C.X.; Tian, Q.; Li, Y.; Yan, S.; Zhang, W.W. Relationship between ADAMTS4 and carotid atherosclerotic plaque vulnerability in humans. J. Vasc. Surg. 2018, 67, 1120–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eilenberg, W.; Stojkovic, S.; Kaider, A.; Kozakowski, N.; Domenig, C.M.; Burghuber, C.; Nanobachvili, J.; Huber, K.; Klinger, M.; Neumayer, C.; et al. NGAL and MMP-9/NGAL as biomarkers of plaque vulnerability and targets of statins in patients with carotid atherosclerosis. Clin. Chem. Lab. Med. 2017, 56, 147–156. [Google Scholar] [CrossRef]
- Fatemi, S.; Acosta, S.; Zarrouk, M.; Engström, G.; Melander, O.; Gottsäter, A. Pro B-type Natriuretic Peptide and Midregional Proadrenomedullin are Associated with Incident Carotid Stenosis During Long Term Follow-up. J. Stroke Cerebrovasc. Dis. 2021, 30, 105403. [Google Scholar] [CrossRef]
- Kovacevic, K.D.; Mayer, F.J.; Jilma, B.; Buchtele, N.; Obermayer, G.; Binder, C.J.; Blann, A.D.; Minar, E.; Schillinger, M.; Hoke, M. Von Willebrand factor antigen levels predict major adverse cardiovascular events in patients with carotid stenosis of the ICARAS study. Atherosclerosis 2019, 290, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persson, J.; Folkersen, L.; Ekstrand, J.; Helleberg, J.; Gabrielsen, A.; Lundman, P.; Hedin, U.; Paulsson-Berne, G. High plasma adiponectin concentration is associated with all-cause mortality in patients with carotid atherosclerosis. Atherosclerosis 2012, 225, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Mayer, F.J.; Binder, C.J.; Wagner, O.F.; Schillinger, M.; Minar, E.; Mlekusch, W.; Tsiantoulas, D.; Goliasch, G.; Hoke, M. Combined Effects of Inflammatory Status and Carotid Atherosclerosis: A 12-Year Follow-Up Study. Stroke 2016, 47, 2952–2958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puz, P.; Lasek-Bal, A.; Ziaja, D.; Kazibutowska, Z.; Ziaja, K. Inflammatory markers in patients with internal carotid artery stenosis. Arch. Med. Sci. AMS 2013, 9, 254–260. [Google Scholar] [CrossRef]
- Wolf, D.; Ley, K. Immunity and Inflammation in atherosclerosis. Circ. Res. 2019, 124, 315–327. [Google Scholar] [CrossRef]
- Du Clos, T.W. Function of C-reactive protein. Ann. Med. 2000, 32, 274–278. [Google Scholar] [CrossRef]
- Chiba, T.; Itoh, T.; Tabuchi, M.; Nakazawa, T.; Satou, T. Interleukin-1β Accelerates the Onset of Stroke in Stroke-Prone Spontaneously Hypertensive Rats. Mediat. Inflamm. 2012, 2012, e701976. [Google Scholar] [CrossRef] [Green Version]
- Kyttaris, V.C.; Tsokos, G.C. Chapter 48-New Treatments in Systemic Lupus Erythematosus. In Systemic Lupus Erythematosus; Tsokos, G.C., Gordon, C., Smolen, J.S., Eds.; Mosby: Philadelphia, PA, USA, 2007; pp. 516–523. ISBN 978-0-323-04434-9. [Google Scholar]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- COMP (Cartilage Oligomeric Matrix Protein) Neoepitope [Internet]. Available online: https://www.ahajournals.org/doi/epub/10.1161/ATVBAHA.120.314720 (accessed on 30 October 2022).
- Wang, X.; Lin, Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol. Sin. 2008, 29, 1275–1288. [Google Scholar] [CrossRef] [Green Version]
- Perera, C.; McNeil, H.P.; Geczy, C.L. S100 Calgranulins in inflammatory arthritis. Immunol. Cell Biol. 2010, 88, 41–49. [Google Scholar] [CrossRef]
- Hsu, K.; Champaiboon, C.; Guenther, B.D.; Sorenson, B.S.; Khammanivong, A.; Ross, K.F.; Geczy, C.L.; Herzberg, M.C. Anti-infective protective properties of s100 calgranulins. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2009, 8, 290–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helfer, G.; Wu, Q.-F. Chemerin: A multifaceted adipokine involved in metabolic disorders. J. Endocrinol. 2018, 238, R79–R94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabel, B.A.; Allen, S.J.; Kulig, P.; Allen, J.A.; Cichy, J.; Handel, T.M.; Butcher, E.C. Chemerin Activation by Serine Proteases of the Coagulation, Fibrinolytic, and Inflammatory Cascades*. J. Biol. Chem. 2005, 280, 34661–34666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, W.J.; Zabel, B.A.; Pachynski, R.K. Mechanisms and Functions of Chemerin in Cancer: Potential Roles in Therapeutic Intervention. Front. Immunol. 2018, 9, 2772. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.-H.; Kim, Y.K.; Kim, M.R.; Jang, J.H.; Lee, S. Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer. Int. J. Mol. Sci. 2018, 19, 1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troncoso, M.F.; Ortiz-Quintero, J.; Garrido-Moreno, V.; Sanhueza-Olivares, F.; Guerrero-Moncayo, A.; Chiong, M.; Castro, P.F.; García, L.; Gabrielli, L.; Corbalán, R.; et al. VCAM-1 as a predictor biomarker in cardiovascular disease. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2021, 1867, 166170. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Liu, Z.; Xu, Z.; Liu, J.; Zhang, J. High mobility group box 1 (HMGB1): A pivotal regulator of hematopoietic malignancies. J. Hematol. Oncol. 2020, 13, 91. [Google Scholar] [CrossRef]
- Lotze, M.T.; Tracey, K.J. High-mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 2005, 5, 331–342. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.; Chavan, S.S.; Andersson, U. High Mobility Group Box Protein 1 (HMGB1): The Prototypical Endogenous Danger Molecule. Mol. Med. 2015, 21, S6–S12. [Google Scholar] [CrossRef]
- Biscetti, F.; Tinelli, G.; Rando, M.M.; Nardella, E.; Cecchini, A.L.; Angelini, F.; Straface, G.; Filipponi, M.; Arena, V.; Pitocco, D.; et al. Association between carotid plaque vulnerability and high mobility group box-1 serum levels in a diabetic population. Cardiovasc. Diabetol. 2021, 20, 114. [Google Scholar] [CrossRef]
- Bertani, B.; Ruiz, N. Function and biogenesis of lipopolysaccharides. EcoSal Plus 2018, 8, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Song, Z.; Liu, A.; Dahmen, U.; Yang, X.; Fang, H. Effects of Lipopolysaccharide-Binding Protein (LBP) Single Nucleotide Polymorphism (SNP) in Infections, Inflammatory Diseases, Metabolic Disorders and Cancers. Front. Immunol. 2021, 12, 681810. [Google Scholar] [CrossRef] [PubMed]
- Guha, M.; Mackman, N. LPS induction of gene expression in human monocytes. Cell. Signal. 2001, 13, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Ghanim, H.; Abuaysheh, S.; Sia, C.L.; Korzeniewski, K.; Chaudhuri, A.; Fernandez-Real, J.M.; Dandona, P. Increase in plasma endotoxin concentrations and the expression of Toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: Implications for insulin resistance. Diabetes Care 2009, 32, 2281–2287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Lu, L.; Yao, P.; Ma, Y.; Wang, F.; Jin, Q.; Ye, X.; Li, H.; Hu, F.B.; Sun, L.; et al. Lipopolysaccharide binding protein, obesity status and incidence of metabolic syndrome: A prospective study among middle-aged and older Chinese. Diabetologia 2014, 57, 1834–1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bickel, M. The role of interleukin-8 in inflammation and mechanisms of regulation. J. Periodontol. 1993, 64, 456–460. [Google Scholar] [PubMed]
- Galffy, G.; Mohammed, K.A.; Dowling, P.A.; Nasreen, N.; Ward, M.J.; Antony, V.B. Interleukin 8: An Autocrine Growth Factor for Malignant Mesothelioma. Cancer Res. 1999, 59, 367–371. [Google Scholar]
- Legumain-an overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/medicine-and-dentistry/legumain (accessed on 31 December 2022).
- Hsing, L.C.; Rudensky, A.Y. The lysosomal cysteine proteases in MHC class II antigen presentation. Immunol. Rev. 2005, 207, 229–241. [Google Scholar] [CrossRef]
- Dall, E.; Brandstetter, H. Mechanistic and structural studies on legumain explain its zymogenicity, distinct activation pathways, and regulation. Proc. Natl. Acad. Sci. USA 2013, 110, 10940–10945. [Google Scholar] [CrossRef]
- Papaspyridonos, M.; Smith, A.; Burnand, K.G.; Taylor, P.; Padayachee, S.; Suckling, K.E.; James, C.H.; Greaves, D.R.; Patel, L. Novel candidate genes in unstable areas of human atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1837–1844. [Google Scholar] [CrossRef] [Green Version]
- Clerin, V.; Shih, H.H.; Deng, N.; Hebert, G.; Resmini, C.; Shields, K.M.; Feldman, J.L.; Winkler, A.; Albert, L.; Maganti, V.; et al. Expression of the cysteine protease legumain in vascular lesions and functional implications in atherogenesis. Atherosclerosis 2008, 201, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Pingle, S.K.; Tumane, R.G.; Jawade, A.A. Neopterin: Biomarker of cell-mediated immunity and potent usage as biomarker in silicosis and other occupational diseases. Indian J. Occup. Environ. Med. 2008, 12, 107–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatzber, F.; Rabl, H.; Koriska, K.; Erhart, U.; Puhl, H.; Waeg, G.; Krebs, A.; Esterbauer, H. Elevated serum neopterin levels in atherosclerosis. Atherosclerosis 1991, 89, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.; Willeit, J.; Kiechl, S.; Fuchs, D.; Jarosch, E.; Oberhollenzer, F.; Reibnegger, G.; Tilz, G.P.; Gerstenbrand, F.; Wachter, H. Increased concentrations of neopterin in carotid atherosclerosis. Atherosclerosis 1994, 106, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Harlapur, M.; Shimbo, D. Lipid Metabolism. In Encyclopedia of Behavioral Medicine; Gellman, M.D., Turner, J.R., Eds.; Springer: New York, NY, USA, 2013; pp. 1166–1167. ISBN 978-1-4419-1005-9. [Google Scholar]
- De Stefano, A.; Mannucci, L.; Tamburi, F.; Cardillo, C.; Schinzari, F.; Rovella, V.; Nisticò, S.; Bennardo, L.; Di Daniele, N.; Tesauro, M. Lp-PLA2, a new biomarker of vascular disorders in metabolic diseases. Int. J. Immunopathol. Pharmacol. 2019, 33, 2058738419827154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lp-PLA(2) Studies Collaboration; Thompson, A.; Gao, P.; Orfei, L.; Watson, S.; Di Angelantonio, E.; Kaptoge, S.; Ballantyne, C.; Cannon, C.P.; Criqui, M.; et al. Lipoprotein-associated phospholipase A(2) and risk of coronary disease, stroke, and mortality: Collaborative analysis of 32 prospective studies. Lancet Lond. Engl. 2010, 375, 1536–1544. [Google Scholar] [CrossRef] [Green Version]
- Semenkovich, C.F. Regulation of fatty acid synthase (FAS). Prog. Lipid Res. 1997, 36, 43–53. [Google Scholar] [CrossRef]
- Jensen-Urstad, A.P.L.; Semenkovich, C.F. Fatty acid synthase and liver triglyceride metabolism: Housekeeper or messenger? Biochim. Biophys. Acta 2012, 1821, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Chakravarty, B.; Gu, Z.; Chirala, S.S.; Wakil, S.J.; Quiocho, F.A. Human fatty acid synthase: Structure and substrate selectivity of the thioesterase domain. Proc. Natl. Acad. Sci. USA 2004, 101, 15567–15572. [Google Scholar] [CrossRef]
- Berndt, J.; Kovacs, P.; Ruschke, K.; Klöting, N.; Fasshauer, M.; Schön, M.R.; Körner, A.; Stumvoll, M.; Blüher, M. Fatty acid synthase gene expression in human adipose tissue: Association with obesity and type 2 diabetes. Diabetologia 2007, 50, 1472–1480. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, N.; Phan, B.A.P.; Ding, Y.; Fong, A.; Krauss, R.M. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibition. Circulation 2015, 132, 1648–1666. [Google Scholar] [CrossRef]
- Deakin, S.P.; James, R.W. Genetic and environmental factors modulating serum concentrations and activities of the antioxidant enzyme paraoxonase-1. Clin. Sci. Lond. Engl. 1979 2004, 107, 435–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litvinov, D.; Mahini, H.; Garelnabi, M. Antioxidant and Anti-Inflammatory Role of Paraoxonase 1: Implication in Arteriosclerosis Diseases. N. Am. J. Med. Sci. 2012, 4, 523–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wysocka, A.; Cybulski, M.; Wysokiński, A.P.; Berbeć, H.; Stążka, J.; Zapolski, T. Paraoxonase 1 Activity, Polymorphism and Atherosclerosis Risk Factors in Patients Undergoing Coronary Artery Surgery. J. Clin. Med. 2019, 8, 441. [Google Scholar] [CrossRef] [Green Version]
- LaPelusa, A.; Dave, H.D. Physiology, Hemostasis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545263/ (accessed on 2 November 2022).
- Fibrin|Biochemistry|Britannica. Available online: https://www.britannica.com/science/fibrin (accessed on 3 January 2023).
- Kinsella, J.A.; Tobin, W.O.; Hamilton, G.; McCabe, D.J.H. Platelet activation, function, and reactivity in atherosclerotic carotid artery stenosis: A systematic review of the literature. Int. J. Stroke 2013, 8, 451–464. [Google Scholar] [CrossRef]
- Pitoulias, G.A.; Tachtsi, M.D.; Tsiaousis, P.Z.; Papadimitriou, D.K. Hyperhomocysteinemia and hypercoagulable state in carotid plaque evolution. Novel risk factors or coincidental risk predictors? Int. Angiol. J. Int. Union Angiol. 2007, 26, 270–278. [Google Scholar]
- Kruithof, E.K.O. Regulation of plasminogen activator inhibitor type 1 gene expression by inflammatory mediators and statins. Thromb. Haemost. 2008, 100, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Pahor, M.; Incalzi, R.A. Plasminogen Activator Inhibitor-1 (PAI-1): A Key Factor Linking Fibrinolysis and Age-Related Subclinical and Clinical Conditions. Cardiovasc. Ther. 2010, 28, e72–e91. [Google Scholar] [CrossRef] [Green Version]
- Bryckaert, M.; Rosa, J.P.; Denis, C.V.; Lenting, P.J. Of von Willebrand factor and platelets|SpringerLink. Cell. Mol. Life Sci. 2015, 72, 307–326. [Google Scholar] [CrossRef] [Green Version]
- Ruggeri, Z.M.; von Ware, J. Willebrand factor-Ruggeri. FASEB J. 1993, 7, 308–316. [Google Scholar] [CrossRef]
- Spiel, A.O.; Gilbert, J.C.; Jilma, B. Von Willebrand Factor in Cardiovascular Disease. Circulation 2008, 117, 1449–1459. [Google Scholar] [CrossRef] [Green Version]
- Römisch, J.; Vermöhlen, S.; Feussner, A.; Stöhr, H. The FVII activating protease cleaves single-chain plasminogen activators. Haemostasis 1999, 29, 292–299. [Google Scholar] [CrossRef]
- Römisch, J.; Feussner, A.; Vermöhlen, S.; Stöhr, H.A. A protease isolated from human plasma activating factor VII independent of tissue factor. Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb. 1999, 10, 471–479. [Google Scholar] [CrossRef]
- Herold, J.; Nowak, S.; Kostin, S.; Daniel, J.-M.; Francke, A.; Subramaniam, S.; Braun-Dullaeus, R.C.; Kanse, S.M. Factor VII activating protease (FSAP) influences vascular remodeling in the mouse hind limb ischemia model. Am. J. Transl. Res. 2017, 9, 3084–3095. [Google Scholar] [PubMed]
- Byskov, K.; Boettger, T.; Ruehle, P.F.; Nielsen, N.V.; Etscheid, M.; Kanse, S.M. Factor VII activating protease (FSAP) regulates the expression of inflammatory genes in vascular smooth muscle and endothelial cells. Atherosclerosis 2017, 265, 133–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.; Rementer, C.; Giachelli, C.M. Vascular Calcification: An Update on Mechanisms and Challenges in Treatment. Calcif. Tissue Int. 2013, 93, 365–373. [Google Scholar] [CrossRef]
- Lentz, S.R. Mechanisms of homocysteine-induced atherothrombosis. J. Thromb. Haemost. 2005, 3, 1646–1654. [Google Scholar] [CrossRef]
- Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J. 2015, 14, 6. [Google Scholar] [CrossRef] [Green Version]
- Ueland, P.M.; Refsum, H.; Beresford, S.A.; Vollset, S.E. The controversy over homocysteine and cardiovascular risk. Am. J. Clin. Nutr. 2000, 72, 324–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipoprotein(a) in Clinical Practice. Available online: https://www.acc.org/latest-in-cardiology/articles/2019/07/02/08/05/http%3a%2f%2fwww.acc.org%2flatest-in-cardiology%2farticles%2f2019%2f07%2f02%2f08%2f05%2flipoproteina-in-clinical-practice (accessed on 11 December 2022).
- Reyes-Soffer, G.; Ginsberg, H.N.; Berglund, L.; Duell, P.B.; Heffron, S.P.; Kamstrup, P.R.; Lloyd-Jones, D.M.; Marcovina, S.M.; Yeang, C.; Koschinsky, M.L.; et al. Lipoprotein(a): A Genetically Determined, Causal, and Prevalent Risk Factor for Atherosclerotic Cardiovascular Disease: A Scientific Statement From the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 2022, 42, e48–e60. [Google Scholar] [CrossRef] [PubMed]
- Kalousová, M.; Muravská, A.; Zima, T. Pregnancy-associated plasma protein A (PAPP-A) and preeclampsia. Adv. Clin. Chem. 2014, 63, 169–209. [Google Scholar] [CrossRef]
- Nilsson, E.; Kastrup, J.; Sajadieh, A.; Boje Jensen, G.; Kjøller, E.; Kolmos, H.J.; Wuopio, J.; Nowak, C.; Larsson, A.; Jakobsen, J.C.; et al. Pregnancy Associated Plasma Protein-A as a Cardiovascular Risk Marker in Patients with Stable Coronary Heart Disease During 10 Years Follow-Up—A CLARICOR Trial Sub-Study. J. Clin. Med. 2020, 9, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consuegra-Sanchez, L.; Fredericks, S.; Kaski, J.C. Pregnancy-associated plasma protein-A (PAPP-A) and cardiovascular risk. Atherosclerosis 2009, 203, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Hamm, C. Role of B-type natriuretic peptide (BNP) and NT-proBNP in clinical routine. Heart 2006, 92, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.-H.; Lin, Y.-Y.; Chu, S.-J.; Hsu, C.-W.; Cheng, S.-M. Interpretation and Use of Natriuretic Peptides in Non-Congestive Heart Failure Settings. Yonsei Med. J. 2010, 51, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Ott, K.M.; Mori, K.; Li, J.Y.; Kalandadze, A.; Cohen, D.J.; Devarajan, P.; Barasch, J. Dual Action of Neutrophil Gelatinase–Associated Lipocalin. J. Am. Soc. Nephrol. 2007, 18, 407–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passov, A.; Petäjä, L.; Pihlajoki, M.; Salminen, U.-S.; Suojaranta, R.; Vento, A.; Andersson, S.; Pettilä, V.; Schramko, A.; Pesonen, E. The origin of plasma neutrophil gelatinase-associated lipocalin in cardiac surgery. BMC Nephrol. 2019, 20, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexopoulos, N.; Raggi, P. Calcification in atherosclerosis. Nat. Rev. Cardiol. 2009, 6, 681–688. [Google Scholar] [CrossRef]
- Doherty, T.M.; Asotra, K.; Fitzpatrick, L.A.; Qiao, J.-H.; Wilkin, D.J.; Detrano, R.C.; Dunstan, C.R.; Shah, P.K.; Rajavashisth, T.B. Calcification in atherosclerosis: Bone biology and chronic inflammation at the arterial crossroads. Proc. Natl. Acad. Sci. USA 2003, 100, 11201–11206. [Google Scholar] [CrossRef]
- Osteoprotegerin-an Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/neuroscience/osteoprotegerin (accessed on 27 December 2022).
- Makarović, S.; Makarović, Z.; Steiner, R.; Mihaljević, I.; Milas-Ahić, J. Osteoprotegerin and Vascular Calcification: Clinical and Prognostic Relevance. Coll. Antropol. 2015, 39, 461–468. [Google Scholar]
- Sodek, J.; Ganss, B.; McKee, M.D. Osteopontin. Crit. Rev. Oral Biol. Med. 2000, 11, 279–303. [Google Scholar] [CrossRef] [PubMed]
- Osteopontin-an Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/medicine-and-dentistry/osteopontin (accessed on 27 December 2022).
- Noda, M.; Denhardt, D.T. Chapter 18-Osteopontin. In Principles of Bone Biology, 3rd ed.; Bilezikian, J.P., Raisz, L.G., Martin, T.J., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 351–366. ISBN 978-0-12-373884-4. [Google Scholar]
- Urien, S.; Brée, F.; Testa, B.; Tillement, J.P. pH-dependency of basic ligand binding to alpha 1-acid glycoprotein (orosomucoid). Biochem. J. 1991, 280 Pt 1, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Gunnarsson, P.; Levander, L.; Påhlsson, P.; Grenegård, M. alpha(1)-acid glycoprotein (AGP)-induced platelet shape change involves the Rho/Rho kinase signalling pathway. Thromb. Haemost. 2009, 102, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Role of Endothelial Dysfunction in Atherosclerosis|Circulation. Available online: https://www.ahajournals.org/doi/10.1161/01.cir.0000131515.03336.f8 (accessed on 3 January 2023).
- Chistiakov, D.A.; Sobenin, I.A.; Orekhov, A.N. Vascular extracellular matrix in atherosclerosis. Cardiol. Rev. 2013, 21, 270–288. [Google Scholar] [CrossRef] [PubMed]
- Laronha, H.; Caldeira, J. Structure and Function of Human Matrix Metalloproteinases. Cells 2020, 9, 1076. [Google Scholar] [CrossRef]
- Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front. Oncol. 2019, 9, 1370. [Google Scholar] [CrossRef] [Green Version]
- Satelli, A.; Li, S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell. Mol. Life Sci. CMLS 2011, 68, 3033–3046. [Google Scholar] [CrossRef] [Green Version]
- What Is Vimentin? Cancer Research from Technology Networks. Available online: http://www.technologynetworks.com/cancer-research/blog/what-is-vimentin-228332 (accessed on 30 December 2022).
- Wu, S.; Du, Y.; Beckford, J.; Alachkar, H. Upregulation of the EMT marker vimentin is associated with poor clinical outcome in acute myeloid leukemia. J. Transl. Med. 2018, 16, 170. [Google Scholar] [CrossRef] [Green Version]
- Gong, D.H.; Dai, Y.; Chen, S.; Wang, X.Q.; Yan, X.X.; Shen, Y.; Liu, J.; Yang, Z.K.; Hu, J.; Yu, L.J.; et al. Secretory vimentin is associated with coronary artery disease in patients and induces atherogenesis in ApoE−/− mice. Int. J. Cardiol. 2019, 283, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Beenken, A.; Mohammadi, M. The FGF family: Biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 2009, 8, 235–253. [Google Scholar] [CrossRef] [Green Version]
- Erben, R.G. Physiological Actions of Fibroblast Growth Factor-23. Front. Endocrinol. 2018, 9, 267. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; David, V.; Quarles, L.D. Regulation and function of the FGF23/klotho endocrine pathways. Physiol. Rev. 2012, 92, 131–155. [Google Scholar] [CrossRef] [Green Version]
- Funakoshi, H.; Nakamura, T. Hepatocyte growth factor: From diagnosis to clinical applications. Clin. Chim. Acta 2003, 327, 1–23. [Google Scholar] [CrossRef]
- Lievens, D.; von Hundelshausen, P. Platelets in atherosclerosis. Thromb. Haemost. 2011, 106, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Pierce, G.F.; Mustoe, T.A.; Altrock, B.W.; Deuel, T.F.; Thomason, A. Role of platelet-derived growth factor in wound healing. J. Cell. Biochem. 1991, 45, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Inaba, T.; Kawamura, M.; Gotoda, T.; Harada, K.; Shimada, M.; Ohsuga, J.; Shimano, H.; Akanuma, Y.; Yazaki, Y.; Yamada, N. Effects of Platelet-Derived Growth Factor on the Synthesis of Lipoprotein Lipase in Human Monocyte–Derived Macrophages. Arterioscler. Thromb. Vasc. Biol. 1995, 15, 522–528. [Google Scholar] [CrossRef]
- Britton, K.A.; Fox, C.S. Perivascular adipose tissue and vascular disease. Clin. Lipidol. 2011, 6, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Achari, A.E.; Jain, S.K. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. Int. J. Mol. Sci. 2017, 18, 1321. [Google Scholar] [CrossRef] [Green Version]
- Cloning of Adiponectin Receptors That Mediate Antidiabetic Metabolic Effects-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/12802337/ (accessed on 31 October 2022).
- Dornbush, S.; Aeddula, N.R. Physiology, Leptin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/books/NBK537038/ (accessed on 12 November 2022).
- Tripathi, D.; Kant, S.; Pandey, S.; Ehtesham, N.Z. Resistin in metabolism, inflammation, and disease. FEBS J. 2020, 287, 3141–3149. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.-M.; Kim, J.; Shin, D.; Kim, J.-Y.; You, J.; Lee, H.-C.; Jang, H.-D.; Kim, H.-S. Resistin impairs mitochondrial homeostasis via cyclase-associated protein 1-mediated fission, leading to obesity-induced metabolic diseases. Metabolism 2023, 138, 155343. [Google Scholar] [CrossRef]
- Fujinami, A.; Obayashi, H.; Ohta, K.; Ichimura, T.; Nishimura, M.; Matsui, H.; Kawahara, Y.; Yamazaki, M.; Ogata, M.; Hasegawa, G.; et al. Enzyme-linked immunosorbent assay for circulating human resistin: Resistin concentrations in normal subjects and patients with type 2 diabetes. Clin. Chim. Acta 2004, 339, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Van Gaal, L.F.; Mertens, I.L.; De Block, C.E. Mechanisms linking obesity with cardiovascular disease. Nature 2006, 444, 875–880. [Google Scholar] [CrossRef]
- D’amico, M.A.; Ghinassi, B.; Izzicupo, P.; Manzoli, L.; Di Baldassarre, A. Biological function and clinical relevance of chromogranin A and derived peptides. Endocr. Connect. 2014, 3, R45–R54. [Google Scholar] [CrossRef] [Green Version]
- Gut, P.; Czarnywojtek, A.; Fischbach, J.; Bączyk, M.; Ziemnicka, K.; Wrotkowska, E.; Gryczyńska, M.; Ruchała, M. Chromogranin A–unspecific neuroendocrine marker. Clinical utility and potential diagnostic pitfalls. Arch. Med. Sci. AMS 2016, 12, 1–9. [Google Scholar] [CrossRef]
- Syversen, U.; Ramstad, H.; Gamme, K.; Qvigstad, G.; Falkmer, S.; Waldum, H.L. Clinical significance of elevated serum chromogranin A levels. Scand. J. Gastroenterol. 2004, 39, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Echogenic Carotid Plaques Are Associated With Aortic Arterial Stiffness in Subjects With Subclinical Carotid Atherosclerosis|Hypertension. Available online: https://www.ahajournals.org/doi/full/10.1161/01.HYP.0000054978.86286.92 (accessed on 6 December 2022).
- Huang, X.; Zhang, Y.; Meng, L.; Abbott, D.; Qian, M.; Wong, K.K.L.; Zheng, R.; Zheng, H.; Niu, L. Evaluation of carotid plaque echogenicity based on the integral of the cumulative probability distribution using gray-scale ultrasound images. PLoS ONE 2017, 12, e0185261. [Google Scholar] [CrossRef] [Green Version]
- Ayada, C.; Toru, Ü.; Korkut, Y. Nesfatin-1 and its effects on different systems. Hippokratia 2015, 19, 4–10. [Google Scholar] [PubMed]
- Ding, S.; Qu, W.; Dang, S.; Xie, X.; Xu, J.; Wang, Y.; Jing, A.; Zhang, C.; Wang, J. Serum Nesfatin-1 is Reduced in Type 2 Diabetes Mellitus Patients with Peripheral Arterial Disease. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2015, 21, 987–991. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.; Li, X.; He, T.; Wang, Y.; Wang, Z.; Wang, S.; Xing, M.; Sun, W.; Ding, H. Decreased plasma nesfatin-1 levels in patients with acute myocardial infarction. Peptides 2013, 46, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Katan, M.; Luft, A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar] [CrossRef] [Green Version]
- Mott, M.; Koroshetz, W.; Wright, C.B. CREST-2: Identifying the Best Method of Stroke Prevention for Carotid Artery Stenosis. Stroke 2017, 48, e130–e131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US Preventive Services Task Force Screening for Asymptomatic Carotid Artery Stenosis: US Preventive Services Task Force Recommendation Statement. JAMA 2021, 325, 476–481. [CrossRef] [PubMed]
- Goessens, B.M.B.; Visseren, F.L.J.; Kappelle, L.J.; Algra, A.; van der Graaf, Y. Asymptomatic Carotid Artery Stenosis and the Risk of New Vascular Events in Patients With Manifest Arterial Disease. Stroke 2007, 38, 1470–1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gijsen, F.J.H.; Nieuwstadt, H.A.; Wentzel, J.J.; Verhagen, H.J.M.; van der Lugt, A.; van der Steen, A.F.W. Carotid Plaque Morphological Classification Compared With Biomechanical Cap Stress. Stroke 2015, 46, 2124–2128. [Google Scholar] [CrossRef] [Green Version]
- Falk, E. Why do plaques rupture? Circulation 1992, 86, III30–III42. [Google Scholar] [PubMed]
- Liu, R.; Chen, X.; Du, Y.; Yao, W.; Shen, L.; Wang, C.; Hu, Z.; Zhuang, R.; Ning, G.; Zhang, C.; et al. Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin. Chem. 2012, 58, 610–618. [Google Scholar] [CrossRef] [Green Version]
Title | Authors | Patients and Sample Size | Findings |
---|---|---|---|
Metabolomics Study in Severe Extracranial Carotid Artery Stenosis [17] | Tsong-Hai L. et al., 2019 | 130 male patients with at least one carotid artery stenosis ≥ 60% | CAS group had significantly lower levels of total cholesterol and high-density lipoprotein than healthy controls (p < 0.001). Homocysteine levels in CAS patients were higher than that in controls (p = 0.011) |
Paraoxonase-1 and Symptomatic Status in Carotid Artery Disease [18] | Lioudaki S. et al., 2020 | 74 patients undergoing CEA | Symptomatic CAS patients differed significantly in PON-1 levels compared to asymptomatic patients, with the symptomatic patients having lower PON-1 levels (5.3 ± 1.19 vs. 4.6 ± 1.36 ng/mL; p = 0.025). The AUC from ROC analysis was 0.654 (p = 0.023) |
Increased Serum CRP-Albumin Ratio Is Independently Associated with Severity of Carotid Artery Stenosis [19] | Yildirim T. et al., 2020 | 269 patients undergoing carotid angiography, split into group 1 (stenosis < 70%, n = 189) or group II (stenosis ≥ 70%, n = 80) | Group 2 had higher C-reactive protein to albumin ratio (CAR) compared to group 1 (0.56 ± 0.25 vs. 0.14 ± 0.01, p < 0.001). ROC curve demonstrated an AUC for the CAR to predict severe CAS was 0.798 (95% CI: 0.741–0.854, p < 0.001). CAR was an independent risk factor of severe CAS. |
Homocysteine and its Relationship to Asymptomatic Carotid Stenosis in a Chinese Community Population [20] | Jia J. et al., 2016 | 5393 participants, 361 of who were diagnosed with asymptomatic CAS | Asymptomatic CAS patients had higher Hcy than healthy controls. A cut of Hcy > 19.3 mumol/L independently predicted CAS (OR 2.89 (1.02–8.22) in DM vs. 1.42 (0.95–2.12) in non DM) |
Perivascular Adipose Adiponectin Correlates with Symptom Status of Patients Undergoing Carotid Endarterectomy [21] | Sharma G. et al., 2015 | 34 patients with CAS (19 asymptomatic and 15 symptomatic) | Symptomatic CAS patients had 1.9-fold higher adiponectin levels compared to asymptomatic patients (p = 0.005). |
The Relationship Between Nesfatin-1 and Carotid Artery Stenosis [22] | Kuyumcu A. et al., 2018 | Patients with no atherosclerotic plaques (n = 60), CAS < 60% (n = 60), and CAS ≥ 60% (n = 60). | Nesfatin-1 was lower in the CAS <60% group compared to healthy controls (p < 0.001). Serum nesfatin-1 levels were further reduced in the CAS ≥ 60% group versus the CAS < 60% group (p < 0.001). Serum nesfatin-1 levels were independently associated with CAS. Calcified plaque had higher nesfatin-1 levels compared no non-calcified plaque. |
Increased Levels of Legumain in Plasma and Plaques from Patients with Carotid Atherosclerosis [23] | Lunde N.N. et al., 2017 | 254 patients with CAS | Median plasma legumain levels were higher in patients with CAS compared to healthy controls (median 2.0 versus 1.5 ng/mL, respectively; p = 0.003), |
Levels of circulating neopterin in patients with severe carotid artery stenosis undergoing carotid stenting [24] | Chen Y.L. et al., 2014 | 50 patients with severe CAS undergoing stenting, age- and gender-matched acute ischemic stroke patients (n = 120) and control subjects (n = 33) | Neopterin was significantly higher in patients with CAS when compared to both ischemic stroke and healthy control patients (p < 0.001). Neopterin was significantly higher in ischemic stroke patients than controls (p < 0.001). |
Biomarkers of Asymptomatic Carotid Stenosis in Patients Undergoing Coronary Artery Bypass Grafting [25] | Kim S.J. et al., 2011 | 757 patients undergoing preoperative carotid artery duplex scanning | Lipoprotein(a), and homocysteine were independently associated with carotid stenosis of ≥ 50%. Odds ratio for lipoprotein(a), and homocysteine comparing the highest and lowest quartile was 2.17 (1.16 to 4.05), and 2.13 (1.20 to 3.79), respectively. |
Neutrophil Gelatinase Associated Lipocalin (NGAL) for Identification of Unstable Plaques in Patients with Asymptomatic Carotid Stenosis [26] | Eilenberg W. et al., 2019 | 83 patients with asymptomatic CAS | CAS patient with vulnerable plaques showed highest levels of NGAL and MMP-9/NGAL complex (p = 0.0003 and p = 0.0078, respectively). |
Significance of vitronectin and PAI-1 activity levels in carotid artery disease: comparison of symptomatic and asymptomatic patients [27] | Ekmekci H. et al., 2013 | 37 patients with CAS | PAI-1 activity levels were higher in asymptomatic CAS patients compared to symptomatic patients (p = 0.038). PAI-1 and vitronectin were also positively correlated in symptomatic CAS patients (r = 0.399, p = 0.039). |
Is serum pregnancy-associated plasma protein A really a potential marker of atherosclerotic carotid plaque stability? [28] | Heider P. et al., 2010 | 66 CAS patients (29 asymptomatic and 37 symptomatic) | PAPP-A was significantly higher in CAS patients with unstable plaques when compared to stable plaques (0.10 ± 0.06 vs. 0.07 ± 0.04 microg mL−1, p = 0.047). Asymptomatic patients also had higher levels of PAPP-A compared to symptomatic patients (0.11 ± 0.05 vs. 0.069 ± 0.09 microg mL−1, p = 0.025). |
Factor VII Activating Protease Expression in Human Platelets and Accumulation in Symptomatic Carotid Plaque [29] | Parahuleva M.S. et al., 2020 | 24 CAS patients (14 asymptomatic and 10 symptomatic) | FSAP levels were higher in symptomatic patients when compared to asymptomatic patients, both in plasma and carotid plaque. |
Association between carotid plaque vulnerability and high mobility group box-1 serum levels in a diabetic population [30] | Biscetti F. et al., 2021 | 873 diabetic patients, including 347 patients with CAS who underwent carotid endarterectomy and 526 diabetic patients without CAS | HMGB1 serum levels, osteoprotegerin, high-sensitivity C-reactive protein, tumor necrosis factor-alpha and interleukin-6, were significantly elevated in CAS patients with diabetes when compared to diabetic patients without CAS. HMGB1 and osteoprotegerin were independently associated with unstable plaque. |
Circulating serum fatty acid synthase is elevated in patients with diabetes and carotid artery stenosis and is LDL-associated [31] | De Silva G. et al., 2019 | 13 CAS patients with DM, 13 patients with CAS and no DM, 13 controls | cFAS levels were higher in CAS when compared to controls (p < 0.01). Patient with diabetes had higher cFAS than non-diabetic patients. |
A comparative study of carotid atherosclerotic plaque microvessel density and angiogenic growth factor expression in symptomatic versus asymptomatic patients [32] | Chowdhury M. et al., 2010 | 16 CAS patients (8 asymptomatic and 8 symptomatic) and 6 healthy age-matched controls. | HGF levels were higher in symptomatic CAS patients compared to asymptomatic CAS patients and healthy controls (p = 0.002). PDGF levels were lower in symptomatic CAS patients compared to asymptomatic CAS patients (p = 0.036). |
Increased circulating chemerin in patients with advanced carotid stenosis [33] | Kammerer A. et al., 2018 | 178 patients prior to carotid endarterectomy (CEA) and 163 age- and gender-matched controls | Chemerin levels were elevated in CAS patients compared to healthy controls (p < 0.001). There was no significant difference in Chemerin levels in asymptomatic CAS patients compared to symptomatic CAS patients. |
Plasma levels of vasostatin-1, a chromogranin A fragment, are associated with carotid artery maximum stenosis: A pilot study [34] | Bachetti T. et al., 2017 | 81 patients with asymptomatic CAS | CgA levels correlated with CAS severity (r = 0.349, p = 0.001 and r = 0.256, p = 0.021, respectively). Chromogranin fragment significantly predicted CAS severity (regression coefficient = 12.42, SE = 4.84, p = 0.012). |
Serum Osteoprotegerin Is Associated With Calcified Carotid Plaque: A Strobe-Compliant Observational Study [35] | Kwon A. et al., 2016 | 145 patients with CAS | Osteoprotegerin was significantly higher in CAS patients with carotid plaque when compared to healthy controls (p < 0.05). |
Serum lipopolysaccharide-binding protein as a marker of atherosclerosis [36] | Serrano M. et al., 2013 | 332 patients with CAS | LBP was associated with CAS intimal medial thickness (r = 0.27, p < 0.0001). LBP was f significantly higher in patients with carotid plaque (n = 50; 32.7 ± 12.5 vs. 28.7 ± 10.7; p = 0.021). |
High Levels of S100A12 Are Associated With Recent Plaque Symptomatology in Patients With Carotid Atherosclerosis [37] | Abbas A. et al., 2012 | 159 patients with CAS 22 healthy control | Calgranulins S100A12 was higher in patients with CAS compared to healthy control subjects. |
Circulating lipoprotein-associated phospholipase A2 in high-grade carotid stenosis: a new biomarker for predicting unstable plaque [38] | Sarlon-Bartoli G. et al., 2012 | 42 patients with CAS | CAS patients with unstable plaque had significantly higher median levels of Lp-PLA2 compared to CAS patients with stable plaque (222.4 (174.9–437.5). Lp-PLA2 was higher in asymptomatic CAS patients with unstable plaque (226.8 ng/mL (174.9–437.5) when compared to asymptomatic CAS patients with stable plaque (206.9 ng/mL (174.9–270.6) (p = 0.16). |
Variance in Biomarker Usefulness as Indicators for Carotid and Coronary Atherosclerosis [39] | Pearl M. et al., 2016 | 522 patients, 77 of which had CAS > 50% | Patients with significant carotid stenosis had higher levels of hs-CRP (9.4 ± 17 vs. 6.3 ± 13 mg/L, p = 0.001 compared to healthy controls |
The value of C-reactive protein in symptomatic versus asymptomatic carotid artery stenosis [40] | Guven H. et al., 2013 | 48 patients with CAS (16 asymptomatic and 21 symptomatic patients) and 22 healthy controls | Hs-CRP was significantly elevated in CAS patient, both symptomatic (p = 0.001) and asymptomatic (p < 0.001) patients compared to healthy controls. There was no significant difference between CAS patients with asymptomatic and symptomatic disease. |
Elevated circulating metalloproteinase 7 predicts recurrent cardiovascular events in patients with carotid stenosis: a prospective cohort study [41] | Moreno-Ajona D. et al., 2020 | 31 patients with CAS | MMP-1, 7 and 10 were significantly elevated in patients with CAS compared to healthy controls. Circulating MMP-7 was an independent predictor of CAS (HR = 1.15 p = 0.006). |
MMP-12 and TIMP Behavior in Symptomatic and Asymptomatic Critical Carotid Artery Stenosis [42] | Del Porto F. et al., 2017 | 40 patients with CAS (30 asymptomatic, and 10 symptomatic patients) and 31 controls | MMP-12 was elevated and TIMPS was decreased in patients with CAS. TIMPS levels were higher in patients with symptomatic CAS compared to asymptomatic CAS patients. |
Serum leptin levels in patients undergoing carotid endarterectomy: a pilot study [43] | Bountouris I. et al., 2010 | 74 patients undergoing CEA with >70% stenosis | Leptin levels were decreased in symptomatic CAS patient s compared to asymptomatic CAS patients. Interleukin-6 levels were elevated in symptomatic patients. Leptin and IL-6 were independent predictors of symptomatic CAS. |
Orosomucoid, Carotid Plaque, and Incidence of Stroke [44] | Berntsson J. et al., 2016 | 4285 subjects without cardiovascular disease undergoing carotid ultrasound | Patient with carotid plaque has significantly higher levels of Orosomucoid compared to healthy controls (mean ± SD: 0.72 ± 0.22 versus 0.69 ± 0.20 g/L; p < 0.001). Orosomucoid was associated with stroke with a HR of1.48 comparing the highest and lowest tertile. |
Serum levels of osteopontin predict major adverse cardiovascular events in patients with severe carotid artery stenosis [45] | Carbone F. et al., 2018 | 225 patients with CAS (185 asymptomatic and 40 symptomatic patients) | OPN was significantly increased (almost 2-fold), in patients with symptomatic CAS. OPN levels > 70 ng/mL was significantly associated with MACEs at a 24-month. |
FGF-23 levels in patients with critical carotid artery stenosis [46] | Del Porto F. et al., 2015 | 35 patients with severe CAS | FGF-23 is significantly elevated in CAS patients with complicated plaque compared to patients with non-complicated plaque at first follow-up (p < 0.05) and second follow up (p = 0.0047). |
Inflammatory biomarkers in atherosclerosis: pentraxin 3 can become a novel marker of plaque vulnerability [47] | Shindo A. et al., 2014 | 58 patients with CAS | PTX3 levels CAS patients with vulnerable plaque when compared to patients with stable plaque. |
Lipoprotein Associated Phospholipase A2 as a Marker of Vulnerable Atherosclerotic Plaque In Patients With Internal Carotid Artery Stenosis [48] | Stefanic P. et al., 2017 | 70 patients with CAS (40 asymptomatic and 30 symptomatic patients) | There were significantly higher levels of Lp-PLA2 (p < 0.001) in CAS patients with soft plaque versus patients with stable plaque. |
Lp-PLA2 evaluates the severity of carotid artery stenosis and predicts the occurrence of cerebrovascular events in high stroke-risk populations [49] | Zhang F. et al., 2021 | 823 patients at a high risk of stroke | Lp-PLA2 was significantly higher in CAS patients compared to healthy controls, and was also elevated in patients who had an adverse event compared to patients with no events (p < 0.05). Lp-PLA2 was also positively correlated with the degree of CAS (r = 0.093, p = 0.07). When comparing the highest and lowest quartiles for LP-PLA2 levels, there was 10.170 times higher risk of events for the highest quartile (OR = 10.170, 95% CI 1.302–79.448, p = 0.027). |
COMP (Cartilage Oligomeric Matrix Protein) NeoepitopeA Novel Biomarker to Identify Symptomatic Carotid Stenosis [50] | Sandstedt et al., 2021 | 50 symptomatic patients with CAS, 50 patients with stroke without CAS but small plaques, and 50 controls | COMPneo was higher and in patients with CAS compared to controls. COMPneo was independently predictive of CAS |
Circulating Chemerin Is Associated With Carotid Plaque Instability, Whereas Resistin Is Related to Cerebrovascular Symptomatology [51] | Gasbarrino K. et al., 2016 | 165 patient with CAS undergoing CEA | Chemerin and leptin levels were significantly associated with plaque instability. Resistin was significantly higher in symptomatic CAS patients when compared with asymptomatic CAS patients (p = 0.001). Higher resistin levels were also associated with increased risk of cerebrovascular symptomatology (adjusted OR 1.264, 95% CI: 1.004–1.594). |
Plasma sICAM-1 as a Biomarker of Carotid Plaque Inflammation in Patients with a Recent Ischemic Stroke [52] | Puig N. et al., 2022 | 64 patients with CAS | Soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular adhesion molecule-1 (sVCAM-1), and fractalkine (FKN) were independently associated with plaque inflammation (beta = 0.121, 95% CI 0.061–0.181, p < 0.001; beta = 0.144, 95% CI 0.012–0.276, p = 0.033; beta = 0.136, 95% CI 0.037–0.235, p = 0.008). |
Circulating Vimentin Is Associated With Future Incidence of Stroke in a Population-Based Cohort Study [53] | Xiao J. et al., 2021 | 4688 patients with and without CAS | CAS patients in the highest quartile of vimentin had significantly increased risk of stroke compared to the group with lowest quartile (HR, 1.32 [95% CI, 1.02–1.70]). Higher levels of vimentin were also significantly associated with increased occurrence of plaque. |
Elevated Lp(a) (Lipoprotein[a]) Levels Increase Risk of 30-Day Major Adverse Cardiovascular Events in Patients Following Carotid Endarterectomy [54] | Waissi, F. et al., 2020 | 944 patients with CAS undergoing CEA | >137 nmol/L of Lp(a) was significantly associated with an increased risk of 30-day MACE after CEA. |
Association between Circulatory and Plaque Resistin Levels with Carotid Plaque Instability and Ischemic Stroke Events [55] | Jurin I. et al., 2018 | 78 patients with CAS (38 asymptomatic and 40 symptomatic patients) | Resistin was significantly higher in CAS patient with unstable plaque (p < 0.001) in both serum and within atherosclerotic plaque. Patients with ischemic stroke also had significantly higher resistin levels (p < 0.001) |
N-terminal pro B-type natriuretic peptide (NT pro-BNP) is a predictor of long-term survival in male patients of 75 years and older with high-grade asymptomatic internal carotid artery stenosis [56] | Duschek N. et al., 2011 | 205 with asymptomatic CAS undergoing CEA | High NT pro-BNP concentration were significantly associated with increased long-term mortality in male patients. |
Inflammatory mediators and cerebral embolism in carotid stenting: new markers of risk [57] | Pini R. et al., 2013 | 20 patients with CAS | Hs-CRP ≥ 5 mg/L was significantly associated with a higher number of new cerebral lesions [16.2 ± 10.7 vs. 4.3 ± 3.4 for hs-CRP < 5 mg/L (p = 0.02). |
Circulating Biomarkers Predict Symptomatic but Not Asymptomatic Carotid Artery Stenosis [58] | Fatemi S. et al., 2022 | 5550 patients without CAS | NT pro-BNP (HR: 1.59; 95% CI: 1.20–2.11), and CRP (HR 1.53; CI: 1.13–1.73) were significantly associated with symptomatic CAS. |
Serum PCSK9 levels predict the occurrence of acute coronary syndromes in patients with severe carotid artery stenosis [59] | Liberale L. et al., 2018 | 189 patients with severe CAS undergoing CEA | PCSK9 could accurately predict patients with asymptomatic CAS (AUC: 0.719 [95% CI 0.649–0.781]). Patients with PCSK9 > 431.3 ng/mL were at a greater risk of ACS occurrence (p = 0.0003). This cut off could predict risk of ACS (HR 17.04 [95% CI 3.34–86.81]; p = 0.001). |
Relationship between ADAMTS4 and carotid atherosclerotic plaque vulnerability in humans [60] | Dong H. et al., 2018 | 48 patients with CAS undergoing carotid endarterectomy | CAS patients with vulnerable plaque has significantly higher levels of ADAMTS4 in both serum and plaque compared to CAS patients with stable plaque (p = 0.004 and p = 0.021). |
NGAL and MMP-9/NGAL as biomarkers of plaque vulnerability and targets of statins in patients with carotid atherosclerosis [61] | Eilenberg W. et al., 2017 | 136 patients with CAS | NGAL and MMP-9/NGAL complex levels were significantly higher in CAS patients with vulnerable plaques (p < 0.001), and significantly higher in symptomatic CAS patients compared to asymptomatic patients (p < 0.001). NGAL was independently associated with symptomatic CAS. |
Pro B-type Natriuretic Peptide and Midregional Proadrenomedullin are Associated with Incident Carotid Stenosis During Long Term Follow-up [62] | Fatemi S. et al., 2021 | 5550 patients without CAS | NT Pro BNP was independently associated with CAS (HR 1.36; 95% CI 1.12–1.65; p = 0.002). |
Von Willebrand Factor Antigen Levels Predict major adverse cardiovascular events in patients with carotid stenosis of the ICARAS study [63] | Kovacevic K et al., 2019 | 811 Caucasian patients with CAS | Levels of VWF:Ag predicted future cardiovascular events in patients with CAS. Patients with highest VWF:Ag concentrations has significantly higher rates of cardiovascular events (HR 2.15 (95% CI: 1.46–3.16; p < 0.001). |
High Plasma Adiponectin Concentration is Associated with All-Cause Mortality in Patients with Carotid Atherosclerosis [64] | Persson J. et al., 2012 | 292 patients with CAS undergoing CEA | High adiponectin levels were significantly associated with increased mortality (HR per standard deviation (SD) increase in adiponectin: 1.46, 95% CI: 1.14–1.86). |
Combined Effects of Inflammatory Status and Carotid Atherosclerosis [65] | Mayer F.J. et al., 2016 | 1065 patients with asymptomatic CAS | Elevated hsCRP levels were significantly associated with an increased risk of all-cause (adjusted HR per increase of 1 mg/dL of hsCRP levels; 1.47, p < 0.001). |
Inflammatory Markers in Patients with Internal Carotid Artery Stenosis [66] | Puz P. et al., 2013 | 65 patients with CAS and 30 healthy controls | Interleukin-6, fibrinogen, ESR and CRP were significantly higher in patients with CAS compared to healthy controls (p = 0.001, p = 0.009, p = 0.036, p = 0.009, respectively). CAS patients with unstable plaque had significantly elevated levels of TNF-α, interleukin-6, fibrinogen, and higher CRP values compared to CAS patients with stable plaques (p < 0.05). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, H.; Shaikh, F.; Syed, M.H.; Mamdani, M.; Saposnik, G.; Qadura, M. Current Biomarkers for Carotid Artery Stenosis: A Comprehensive Review of the Literature. Metabolites 2023, 13, 919. https://doi.org/10.3390/metabo13080919
Khan H, Shaikh F, Syed MH, Mamdani M, Saposnik G, Qadura M. Current Biomarkers for Carotid Artery Stenosis: A Comprehensive Review of the Literature. Metabolites. 2023; 13(8):919. https://doi.org/10.3390/metabo13080919
Chicago/Turabian StyleKhan, Hamzah, Farah Shaikh, Muzammil H. Syed, Muhammad Mamdani, Gustavo Saposnik, and Mohammad Qadura. 2023. "Current Biomarkers for Carotid Artery Stenosis: A Comprehensive Review of the Literature" Metabolites 13, no. 8: 919. https://doi.org/10.3390/metabo13080919
APA StyleKhan, H., Shaikh, F., Syed, M. H., Mamdani, M., Saposnik, G., & Qadura, M. (2023). Current Biomarkers for Carotid Artery Stenosis: A Comprehensive Review of the Literature. Metabolites, 13(8), 919. https://doi.org/10.3390/metabo13080919