Metformin Can Attenuate Beta-Cell Hypersecretion—Implications for Treatment of Children with Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Islet Study
2.1.1. Human Islet Culture
2.1.2. Palmitate and Metformin Preparation
2.1.3. Human Islet Culture and Glucose-Stimulated Insulin Secretion (GSIS)
2.1.4. Insulin Measurements
2.1.5. Protein Measurements
2.2. Patient Study
2.2.1. Participants
2.2.2. Venous Blood Samples and OGTT
2.3. Ethics
2.4. Calculations and Statistical Analyses
3. Results
3.1. Human Islet Study
3.1.1. Metformin Increases Insulin Secretion from Isolated Human Islets with Declining Secretory Function
3.1.2. Metformin Reduces Insulin Hypersecretion from Isolated Human Islets with Maintained Secretory Function
3.2. Patient Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 19 October 2021).
- Wolpert, M. Rethinking public mental health: Learning from obesity. Lancet Psychiatry 2018, 5, 458–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarma, S.; Sockalingam, S.; Dash, S. Obesity as a multisystem disease: Trends in obesity rates and obesity-related complications. Diabetes Obes. Metab. 2021, 23, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Forslund, A.; Staaf, J.; Kullberg, J.; Ciba, I.; Dahlbom, M.; Bergsten, P. Uppsala Longitudinal Study of Childhood Obesity: Protocol Description. Pediatrics 2014, 133, e386–e393. [Google Scholar] [CrossRef] [Green Version]
- Astley, C.M.; Todd, J.N.; Salem, R.M.; Vedantam, S.; Ebbeling, C.B.; Huang, P.L.; Ludwig, D.S.; Hirschhorn, J.N.; Florez, J.C. Genetic Evidence That Carbohydrate-Stimulated Insulin Secretion Leads to Obesity. Clin. Chem. 2018, 64, 192–200. [Google Scholar] [CrossRef]
- Staaf, J.; Ubhayasekera, S.J.; Sargsyan, E.; Chowdhury, A.; Kristinsson, H.; Manell, H.; Bergquist, J.; Forslund, A.; Bergsten, P. Initial hyperinsulinemia and subsequent β-cell dysfunction is associated with elevated palmitate levels. Pediatr. Res. 2016, 80, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Seino, S.; Shibasaki, T.; Minami, K. Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J. Clin. Investig. 2011, 121, 2118–2125. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.M.; Wellberg, E.A.; Kopp, J.L.; Johnson, J.D. Hyperinsulinemia in Obesity, Inflammation, and Cancer. Diabetes Metab. J. 2021, 45, 285–311. [Google Scholar] [CrossRef]
- Sargsyan, E.; Cen, J.; Roomp, K.; Schneider, R.; Bergsten, P. Identification of early biological changes in palmitate-treated isolated human islets. BMC Genom. 2018, 19, 629. [Google Scholar] [CrossRef] [Green Version]
- Bacha, F.; Lee, S.; Gungor, N.; Arslanian, S.A. From pre-diabetes to type 2 diabetes in obese youth: Pathophysiological characteristics along the spectrum of glucose dysregulation. Diabetes Care 2010, 33, 2225–2231. [Google Scholar] [CrossRef] [Green Version]
- Cen, J.; Sargsyan, E.; Forslund, A.; Bergsten, P. Mechanisms of beneficial effects of metformin on fatty acid-treated human islets. J. Mol. Endocrinol. 2018, 61, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Villaescusa, B.; Cañete, M.D.; Caballero-Villarraso, J.; Hoyos, R.; Latorre, M.; Vázquez-Cobela, R.; Plaza-Díaz, J.; Maldonado, J.; Bueno, G.; Leis, R.; et al. Metformin for Obesity in Prepubertal and Pubertal Children: A Randomized Controlled Trial. Pediatrics 2017, 140, e20164285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenlid, R.; Olsson, D.; Cen, J.; Manell, H.; Haglind, C.; Chowdhury, A.I.; Bergsten, P.; Nordenström, A.; Halldin, M. Altered mitochondrial metabolism in peripheral blood cells from patients with inborn errors of β-oxidation. Clin. Transl. Sci. 2022, 15, 182–194. [Google Scholar] [CrossRef]
- Gormsen, L.C.; Sundelin, E.I.; Jensen, J.B.; Vendelbo, M.H.; Jakobsen, S.; Munk, O.L.; Jessen, N. In Vivo Imaging of Human 11C-Metformin in Peripheral Organs: Dosimetry, Biodistribution, and Kinetic Analyses. J. Nucl. Med. 2016, 57, 1920–1926. [Google Scholar] [CrossRef] [Green Version]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia. Available online: https://www.who.int/publications/i/item/definition-and-diagnosis-of-diabetes-mellitus-and-intermediate-hyperglycaemia (accessed on 21 April 2006).
- Tricò, D.; Natali, A.; Arslanian, S.; Mari, A.; Ferrannini, E. Identification, pathophysiology, and clinical implications of primary insulin hypersecretion in nondiabetic adults and adolescents. JCI Insight 2018, 3, 124912. [Google Scholar] [CrossRef] [Green Version]
- Esser, N.; Utzschneider, K.M.; Kahn, S.E. Early beta cell dysfunction vs. insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia 2020, 63, 2007–2021. [Google Scholar] [CrossRef]
- Mittendorfer, B.; Patterson, B.W.; Smith, G.I.; Yoshino, M.; Klein, S. β Cell function and plasma insulin clearance in people with obesity and different glycemic status. J. Clin. Investig. 2022, 132, e154068. [Google Scholar] [CrossRef] [PubMed]
- Le Stunff, C.; Bougnères, P. Early changes in postprandial insulin secretion, not in insulin sensitivity, characterize juvenile obesity. Diabetes 1994, 43, 696–702. [Google Scholar] [CrossRef]
- Zeitler, P. Progress in understanding youth-onset type 2 diabetes in the United States: Recent lessons from clinical trials. World J. Pediatr. 2019, 15, 315–321. [Google Scholar] [CrossRef]
- Sam, S.; Edelstein, S.L.; Arslanian, S.A.; Barengolts, E.; Buchanan, T.A.; Caprio, S.; Ehrmann, D.A.; Hannon, T.S.; Tjaden, A.H.; Kahn, S.E.; et al. Baseline Predictors of Glycemic Worsening in Youth and Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes in the Restoring Insulin Secretion (RISE) Study. Diabetes Care 2021, 44, 1938–1947. [Google Scholar] [CrossRef]
- Atabek, M.E.; Pirgon, O. Use of metformin in obese adolescents with hyperinsulinemia: A 6-month, randomized, double-blind, placebo-controlled clinical trial. J. Pediatr. Endocrinol. Metab. 2008, 21, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, S.; L’Allemand, D.; Hübel, H.; Krude, H.; Bürmann, M.; Martus, P.; Grüters, A.; Holl, R.W. Metformin and placebo therapy both improve weight management and fasting insulin in obese insulin-resistant adolescents: A prospective, placebo-controlled, randomized study. Eur. J. Endocrinol. 2010, 163, 585–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelsey, M.M.; Hilkin, A.; Pyle, L.; Severn, C.; Utzschneider, K.; Van Pelt, R.E.; Zeitler, P.S.; Nadeau, K.J. Two-Year Treatment With Metformin During Puberty Does Not Preserve β-Cell Function in Youth With Obesity. J. Clin. Endocrinol. Metab. 2021, 106, e2622–e2632. [Google Scholar] [CrossRef] [PubMed]
- TODAY Study Group. Effects of metformin, metformin plus rosiglitazone, and metformin plus lifestyle on insulin sensitivity and β-cell function in TODAY. Diabetes Care 2013, 36, 1749–1757. [Google Scholar] [CrossRef] [Green Version]
- Kitabchi, A.E.; Temprosa, M.; Knowler, W.C.; Kahn, S.E.; Fowler, S.E.; Haffner, S.M.; Shamoon, H. Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: Effects of lifestyle intervention and metformin. Diabetes 2005, 54, 2404–2414. [Google Scholar]
- RISE Consortium; RISE Consortium Investigators. Effects of Treatment of Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes with Metformin Alone or in Combination with Insulin Glargine on β-Cell Function: Comparison of Responses In Youth And Adults. Diabetes 2019, 68, 1670–1680. [Google Scholar]
- Prentki, M.; Peyot, M.L.; Masiello, P.; Madiraju, S.R.M. Nutrient-Induced Metabolic Stress, Adaptation, Detoxification, and Toxicity in the Pancreatic β-Cell. Diabetes 2020, 69, 279–290. [Google Scholar] [CrossRef]
- Schorn, S.; Dicke, A.-K.; Neugebauer, U.; Schröter, R.; Friedrich, M.; Reuter, S.; Ciarimboli, G. Expression and Function of Organic Cation Transporter 2 in Pancreas. Front. Cell Dev. Biol. 2021, 9. Available online: https://www.frontiersin.org/articles/10.3389/fcell.2021.688885 (accessed on 17 October 2022). [CrossRef]
- Patanè, G.; Piro, S.; Rabuazzo, A.M.; Anello, M.; Vigneri, R.; Purrello, F. Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: A direct metformin effect on pancreatic beta-cells. Diabetes 2000, 49, 735–740. [Google Scholar] [CrossRef] [Green Version]
- da Silva Xavier, G.; Leclerc, I.; Varadi, A.; Tsuboi, T.; Moule, S.K.; Rutter, G.A. Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem. J. 2003, 371 Pt 3, 761–774. [Google Scholar] [CrossRef]
- Huang, H.; Lorenz, B.R.; Zelmanovitz, P.H.; Chan, C.B. Metformin Preserves β-Cell Compensation in Insulin Secretion and Mass Expansion in Prediabetic Nile Rats. Int. J. Mol. Sci. 2021, 22, 421. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, P.; Del Guerra, S.; Marselli, L.; Lupi, R.; Masini, M.; Pollera, M.; Bugliani, M.; Boggi, U.; Vistoli, F.; Mosca, F.; et al. Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J. Clin. Endocrinol. Metab. 2004, 89, 5535–5541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon-Szabó, L.; Kokas, M.; Mandl, J.; Kéri, G.; Csala, M. Metformin Attenuates Palmitate-Induced Endoplasmic Reticulum Stress, Serine Phosphorylation of IRS-1 and Apoptosis in Rat Insulinoma Cells. PLoS ONE 2014, 9, e97868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reducing (n = 9) | Increasing (n = 12) | p Value | |
---|---|---|---|
Gender (F/M) | 3/6 | 2/10 | 0.61 |
Pubertal Status (Pre-puberty/puberty) | 2/7 | 4/8 | 0.66 |
Initial treatment age (years) | 13.8 ± 1.9 | 13.9 ± 1.7 | 0.96 |
Time between OGTTs (years) | 1.2 ± 0.5 | 1.3 ± 0.8 | 0.46 |
Dosage (mg/kg/d) | 38.8 ± 9.2 | 43.9 ± 13.6 | 0.34 |
Glucose Tolerance Status, n (%) | |||
NGT | 2(22) | 3(25) | |
IGT | 6(67) | 6(50) | |
IFG | 1(11) | 3(25) |
Reducing (n = 9) | Increasing (n = 12) | |||||
---|---|---|---|---|---|---|
Before | After | p Value | Before | After | p Value | |
OGTT-Based Insulin Parameter | ||||||
Fasting insulin (pmol/L) | 297 (174, 542) | 217 (113, 476) | 0.09 | 251 (120, 590) | 282 (94, 590) | 0.33 |
2 h insulin (pmol/L) | 1884 (750, 3382) | 1112 ** (257, 2695) | 0.003 | 1469 (347, 4167) | 1737 (333, 3320) | 0.24 |
Insulin-AUC0–120 (nmol/L × in) | 142 (91, 221) | 108 ** (51, 172) | 0.004 | 112 (38, 252) | 189 ** (68, 400) | 0.002 |
Insulin-AUC0–30 (nmol/L × min) | 17 (6, 35) | 15 (7, 27) | 0.24 | 19 (5, 36) | 27 (6, 69) | 0.07 |
Insulin-AUC30–120 (nmol/L × min) | 125 (81, 198) | 96 ** (42, 166) | 0.006 | 93 (24, 227) | 161 ** (36, 331) | 0.003 |
Peak time of insulin OGTT (min) | 83 ± 39 | 48 ± 28 * | 0.02 | 65 ± 42 | 61 ± 39 | 0.81 |
OGTT-Based Glucose Parameters | ||||||
Fasting glucose (mmol/L) | 6.0 (5.4, 7) | 5.8 (5.1, 6.5) | 0.20 | 5.9 (5.3, 6.6) | 5.9 (5.3, 6.5) | 0.69 |
2 h glucose (mmol/L) | 8.9 (7.1, 11) | 7.7 * (5.7, 10.1) | 0.03 | 8.0 (6.4, 10.6) | 7.7 (5.2, 11.4) | 0.63 |
Glucose-AUC0–120 (mmol/L × min) | 326 (170, 618) | 313 (179, 489) | 0.73 | 254 (122, 419) | 299 (−36, 496) | 0.27 |
Glucose-AUC0–30 (mmol/L × min) | 42 (11, 67) | 43 (23, 64) | 0.78 | 43 (21, 78) | 48 (20, 86) | 0.47 |
Glucose-AUC30–120 (mmol/L × min) | 284 (117, 578) | 270 (146, 450) | 0.68 | 211 (84, 378) | 251 (−63, 440) | 0.06 |
Peak time of glucose OGTT (min) | 63 ± 32 | 48 ± 28 | 0.13 | 56 ± 36 | 51 ± 30 | 0.72 |
Glycaemic Characteristics | ||||||
HbA1c% (mmol/mol) | 5.4 ± 0.1 (35.6 ± 1.4) | 5.4 ± 0.1 (35.4 ± 2.0) | 0.83 | 5.5 ± 0.4 (36.7 ± 4.7) | 5.5 ± 0.5 (36.4 ± 5.7) | 0.62 |
Lipids (mmol/L) | ||||||
Total Cholesterol | 4.4 ± 0.8 | 4.1 ± 0.8 | 0.29 | 4.1 ± 0.8 | 4.0 ± 0.8 | 0.40 |
LDL-C | 2.9 ± 0.7 | 2.7 ± 0.7 | 0.62 | 2.5 ± 0.7 | 2.3 ± 0.8 | 0.55 |
HDL-C | 0.9 ± 0.3 | 1.0 ± 0.1 | 0.52 | 1.1 ± 0.2 | 1.0 ± 0.2 | 0.24 |
Triglyceride | 1.5 ± 0.8 | 1.2 ± 0.5 * | 0.02 | 1.7 ± 1.0 | 1.7 ± 1.3 | 0.83 |
BMI-SDS | 3.1± 0.2 | 2.9± 0.3 | 0.14 | 3.3± 0.4 | 3.4± 0.5 | 0.52 |
Beta-Cell Function and Insulin Resistance Index | ||||||
Insulinogenic index (pmol/L per mmol/L) | 423.9 (238.4, 814.5) | 406.8 (179.1, 1116.9) | 0.81 | 411.6 (95.8, 658.8) | 808.1 (188.4, 2710.9) | 0.07 |
Oral Disposition Index | 1.6 (0.5, 4.2) | 2.2 (0.4, 4.8) | 0.25 | 2.0 (0.2, 3.8) | 4.6 (0.9, 25.4) | 0.09 |
Insulin-AUC0–120/Glucose-AUC0–120 (pmol/L per mmol/L) | 473.3 (293.2, 800.8) | 353.1 * (230.2, 515.2) | 0.003 | 419.9 (214.7, 696.3) | 772.7 * (212.4, 1886.5) | 0.004 |
HOMA-IR (µIU/mL × mmol/L) | 11.4 (6.1, 22.7) | 8.2 (4.1, 18.7) | 0.12 | 9.6 (4.6, 23.0) | 10.7 (3.8, 24.6) | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Q.; Stenlid, R.; Chowdhury, A.I.; Ciba, I.; Aydin, B.; Cerenius, S.Y.; Manell, H.; Forslund, A.; Bergsten, P. Metformin Can Attenuate Beta-Cell Hypersecretion—Implications for Treatment of Children with Obesity. Metabolites 2023, 13, 917. https://doi.org/10.3390/metabo13080917
Wen Q, Stenlid R, Chowdhury AI, Ciba I, Aydin B, Cerenius SY, Manell H, Forslund A, Bergsten P. Metformin Can Attenuate Beta-Cell Hypersecretion—Implications for Treatment of Children with Obesity. Metabolites. 2023; 13(8):917. https://doi.org/10.3390/metabo13080917
Chicago/Turabian StyleWen, Quan, Rasmus Stenlid, Azazul Islam Chowdhury, Iris Ciba, Banu Aydin, Sara Y. Cerenius, Hannes Manell, Anders Forslund, and Peter Bergsten. 2023. "Metformin Can Attenuate Beta-Cell Hypersecretion—Implications for Treatment of Children with Obesity" Metabolites 13, no. 8: 917. https://doi.org/10.3390/metabo13080917
APA StyleWen, Q., Stenlid, R., Chowdhury, A. I., Ciba, I., Aydin, B., Cerenius, S. Y., Manell, H., Forslund, A., & Bergsten, P. (2023). Metformin Can Attenuate Beta-Cell Hypersecretion—Implications for Treatment of Children with Obesity. Metabolites, 13(8), 917. https://doi.org/10.3390/metabo13080917