Solid-State NMR-Based Metabolomics Imprinting Elucidation in Tissue Metabolites, Metabolites Inhibition, and Metabolic Hub in Zebrafish by Chitosan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Animal Maintenance
2.3. Experimental Design and Standard Samples
2.4. Sample Preparation for Solid-State 1H-NMR Analysis
2.5. Solid-State NMR Spectroscopy Data Acquisition and Processing Parameters
2.6. Analytical Validation of Solid-State 1H-NMR, Data Handling, and Processing
2.7. Validation of Metabolic Pathways
2.8. Statistical Analysis
3. Results
3.1. High-Cover Metabolomics of Chitosan in Zebrafish
3.2. Metabolic Discrimination of Chitosan Groups in Zebrafish
3.3. Exploration and Discrimination of Metabolites in Zebrafish Tissue
3.4. Metabolic Parthways Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, M.; Wang, T.; Pang, J.; Chen, X.; Liu, Y. Hydroxybutyl chitosan centered biocomposites for potential curative applications: A critical review. Biomacromolecules 2020, 21, 1351–1367. [Google Scholar] [CrossRef] [PubMed]
- Chuan, D.; Jin, T.; Fan, R.; Zhou, L.; Guo, G. Chitosan for gene delivery: Methods for improvement and applications. Adv. Colloid Interface Sci. 2019, 268, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, D.G.; Yaneva, Z.L. Antioxidant properties and redox-modulating activity of chitosan and its derivatives: Biomaterials with application in cancer therapy. BioRes. Open Access 2020, 9, 64–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci. 2020, 21, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Rashidpour, A.; Almajano, M.P.; Metón, I. Chitosan-based drug delivery system: Applications in fish biotechnology. Polymers 2020, 12, 1177. [Google Scholar] [CrossRef]
- Carreno-Gomez, B.; Duncan, R. Evaluation of the biological properties of soluble chitosan and chitosan microspheres. Int. J. Pharm. 1997, 148, 231–240. [Google Scholar] [CrossRef]
- Kean, T.; Roth, S.; Thanou, M. Trimethylated chitosans as non-viral gene delivery vectors: Cytotoxicity and transfection efficiency. J. Control. Release 2005, 103, 643–653. [Google Scholar] [CrossRef]
- Kean, T.; Thanou, M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 2010, 62, 3–11. [Google Scholar] [CrossRef]
- Mao, S.; Shuai, X.; Unger, F.; Wittmar, M.; Xie, X.; Kissel, T. Synthesis, characterization and cytotoxicity of poly (ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials 2005, 26, 6343–6356. [Google Scholar] [CrossRef]
- Opanasopit, P.; Aumklad, P.; Kowapradit, J.; Ngawhiranpat, T.; Apirakaramwong, A.; Rojanarata, T.; Puttipipatkhachorn, S. Effect of salt forms and molecular weight of chitosans on in vitro permeability enhancement in intestinal epithelial cells (caco-2). Pharm. Dev. Technol. 2007, 12, 447–455. [Google Scholar] [CrossRef]
- Ye, Y.Q.; Chen, F.Y.; Wu, Q.a.; Hu, F.Q.; Du, Y.Z.; Yuan, H.; Yu, H.Y. Enhanced cytotoxicity of core modified chitosan based polymeric micelles for doxorubicin delivery. J. Pharm. Sci. 2009, 98, 704–712. [Google Scholar] [CrossRef]
- Yu, T.; Wang, Y.; Chen, S.; Hu, M.; Wang, Z.; Wu, G.; Ma, X.; Chen, Z.; Zheng, C. Low-molecular-weight chitosan supplementation increases the population of prevotella in the cecal contents of weanling pigs. Front. Microbiol. 2017, 8, 2182. [Google Scholar] [CrossRef]
- Li, R.; Zhou, Y.; Ji, J.; Wang, L. Oxidative damages by cadmium and the protective effects of low-molecular-weight chitosan in the freshwater crab (sinopotamon yangtsekiense bott 1967). Aquac. Res. 2011, 42, 506–515. [Google Scholar] [CrossRef]
- Liu, S.-H.; Chiu, C.-Y.; Shi, C.-M.; Chiang, M.-T. Functional comparison of high and low molecular weight chitosan on lipid metabolism and signals in high-fat diet-fed rats. Mar. Drugs 2018, 16, 251. [Google Scholar] [CrossRef] [Green Version]
- Bullock, G.; Blazer, V.; Tsukuda, S.; Summerfelt, S. Toxicity of acidified chitosan for cultured rainbow trout (oncorhynchus mykiss). Aquaculture 2000, 185, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Nikapitiya, C.; Dananjaya, S.; De Silva, B.; Heo, G.-J.; Oh, C.; De Zoysa, M.; Lee, J. Chitosan nanoparticles: A positive immune response modulator as display in zebrafish larvae against aeromonas hydrophila infection. Fish Shellfish Immunol. 2018, 76, 240–246. [Google Scholar] [CrossRef]
- Raja, G.; Selvaraj, V.; Suk, M.; Suk, K.T.; Kim, T.-J. Metabolic phenotyping analysis of graphene oxide nanosheets exposures in breast cancer cells: Metabolomics profiling techniques. Process Biochem. 2021, 104, 39–45. [Google Scholar] [CrossRef]
- Kim, H.-S.; Suh, J.-S.; Jang, Y.-K.; Ahn, S.-H.; Raja, G.; Kim, J.-C.; Jung, Y.; Jung, S.H.; Kim, T.-J. Anti-cancer potential of persimmon (diospyros kaki) leaves via the pdgfr-rac-jnk pathway. Sci. Rep. 2020, 10, 18119. [Google Scholar] [CrossRef]
- Novoa, B.; Figueras, A. Zebrafish: Model for the study of inflammation and the innate immune response to infectious diseases. Curr. Top. Innate Immun. II 2012, 946, 253–275. [Google Scholar]
- Roper, C.; Tanguay, R.L. Zebrafish as a model for developmental biology and toxicology. In Handbook of Developmental Neurotoxicology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 143–151. [Google Scholar]
- Letrado, P.; de Miguel, I.; Lamberto, I.; Díez-Martínez, R.; Oyarzabal, J. Zebrafish: Speeding up the cancer drug discovery processzebrafish: A window into cancer. Cancer Res. 2018, 78, 6048–6058. [Google Scholar] [CrossRef] [Green Version]
- Gemberling, M.; Bailey, T.J.; Hyde, D.R.; Poss, K.D. The zebrafish as a model for complex tissue regeneration. Trends Genet. 2013, 29, 611–620. [Google Scholar] [CrossRef] [PubMed]
- MacRae, C.A.; Peterson, R.T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 2015, 14, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Tanguay, R.L. The rise of zebrafish as a model for toxicology. Toxicol. Sci. 2018, 163, 3–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raby, L.; Völkel, P.; Le Bourhis, X.; Angrand, P.-O. Genetic engineering of zebrafish in cancer research. Cancers 2020, 12, 2168. [Google Scholar] [CrossRef]
- Vimalraj, S.; Saravanan, S.; Hariprabu, G.; Yuvashree, R.; Kanna, S.K.A.; Sujoy, K.; Anjali, D. Kaempferol-zinc (ii) complex synthesis and evaluation of bone formation using zebrafish model. Life Sci. 2020, 256, 117993. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Liu, L.; Huang, C.; Zhou, D.; Fu, L. Characterization and toxicology evaluation of chitosan nanoparticles on the embryonic development of zebrafish, danio rerio. Carbohydr. Polym. 2016, 141, 204–210. [Google Scholar] [CrossRef]
- Wang, Z.; Pisano, S.; Ghini, V.; Kadeřávek, P.; Zachrdla, M.; Pelupessy, P.; Kazmierczak, M.; Marquardsen, T.; Tyburn, J.-M.; Bouvignies, G.; et al. Detection of metabolite–protein interactions in complex biological samples by high-resolution relaxometry: Toward interactomics by nmr. J. Am. Chem. Soc. 2021, 143, 9393–9404. [Google Scholar] [CrossRef]
- Castro, A.; Duft, R.G.; Silva, L.M.; Ferreira, M.L.V.; Andrade, A.L.L.; Bernardes, C.F.; Cavaglieri, C.R.; Chacon-Mikahil, M.P.T. Understanding the relationship between intrinsic cardiorespiratory fitness and serum and skeletal muscle metabolomics profile. J. Proteome Res. 2021, 20, 2397–2409. [Google Scholar] [CrossRef]
- Smaldone, G.T.; Revelles, O.; Gaballa, A.; Sauer, U.; Antelmann, H.; Helmann, J.D. A global investigation of the bacillus subtilis iron-sparing response identifies major changes in metabolism. J. Bacteriol. 2012, 194, 2594–2605. [Google Scholar] [CrossRef] [Green Version]
- Kalina, U.; Koyama, N.; Hosoda, T.; Nuernberger, H.; Sato, K.; Hoelzer, D.; Herweck, F.; Manigold, T.; Singer, M.V.; Rossol, S.; et al. Enhanced production of il-18 in butyrate-treated intestinal epithelium by stimulation of the proximal promoter region. Eur. J. Immunol. 2002, 32, 2635–2643. [Google Scholar] [CrossRef]
- Mei, Q.X.; Hu, J.H.; Huang, Z.H.; Fan, J.J.; Huang, C.L.; Lu, Y.Y.; Wang, X.P.; Zeng, Y. Pretreatment with chitosan oligosaccharides attenuate experimental severe acute pancreatitis via inhibiting oxidative stress and modulating intestinal homeostasis. Acta Pharmacol. Sin. 2021, 42, 942–953. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, R.D.; Khajehpour, M. Effects of the osmolyte tmao (trimethylamine-n-oxide) on aqueous hydrophobic contact-pair interactions. Biophys. Chem. 2013, 184, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Chousidis, I.; Chatzimitakos, T.; Leonardos, D.; Filiou, M.D.; Stalikas, C.D.; Leonardos, I.D. Cannabinol in the spotlight: Toxicometabolomic study and behavioral analysis of zebrafish embryos exposed to the unknown cannabinoid. Chemosphere 2020, 252, 126417. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.E.; Wilkinson, B.J. Staphylococcus aureus osmoregulation: Roles for choline, glycine betaine, proline, and taurine. J. Bacteriol. 1992, 174, 2711–2716. [Google Scholar] [CrossRef]
KEGG | HMDB | Metabolites | Hit | PubChem | Chemical Formula | MW (Da) | δ 1H (ppm) and Multiplicity |
---|---|---|---|---|---|---|---|
C00033 | HMDB0000042 | Acetate | Acetic acid | 176 | C2H4O2 | 60.05 | 1.90 (s) |
C00049 | HMDB0000191 | Aspartate | L-Aspartic acid | 5960 | C4H7NO4 | 133.10 | 3.89 (dd); 2.80 (dd); 2.66 (dd) |
C00041 | HMDB0000161 | Alanine | L-Alanine | 5950 | C3H7NO2 | 89.09 | 3.78 (q); 1.47 (d) |
C00152 | HMDB0000168 | Asparagine | L-Asparagine | 6267 | C6H14N4O2 | 132.12 | 3.76 (t); 1.90 (m);1.68 (m) |
C00002 | HMDB0000538 | ATP | Adenosine triphosphate | 5957 | C10H16N5O13P3 | 507.18 | 8.52 (s); 8.12 (d); 4.50 (m); 4.21 (m) |
C00008 | HMDB0001341 | ADP | ADP | 6022 | C10H15N5O10P2 | 427.201 | 8.54 (s); 5.94 (m); 4.11 (m); 4.00 (m) |
C00020 | HMDB0000045 | AMP | Adenosine monophosphate | 6083 | C10H14N5O7P | 347.221 | 8.22 (s); 6.16 (s); 4.53 (dd); 4.34 (d) |
C00719 | HMDB0000043 | Betaine | Betaine | 247 | C24H26N2O13 | 550.45 | 3.89 (s); 3.25 (s) |
C00158 | HMDB0000094 | Citrate | Citric acid | 311 | C6H8O7 | 192.12 | 2.65 (d); 2.53 (d) |
C00114 | HMDB0000097 | Choline | Choline | 305 | C5H14NO | 104.17 | 4.05 (dd), 3.50 (dd),3.18 (s) |
C00122 | HMDB0000134 | Fumarate | Fumaric acid | 444,972 | C4H4O4 | 116.072 | 6.51 (s) |
C00221 | HMDB0000122 | Glucose | D-Glucose | 5793 | C6H12O6 | 180.16 | 5.22 (d); 4.64 (d); 3.88 (dd); 3.72 (m); 3.40 (m); 3.39 (m); 3.21 (dd) |
C00051 | HMDB0062697 | Glutathione | Glutathione | 745 | C10H17N3O6S | 307.32 | 4.20 (q); 3.78 (m); 2.97 (dd); 2.15 (m) |
C00025 | HMDB0000148 | Glutamate | L-Glutamic acid | 33,032 | C5H9NO4 | 147.129 | 3.76 (t); 2.44 (m); 2.12 (m) |
C00064 | HMDB0000641 | Glutamine | L-Glutamine | 5961 | C5H10N2O3 | 146.144 | 5.75 (m); 7.80 (m); 6.16 (t) |
C00186 | HMDB0000190 | Lactate | L-Lactic acid | 107,689 | C3H6O3 | 342.3 | 4.10 (q); 1.32 (d) |
C00407 | HMDB0000172 | Isoleucine | L-Isoleucine | 6306 | C6H13NO2 | 131.17 | 3.66 (d); 1.96 (m); 0.99 (d); 0.92 (t) |
C00183 | HMDB0000883 | Valine | L-Valine | 6287 | C5H11NO2 | 117.146 | 3.60 (d); 2.261 (m); 0.97 (d) |
C00123 | HMDB0000687 | Leucine | L-Leucine | 6106 | C6H13NO2 | 131.17 | 3.72 (m); 1.70 (m); 0.94 (t) |
C00294 | HMDB0000195 | Inosine | Inosine | 6021 | C10H12N4O5 | 268.23 | 8.30 (s); 6.05 (d); 4.42 (dd); 3.82 (dd) |
C00036 | HMDB0000223 | Oxalacetate | Oxalacetic acid | 970 | C4H4O5 | 132.071 | 2.37 (s) |
C08645 | HMDB0001844 | Methylsuccinate | Methylsuccinic acid | 10,349 | C5H8O4 | 132.11 | 2.61 (m); 2.51 (dd); 2.11 (dd); 1.07 (d) |
C00137 | HMDB0000211 | Myo-Inositol | myo-Inositol | - | C6H12O6 | 180.16 | 4.05 (t); 3.61 (t); 3.52 (dd); 3.26 (t) |
C00079 | HMDB0000159 | Phenylalanine | L-Phenylalanine | 6140 | C9H11NO2 | 165.19 | 7.33 (d); 7.37 (m); 7.43 (m) |
C00022 | HMDB0000243 | Pyruvate | Pyruvic acid | 1060 | C3H4O3 | 88.0621 | 2.46 (s) |
C00042 | HMDB0000254 | Succinate | Succinic acid | 1110 | C4H6O4 | 118.088 | 2.39 (s) |
C00245 | HMDB0000251 | Taurine | Taurine | 1123 | C2H7NO3S | 125.15 | 3.43 (t); 3.42 (t); 3.25 (t) |
C00188 | HMDB0000167 | Threonine | L-Threonine | 6288 | C4H9NO3 | 119.12 | 4.24 (m); 3.57 (d); 1.31 (d) |
C00078 | HMDB0000929 | Tryptophan | L-Tryptophan | 6305 | C11H12N2O2 | 204.26 | 7.72 (d); 7.31 (s); 4.04 (dd); 3.29 (dd) |
C00565 | HMDB0000906 | Trimethylamine | Trimethylamine | 1146 | C3H9N | 59.1103 | 2.89 (s) |
C00082 | HMDB0000158 | Tyrosine | L-Tyrosine | 6057 | C9H11NO3 | 181.188 | 7.24 (d); 6.94 (m); 3.34 (dd); 3.30 (dd) |
C01104 | HMDB0000925 | TMAO | Trimethylamine N-oxide | 1145 | C3H9NO | 75.11 | 3.25 (s) |
C00385 | HMDB0000292 | Xanthine | Xanthine | 1188 | C5H4N4O2 | 152.110 | 7.892 (s) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganesan, R.; Mukherjee, A.G.; Gopalakrishnan, A.V.; Prabhakaran, V.-S. Solid-State NMR-Based Metabolomics Imprinting Elucidation in Tissue Metabolites, Metabolites Inhibition, and Metabolic Hub in Zebrafish by Chitosan. Metabolites 2022, 12, 1263. https://doi.org/10.3390/metabo12121263
Ganesan R, Mukherjee AG, Gopalakrishnan AV, Prabhakaran V-S. Solid-State NMR-Based Metabolomics Imprinting Elucidation in Tissue Metabolites, Metabolites Inhibition, and Metabolic Hub in Zebrafish by Chitosan. Metabolites. 2022; 12(12):1263. https://doi.org/10.3390/metabo12121263
Chicago/Turabian StyleGanesan, Raja, Anirban Goutam Mukherjee, Abilash Valsala Gopalakrishnan, and Vasantha-Srinivasan Prabhakaran. 2022. "Solid-State NMR-Based Metabolomics Imprinting Elucidation in Tissue Metabolites, Metabolites Inhibition, and Metabolic Hub in Zebrafish by Chitosan" Metabolites 12, no. 12: 1263. https://doi.org/10.3390/metabo12121263
APA StyleGanesan, R., Mukherjee, A. G., Gopalakrishnan, A. V., & Prabhakaran, V.-S. (2022). Solid-State NMR-Based Metabolomics Imprinting Elucidation in Tissue Metabolites, Metabolites Inhibition, and Metabolic Hub in Zebrafish by Chitosan. Metabolites, 12(12), 1263. https://doi.org/10.3390/metabo12121263