Bioactive Efficacy of Novel Carboxylic Acid from Halophilic Pseudomonas aeruginosa against Methicillin-Resistant Staphylococcus aureus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methicillin-Resistant Staphylococcus Aureus
2.2. Saltpan Bacteria
2.3. Preliminary Antibacterial Activity
2.4. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Determination
2.5. Microbial Biomass Inhibition Assay
2.6. Bacterial Cell Live and Dead Assay
2.7. Biofilm Inhibition Assay
2.8. Confocal Laser Scanning Microscopy (CLSM)
2.9. Scanning Electron Microscopy
2.10. Hemolytic Activity
2.11. Antioxidant Activity DPPH (2,2-Diphenyl-1-Picrylhydrazyl) Assay
2.12. RT (Real Time)—PCR
2.13. Purification and Structure Elucidation of Bioactive Compound
2.14. Molecular Docking of Pantothenate Synthetase Active Site
2.15. Molecular Dynamic Simulation
2.16. ADMET and Toxicity Prediction
2.17. Statistical Analysis
3. Results
3.1. Antibacterial Activity, MIC and MBC
3.2. Microbial Biomass Inhibition Assay and Bacterial Cell Live/Dead Assay
3.3. Scanning Electron Microscopy
3.4. Biofilm Inhibition Assay—Confocal Laser Scanning Microscopy (CLSM)
3.5. Hemolytic Activity
3.6. Antioxidant Assay
3.7. Qrt (Real Time)—PCR
3.8. Identification of Compound
3.9. Characterization of 5-(1h-Indol-3-yl)-4-Pentyl-1,3-Oxazole-2-Carboxylic Acid (Compound 1)
3.10. Binding Affinity of Compound 1 through Molecular Docking
3.11. Molecular Dynamic Simulations
3.12. ADMET and Toxicity Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Algammal, A.M.; Hetta, H.F.; Elkelish, A.; Alkhalifah, D.H.H.; Hozzein, W.N.; Batiha, G.E.S.; El Nahhas, N.; Mabrok, M.A. Methicillin-resistant Staphylococcus aureus (MRSA): One health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infect. Drug Resist. 2020, 13, 3255–3265. [Google Scholar] [CrossRef] [PubMed]
- Avershina, E.; Shapovalova, V.; Shipulin, G. Fighting Antibiotic Resistance in Hospital-Acquired Infections: Current State and Emerging Technologies in Disease Prevention, Diagnostics and Therapy. Front. Microbiol. 2021, 12, 155. [Google Scholar] [CrossRef] [PubMed]
- Loffler, B.; Niemann, S.; Ehrhardt, C.; Horn, D.; Lanckohr, C.; Lina, G.; Ludwig, S.; Peters, G. Pathogenesis of Staphylococcus aureus necrotizing pneumonia: The role of PVL and an influenza coinfection. Expert Rev. Anti. Infect. Ther. 2013, 11, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Yu, X.; Yang, Q.; Zhao, Y.; Wu, W. Aptasensors for Staphylococcus aureus Risk Assessment in Food. Front. Microbiol. 2021, 12, 714265. [Google Scholar] [CrossRef] [PubMed]
- Newsom, S.W.B. Ogston’s coccus. J. Hosp. Infect. 2008, 70, 369–372. [Google Scholar] [CrossRef]
- Lee, A.S.; De Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Prim. 2018, 4, 18033. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.J.; Huang, Y.C. New epidemiology of Staphylococcus aureus infection in Asia. Clin. Microbiol. Infect. 2014, 20, 605–623. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Healthcare Quality Promotion (DHQP). Available online: https://www.cdc.gov/hai/data/portal/progress-report.html (accessed on 25 June 2022).
- Disease, P. Chronic Disease and Medical Innovation in an Aging Nation. In The Silver Book Parkinsons Disease Fact Sheet; The Silver Book: Washington, DC, USA, 2019. [Google Scholar]
- World Health Organization, Antimicrobial Resistance. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 9 June 2022).
- Monegro, A.F.; Muppidi, V.; Regunath, H. Hospital Acquired Infections. In Stat Pearls; StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Figueiredo, A.M.S. What is behind the epidemiological difference between community-acquired and health-care associated methicillin-resistant Staphylococcus aureus? Virulence 2017, 8, 640–642. [Google Scholar] [CrossRef] [Green Version]
- Loewen, K.; Schreiber, Y.; Kirlew, M.; Bocking, N.; Kelly, L. Community-associated methicillin-resistant Staphylococcus aureus infection: Literature review and clinical update. Can. Fam. Physician 2017, 63, 512–520. [Google Scholar]
- Oliveira, K.; Viegas, C.; Ribeiro, E. MRSA Colonization in Workers from Different Occupational Environments—A One Health Approach Perspective. Atmosphere 2022, 13, 658. [Google Scholar] [CrossRef]
- Lister, J.L.; Horswill, A.R. Staphylococcus aureus biofilms: Recent developments in biofilm dispersal. Front. Cell. Infect. Microbiol. 2014, 4, 178. [Google Scholar] [CrossRef] [PubMed]
- Rabih, O.; Darouiche, M.D. Treatment of infections associated with surgical implants. N. Engl. J. Med. 2004, 350, 1422–1429. [Google Scholar]
- Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.F.; Alarcon, E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4, e01067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watkins, R.R.; David, M.Z.; Salata, R.A. Current concepts on the virulence mechanisms of meticillin-resistant Staphylococcus aureus. J. Med. Microbiol. 2012, 61, 1179–1193. [Google Scholar] [CrossRef] [Green Version]
- Bravo-Santano, N.; Ellis, J.K.; Calle, Y.; Keun, H.C.; Behrends, V.; Letek, M. Intracellular Staphylococcus aureus elicits the production of host very long-chain saturated fatty acids with antimicrobial activity. Metabolites 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Budzynska, A.; Skowron, K.; Kaczmarek, A.; Wietlicka-Piszcz, M.; Gospodarek-Komkowska, E. Virulence factor genes and antimicrobial susceptibility of Staphylococcus aureus strains isolated from blood and chronic wounds. Toxins 2021, 13, 491. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Neoh, H.M.; Nathan, S. Targeting Staphylococcus aureus toxins: A potential form of anti-virulence therapy. Toxins 2016, 8, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Lv, Y.; Pang, J.; Li, X.; Lu, X.; Wang, X.; Hu, X.; Nie, T.; Yang, X.; Xiong, Y.Q.; et al. In vitro and in vivo activity of d-serine in combination with β-lactam antibiotics against methicillin-resistant Staphylococcus aureus. Acta Pharm. Sin. B 2019, 9, 496–504. [Google Scholar] [CrossRef]
- Komuro, H.; Kato, T.; Okada, S.; Nakatani, K.; Matsumoto, R.; Nishida, K.; Iida, H.; Iida, M.; Tsujimoto, S.; Suganuma, T. Toxic shock syndrome caused by suture abscess with methicillin-resistant Staphylococcus aureus (MRSA) with late onset after Caesarean section. IDCases 2017, 10, 12–14. [Google Scholar] [CrossRef]
- Coker, J.A. Extremophiles and biotechnology: Current uses and prospects. F1000 Res. 2016, 5, 396. [Google Scholar] [CrossRef]
- Jorquera, M.A.; Graether, S.P.; Maruyama, F. Editorial: Bioprospecting and biotechnology of extremophiles. Front. Bioeng. Biotechnol. 2019, 7, 204. [Google Scholar] [CrossRef] [PubMed]
- Aikawa, S.; Nishida, A.; Hasunuma, T.; Chang, J.; Kondo, A. Short-Term Temporal Metabolic Behavior in Halophilic Cyanobacterium Synechococcus sp. Strain PCC 7002 after Salt Shock. Metabolites 2019, 9, 297. [Google Scholar] [CrossRef] [PubMed]
- Hui, M.L.Y.; Tan, L.T.H.; Letchumanan, V.; He, Y.W.; Fang, C.M.; Chan, K.G.; Law, J.W.F.; Lee, L.H. The extremophilic actinobacteria: From microbes to medicine. Antibiotics 2021, 10, 682. [Google Scholar] [CrossRef] [PubMed]
- Henciya, S.; Vengateshwaran, T.D.; Dahms, H.U.; Johnthini, M.A.; Gokul, M.S.; Muthukumar, K.; Jiang, S.H.; James, R.A. Recent Antimicrobial Responses of Halophilic Microbes in Clinical Pathogens. Microorganisms 2022, 10, 417. [Google Scholar] [CrossRef]
- Corral, P.; Amoozegar, M.A.; Ventosa, A. Halophiles and their biomolecules: Recent advances and future applications in biomedicine. Mar. Drugs 2020, 18, 33. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.Y.; Chen, L.Y.; Chen, P.J.; El-Shazly, M.; Peng, B.R.; Chen, Y.C.; Su, C.H.; Su, J.H.; Sung, P.J.; Yen, P.T.; et al. Probing Anti-Leukemic Metabolites from Marine-Derived Streptomyces sp. LY1209. Metabolites 2022, 12, 320. [Google Scholar] [CrossRef]
- Henciya, S.; Vengateshwaran, T.D.; Gokul, M.S.; Dahms, H.U.; James, R.A. Antibacterial Activity of Halophilic Bacteria Against Drug-Resistant Microbes Associated with Diabetic Foot Infections. Curr. Microbiol. 2020, 77, 3711–3723. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Elabed, H.; González-Tortuero, E.; Ibacache-Quiroga, C.; Bakhrouf, A.; Johnston, P.; Gaddour, K.; Blázquez, J.; Rodríguez-Rojas, A. Seawater salt-trapped Pseudomonas aeruginosa survives for years and gets primed for salinity tolerance. BMC Microbiol. 2019, 19, 142. [Google Scholar] [CrossRef] [Green Version]
- Isnansetyo, A.; Kamei, Y. Bioactive substances produced by marine isolates of Pseudomonas. J. Ind. Microbiol. Biotechnol. 2009, 36, 1239–1248. [Google Scholar] [CrossRef]
- De Oliveira, A.G.; Spago, F.R.; Simionato, A.S.; Navarro, M.O.P.; Da Silva, C.S.; Barazetti, A.R.; Cely, M.V.T.; Tischer, C.A.; San Martin, J.A.B.; De Jesus Andrade, C.G.T.; et al. Bioactive organocopper compound from Pseudomonas aeruginosa inhibits the growth of Xanthomonas citri subsp. citri. Front. Microbiol. 2016, 7, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzgaia, N.; Awin, T.; Elabbar, F.; Abdusalam, K.; Lee, S.Y. Antibacterial Activity of Arbutus pavarii Pamp against. Plants 2020, 9, 1539. [Google Scholar] [CrossRef] [PubMed]
- Al-Dhabi, N.A.; Mohammed Ghilan, A.K.; Esmail, G.A.; Valan Arasu, M.; Duraipandiyan, V.; Ponmurugan, K. Bioactivity assessment of the Saudi Arabian Marine Streptomyces sp. Al-Dhabi-90, metabolic profiling and its in vitro inhibitory property against multidrug resistant and extended-spectrum beta-lactamase clinical bacterial pathogens. J. Infect. Public Heal. 2019, 12, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, C.; Zammuto, V.; Lo Giudice, A.; Rizzo, M.G.; Spanò, A.; Laganà, P.; Martinez, M.; Guglielmino, S.; Gugliandolo, C. Antibiofilm activity of Antarctic sponge-associated bacteria against Pseudomonas aeruginosa and Staphylococcus aureus. J. Mar. Sci. Eng. 2021, 9, 243. [Google Scholar] [CrossRef]
- Shinde, S.; Lee, L.H.; Chu, T. Inhibition of biofilm formation by the synergistic action of EGCG-S and antibiotics. Antibiotics 2021, 10, 102. [Google Scholar] [CrossRef]
- Meng, G.E.; Tian, Y.C.; Yang, Y.; Shi, J. Evaluation of DPPH free radical scavenging activity of various extracts of Ligularia fischeri in vitro: A case study of Shaanxi region. Indian J. Pharm. Sci. 2016, 78, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Bertin, R.; Froldi, G. EC50 estimation of antioxidant activity in DPPH* assay using several statistical programs. Food Chem. 2013, 138, 414–420. [Google Scholar] [CrossRef]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Kali, A. Antibiotics and bioactive natural products in treatment of methicillin resistant Staphylococcus aureus: A brief review. Pharmacogn. Rev. 2015, 9, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Chew, J.; Peh, S.-C.; Sin Yeang, T. Non-microbial Natural Products That Inhibit Drug-Resistant Staphylococcus aureus; Hemeg, H., Ozbak, H., Afrin, F., Eds.; IntechOpen: Rijeka, Croatia, 2019; pp. 1–32. [Google Scholar] [CrossRef] [Green Version]
- Norouzi, H.; Khorasgani, M.R.; Danesh, A. Anti-MRSA activity of a bioactive compound produced by a marine streptomyces and its optimization using statistical experimental design. Iran. J. Basic Med. Sci. 2019, 22, 1073–1084. [Google Scholar] [CrossRef]
- Tharmalingam, N.; Rajmuthiah, R.; Kim, W.; Fuchs, B.B.; Jeyamani, E.; Kelso, M.J.; Mylonakis, E. Antibacterial Properties of Four Novel Hit Compounds from a Methicillin-Resistant Staphylococcus aureus—Caenorhabditis elegans High-Throughput Screen. Microb. Drug Resist. 2018, 24, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Velho-Pereira, S.; Furtado, I. Antibacterial activity of halophilic bacterial bionts from marine invertebrates of Mandapam-India. Indian J. Pharm. Sci. 2012, 74, 331–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelaez, F.; Collado, J.; Arenal, F.; Basilio, A.; Cabello, A.; Diez Matas, M.T.; Garcia, J.B.; Gonzalez Del Val, A.; Gonzalez, V.; Gorrochategui, J.; et al. Endophytic fungi from plants living on gypsum soils as a source of secondary metabolites with antimicrobial activity. Mycol. Res. 1998, 102, 755–761. [Google Scholar] [CrossRef]
- Brittany Johnson, M.; Criss, A.K. Fluorescence microscopy methods for determining the viability of bacteria in association with mammalian cells. J. Vis. Exp. 2013, 79, e50729. [Google Scholar] [CrossRef] [Green Version]
- Warraich, A.A.; Mohammed, A.R.; Perrie, Y.; Hussain, M.; Gibson, H.; Rahman, A. Evaluation of anti-biofilm activity of acidic amino acids and synergy with ciprofloxacin on Staphylococcus aureus biofilms. Sci. Rep. 2020, 10, 9021. [Google Scholar] [CrossRef] [PubMed]
- Vidakovic, L.; Singh, P.K.; Hartmann, R.; Nadell, C.D.; Drescher, K. Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. Nat. Microbiol. 2017, 3, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Wang, M.; Yu, J.; Wei, H. Aspartate inhibits Staphylococcus aureus biofilm formation. FEMS Microbiol. Lett. 2015, 362, fnv025. [Google Scholar] [CrossRef] [Green Version]
- Samrot, A.V.; Mohamed, A.A.; Faradjeva, E.; Jie, L.S.; Sze, C.H.; Arif, A.; Sean, T.C.; Michael, E.N.; Mun, C.Y.; Qi, N.X.; et al. Mechanisms and impact of biofilms and targeting of biofilms using bioactive compounds—A review. Medicina 2021, 57, 839. [Google Scholar] [CrossRef]
- Hartmann, M.; Berditsch, M.; Hawecker, J.; Ardakani, M.F.; Gerthsen, D.; Ulrich, A.S. Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob. Agents Chemother. 2010, 54, 3132–3142. [Google Scholar] [CrossRef] [Green Version]
- Husain, F.M.; Ahmad, I.; Khan, M.S.; Ahmad, E.; Tahseen, Q.; Khan, M.S.; Alshabib, N.A. Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilms of Gram-negative bacteria. Front. Microbiol. 2015, 6, 420. [Google Scholar] [CrossRef] [Green Version]
- Balasubramaniyan, S.; Irfan, N.; Umamaheswari, A.; Puratchikody, A. Design and Virtual Screening of Novel Fluoroquinolone Analogs as Effective Mutant DNA GyrA Inhibitors against Urinary Tract Infection-Causing Fluoroquinolone Resistant Escherichia coli. RSC Adv. 2018, 8, 23629–23647. [Google Scholar] [CrossRef] [PubMed]
- Manilal, A.; Sabu, K.R.; Shewangizaw, M.; Aklilu, A.; Seid, M.; Merdikios, B.; Tsegaye, B. In vitro antibacterial activity of medicinal plants against biofilm-forming methicillin-resistant Staphylococcus aureus: Efficacy of Moringa stenopetala and Rosmarinus officinalis extracts. Heliyon 2020, 6, e03303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, N.U.; Begum, N.; Ali, L.; Ahmed, A.H.; Abbas, G.; Ahmad, S.; Khan, A.L.; Shinwari, Z.K.; Hussain, J. Lipid peroxidation, antiglycation, cytotoxic, phytotoxic, antioxidant, antiplatelet and antimicrobial activities of Ajuga bracteosa against various pathogens. Pakistan J. Bot. 2015, 47, 1195–1197. [Google Scholar]
- Rubnawaz, S.; Okla, M.K.; Akhtar, N.; Khan, I.U.; Bhatti, M.Z.; Duong, H.Q.; El-tayeb, M.A.; Elbadawi, Y.B.; Almaary, K.S.; Moussa, I.M.; et al. Antibacterial, antihemolytic, cytotoxic, anticancer, and antileishmanial effects of Ajuga bracteosa transgenic plants. Plants 2021, 10, 1894. [Google Scholar] [CrossRef] [PubMed]
- Loganayaki, N.; Siddhuraju, P.; Manian, S. Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. J. Food Sci. Technol. 2013, 50, 687–695. [Google Scholar] [CrossRef] [Green Version]
- Shabbir, M.; Khan, M.R.; Saeed, N. Assessment of phytochemicals, antioxidant, anti-lipid peroxidation and anti-hemolytic activity of extract and various fractions of Maytenus royleanus leaves. BMC Complement. Altern. Med. 2013, 13, 143. [Google Scholar] [CrossRef] [Green Version]
- Chi, H.K.; Ha, T.T.H.; Cuong, L.H.; Hang, T.T.N.; Tuan, N.D.; Nhung, L.T.H.; Huong, L.M. Antimicrobial, Cytotoxic and Hemolytic Activities of Marine Algae-Associated Fungal Isolates in Vietnam. J. Mar. Sci. Technol. 2019, 18, 406–412. [Google Scholar] [CrossRef]
- Mandelli, F.; Miranda, V.S.; Rodrigues, E.; Mercadante, A.Z. Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. World J. Microbiol. Biotechnol. 2012, 28, 1781–1790. [Google Scholar] [CrossRef]
- Naziri, D.; Hamidi, M.; Hassanzadeh, S.; Tarhriz, V.; Zanjani, B.M.; Nazemyieh, H.; Hejazi, M.A.; Hejazi, M.S. Analysis of carotenoid production by Halorubrum sp. TBZ126; an extremely halophilic archeon from Urmia Lake. Adv. Pharm. Bull. 2014, 4, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Velho-Pereira, S.; Parvatkar, P.; Furtado, I.J. Evaluation of Antioxidant Producing Potential of Halophilic Bacterial Bionts from Marine Invertebrates. Indian J. Pharm. Sci. 2015, 77, 183–189. [Google Scholar]
- Rodrigo-Banos, M.; Garbayo, I.; Vílchez, C.; Bonete, M.J.; Martínez-Espinosa, R.M. Carotenoids from Haloarchaea and their potential in biotechnology. Mar. Drugs 2015, 13, 5508–5532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Vega, M.; Sayago, A.; Ariza, J.; Barneto, A.G.; León, R. Characterization of a bacterioruberin-producing Haloarchaea isolated from the marshlands of the Odiel river in the southwest of Spain. Biotechnol. Prog. 2016, 32, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Rao, T.E.; Imchen, M.; Kumavath, R. Marine Enzymes: Production and Applications for Human Health, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 80. [Google Scholar]
- Torregrosa-Crespo, J.; Montero, Z.; Fuentes, J.L.; García-Galbis, M.R.; Garbayo, I.; Vílchez, C.; Martínez-Espinosa, R.M. Exploring the valuable carotenoids for the large-scale production by marine microorganisms. Mar. Drugs 2018, 16, 203. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Cui, H.L. In Vitro Antioxidant, Antihemolytic, and Anticancer Activity of the Carotenoids from Halophilic Archaea. Curr. Microbiol. 2018, 75, 266–271. [Google Scholar] [CrossRef]
- Dholakiya, R.N.; Kumar, R.; Mishra, A.; Mody, K.H. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat. Front. Microbiol. 2017, 8, 2420. [Google Scholar] [CrossRef]
- Gordon, C.P.; Williams, P.; Chan, W.C. Attenuating Staphylococcus aureus Virulence Gene Regulation: A Medicinal Chemistry Perspective Attenuating Staphylococcus aureus Virulence Gene Regulation: A Medicinal Chemistry Perspective. J. Med. Chem. 2013, 56, 1389–1404. [Google Scholar] [CrossRef]
- Khaleghi, M.; Khorrami, S. Down-regulation of biofilm-associated genes in mecA-positive methicillin-resistant S. aureus treated with M. communis extract and its antibacterial activity. AMB Express 2021, 11, 85. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, Y.; Yestrepsky, B.D.; Sorenson, R.J.; Chen, M.; Larsen, S.D.; Sun, H. Novel Inhibitors of Staphylococcus aureus Virulence Gene Expression and Biofilm Formation. PLoS ONE 2012, 7, e47255. [Google Scholar] [CrossRef] [Green Version]
- Mandal, V.; Ghosh, N.N.; Mitra, P.K.; Mandal, S.; Mandal, V. Production and characterization of a broad-spectrum antimicrobial 5-butyl-2-pyridine carboxylic acid from Aspergillus fumigatus nHF-01. Sci. Rep. 2022, 12, 6006. [Google Scholar] [CrossRef]
- Kalgutkar, A.S.; Scott Daniels, J. Chapter 3: Carboxylic Acids and Their Bioisosterases. In Metabolism, Pharmacokinetics and Toxicity of Functional Groups: Impact of Chemical Building Blocks on ADMET; Royal Society of Chemistry: Cambridge, UK, 2010; Volume 1, ISBN 9781849730167. [Google Scholar] [CrossRef]
- Lassalas, P.; Gay, B.; Lasfargeas, C.; James, M.J.; Tran, V.; Vijayendran, K.G.; Brunden, K.R.; Kozlowski, M.C.; Thomas, C.J.; Smith, A.B.; et al. Structure Property Relationships of Carboxylic Acid Isosteres. J. Med. Chem. 2016, 59, 3183–3203. [Google Scholar] [CrossRef]
- Bogdanov, M.G.; Kandinska, M.I.; Dimitrova, D.B.; Gocheva, B.T.; Palamareva, M.D. Preliminary evaluation of antimicrobial activity of diastereomeric cis/trans-3-aryl(heteroaryl)-3,4-dihydroisocoumarin-4-carboxylic acids. Zeitschrift fur Naturforsch.—Sect. C J. Biosci. 2007, 62, 477–482. [Google Scholar] [CrossRef]
- Vazquez, J.A.; Durán, A.; Rodríguez-Amado, I.; Prieto, M.A.; Rial, D.; Murado, M.A. Evaluation of toxic effects of several carboxylic acids on bacterial growth by toxicodynamic modelling. Microb. Cell Fact. 2011, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Suomalainen, T.; Mäyrä-Mäkinen, A.; Huttunen, E. Antimicrobial activity of 2-Pyrrolidone-5-Carboxylic acid produced by lactic acid bacteria. J. Food Prot. 1997, 60, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Kleyi, P.; Walmsley, R.S.; Gundhla, I.Z.; Walmsley, T.A.; Jauka, T.I.; Dames, J.; Walker, R.B.; Torto, N.; Tshentu, Z.R. Syntheses, protonation constants and antimicrobial activity of 2-substituted N-alkylimidazole derivatives. S. Afr. J. Chem. 2012, 65, 231–238. [Google Scholar]
- Xiang, Y.; Hirth, B.; Asmussen, G.; Biemann, H.P.; Bishop, K.A.; Good, A.; Fitzgerald, M.; Gladysheva, T.; Jain, A.; Jancsics, K.; et al. The discovery of novel benzofuran-2-carboxylic acids as potent Pim-1 inhibitors. Bioorgan. Med. Chem. Lett. 2011, 21, 3050–3056. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Prasad, U.V.; Barawkar, D.A.; De, S.; Palle, V.P.; Menon, S.; Patel, M.; Thorat, S.; Singh, U.P.; Das Sarma, K.; et al. Discovery of novel and potent heterocyclic carboxylic acid derivatives as protein tyrosine phosphatase 1B inhibitors. Bioorgan. Med. Chem. Lett. 2012, 22, 2843–2849. [Google Scholar] [CrossRef]
- Zhou, G.; Ting, P.C.; Wishart, G.; Zorn, N.; Aslanian, R.G.; Lin, M.; Smith, M.; Walker, S.S.; Cook, J.; Van Heek, M.; et al. Discovery of novel quinoline carboxylic acid series as DGAT1 inhibitors. Bioorgan. Med. Chem. Lett. 2014, 24, 1790–1794. [Google Scholar] [CrossRef]
- Cabezas-Pizarro, J.; Redondo-Solano, M.; Umaña-Gamboa, C.; Arias-Echandi, M.L. Antimicrobial activity of different sodium and potassium salts of carboxylic acid against some common foodborne pathogens and spoilage-associated bacteria. Rev. Argent. Microbiol. 2018, 50, 56–61. [Google Scholar] [CrossRef]
- Rennie, G.R.; Barden, T.C.; Bernier, S.G.; Carvalho, A.; Deming, R.; Germano, P.; Hudson, C.; Im, G.Y.J.; Iyengar, R.R.; Jia, L.; et al. Discovery of CYR715: A novel carboxylic acid-containing soluble guanylate cyclase stimulator. Bioorgan. Med. Chem. Lett. 2021, 40, 127886. [Google Scholar] [CrossRef]
- Samala, G.; Devi, P.B.; Saxena, S.; Meda, N.; Yogeeswari, P.; Sriram, D. Design, synthesis and biological evaluation of imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole derivatives as Mycobacterium tuberculosis pantothenate synthetase inhibitors. Bioorgan. Med. Chem. 2016, 24, 1298–1307. [Google Scholar] [CrossRef]
- Premalatha, E.; Dineshraj, R.; Kannan, I.; Bhaarath, K.S.; Sharavanan, T.K.V. Molecular docking study on quercetin derivatives as inhibitors of Pantothenate Synthetase (PanC) of Mycobacterium tuberculosis. Int. J. Res. Pharm. Sci. 2020, 11, 3684–3690. [Google Scholar] [CrossRef]
- Kumar, S.P.; Srinivasan, P.; Patel, S.K.; Kapopara, R.; Jasrai, Y.T. In silico Development of Inhibitors Against Pantothenate Synthetase of Mycobacterium tuberculosis Abstract. J. Adv. Bioinform. Appl. Res. 2011, 2, 142–148. [Google Scholar]
- Masumi, M.; Noormohammadi, F.; Kianisaba, F.; Nouri, F.; Taheri, M.; Taherkhani, A. Methicillin-Resistant Staphylococcus aureus: Docking-Based Virtual Screening and Molecular Dynamics Simulations to Identify Potential Penicillin-Binding Protein 2a Inhibitors from Natural Flavonoids. Int. J. Microbiol. 2022, 2022, 9130700. [Google Scholar] [CrossRef] [PubMed]
- Omar, F.A.; Abelrasoul, M.; Sheha, M.M.; Hassan, H.Y.; Ibrahiem, Y.M. Synthesis, Antibacterial Activity and Molecular Docking of Substituted Naphthyridines as Potential DNA Gyrase Inhibitors. Chem. Select. 2018, 3, 2604–2612. [Google Scholar] [CrossRef]
- Rahimi, H.; Najafi, A.; Eslami, H.; Negahdari, B.; Moghaddam, M.M. Identification of novel bacterial DNA gyrase inhibitors: An in silico study. Res. Pharm. Sci. 2016, 11, 233–242. [Google Scholar]
- Rao, M.S.; Gupta, R.; Liguori, M.J.; Hu, M.; Huang, X.; Mantena, S.R.; Mittelstadt, S.W.; Blomme, E.A.G.; Van Vleet, T.R. Novel Computational Approach to Predict Off-Target Interactions for Small Molecules. Front. Big Data 2019, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Manhas, A.; Dubey, S.; Jha, P.C. A profound computational study to prioritize the natural compound inhibitors against the P. falciparum orotidine-5-monophosphate decarboxylase enzyme. J. Biomol. Struct. Dyn. 2020, 38, 2704–2716. [Google Scholar] [CrossRef]
- Biessy, A.; Filion, M. Phloroglucinol derivatives in plant-beneficial Pseudomonas spp.: Biosynthesis, regulation, and functions. Metabolites 2021, 11, 182. [Google Scholar] [CrossRef]
- Lee, D.S.; Eom, S.H.; Jeong, S.Y.; Shin, H.J.; Je, J.Y.; Lee, E.W.; Chung, Y.H.; Kim, Y.M.; Kang, C.K.; Lee, M.S. Anti-methicillin-resistant Staphylococcus aureus (MRSA) substance from the marine bacterium Pseudomonas sp. UJ-6. Environ. Toxicol. Pharmacol. 2013, 35, 171–177. [Google Scholar] [CrossRef]
- Purtschert-Montenegro, G.; Carcamo-Oyarce, G.; Pinto-Carbo, M.; Agnoli, K.; Bailly, A.; Eberl, L. Pseudomonas putida mediates bacterial killing, biofilm invasion and biocontrol with a type IVB secretion system. Nat. Microbiol. 2022, 7, 1547–1557. [Google Scholar] [CrossRef]
S. No | Primers | Gene |
---|---|---|
1 | F: CTGGTAGTCCACGCCGTAAAC R: CAGGCGGAGTGCTTAATGC | 16S rRNA standard gene |
2 | F: GCGCAACACGATGAAGCTCAACAA R: ACGTTAGCACTTTGGCTTGGATCA | SPA |
3 | F: CTGGTGCTGTTAAGTTAGGCGAAG R: GGCTGGTACGAAGAGTAAGCCAAT | IrgA |
4 | F: TTTCCGGTGAACCTGAACCGTAGT R: ACAGCAACAACAACGTCAAGGTGG | ebpS |
5 | F: CTGAAGGCCAGGCTAAACCACTTT R: GAACGAAAGGTACCATTGCTGGTCA | Hla |
S. No | Property | Prediction |
---|---|---|
1. | Aerobic Biodegradability | Non-Degradable |
2. | Ames Mutagenicity | Non-Mutagen |
3. | Developmental Toxicity Potential | Non-Toxic |
4. | Mouse Female FDA | Non-Carcinogen |
5. | Mouse Female NTP | Non-Carcinogen |
6. | Mouse Male FDA | Non-Carcinogen |
7. | Ocular Irritancy | Non-Irritant |
8. | Rat Female FDA | Non-Carcinogen |
9. | Rat Female NTP | Non-Carcinogen |
10. | Rat Male FDA | Carcinogen |
11. | Rat Male NTP | Non-Carcinogen |
12. | Skin Irritancy | Non-Irritant |
13. | Skin Sensitization | Non-Sensitizer |
14. | Weight of Evidence Rodent Carcinogenicity | Non-Carcinogen |
15. | Carcinogenic Potency TD50 Mouse | 42.9 |
16. | Carcinogenic Potency TD50 Rat | 53 |
17. | Chronic LOAEL | 0.666 |
18. | Daphnia EC50 | 5.34 |
19. | Fathead Minnow LC50 | 0.00141 |
20. | Rat Inhalational LC50 | 3.85 |
21. | Rat Maximum Tolerated Dose Feed | 0.712 |
22. | Rat Maximum Tolerated Dose Gavage | 0.246 |
23. | Rat Oral LD50 | 5.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santhaseelan, H.; Dinakaran, V.T.; Sakthivel, B.; Somasundaram, M.; Thanamegam, K.; Devendiran, V.; Dahms, H.-U.; Rathinam, A.J. Bioactive Efficacy of Novel Carboxylic Acid from Halophilic Pseudomonas aeruginosa against Methicillin-Resistant Staphylococcus aureus. Metabolites 2022, 12, 1094. https://doi.org/10.3390/metabo12111094
Santhaseelan H, Dinakaran VT, Sakthivel B, Somasundaram M, Thanamegam K, Devendiran V, Dahms H-U, Rathinam AJ. Bioactive Efficacy of Novel Carboxylic Acid from Halophilic Pseudomonas aeruginosa against Methicillin-Resistant Staphylococcus aureus. Metabolites. 2022; 12(11):1094. https://doi.org/10.3390/metabo12111094
Chicago/Turabian StyleSanthaseelan, Henciya, Vengateshwaran Thasu Dinakaran, Balasubramaniyan Sakthivel, Maharaja Somasundaram, Kaviarasan Thanamegam, Velmurugan Devendiran, Hans-Uwe Dahms, and Arthur James Rathinam. 2022. "Bioactive Efficacy of Novel Carboxylic Acid from Halophilic Pseudomonas aeruginosa against Methicillin-Resistant Staphylococcus aureus" Metabolites 12, no. 11: 1094. https://doi.org/10.3390/metabo12111094
APA StyleSanthaseelan, H., Dinakaran, V. T., Sakthivel, B., Somasundaram, M., Thanamegam, K., Devendiran, V., Dahms, H. -U., & Rathinam, A. J. (2022). Bioactive Efficacy of Novel Carboxylic Acid from Halophilic Pseudomonas aeruginosa against Methicillin-Resistant Staphylococcus aureus. Metabolites, 12(11), 1094. https://doi.org/10.3390/metabo12111094