Enhancing the Production of the Phenolic Extracts of Asparagus Using an Advanced Green Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Sample Treatment
2.1.1. Plant Material
2.1.2. Freeze-Drying and Grinding
2.2. Reagents
2.3. Phenolic Compound Extraction
2.3.1. Conventional Solid–Liquid Extraction (SLE)
2.3.2. Pressurized Liquid Extraction (PLE)
2.4. HPLC–ESI-TOF-MS Analysis
3. Results
3.1. Characterization and Quantification of Phenolic Compounds in PLE and SLE Extracts by HPLC–ESI-TOF-MS
3.2. PLE Optimization of Green Asparagus
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez, R.; Jaramillo, S.; Rodríguez, G.; Espejo, J.A.; Guillén, R.; Fernández-Bolaños, J.; Heredia, A.; Jiménez, A. Antioxidant activity of ethanolic extracts from several asparagus cultivars. J. Agric. Food Chem. 2005, 53, 5212–5217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Birch, J.; Pei, J.; Mohamed Ahmed, I.A.; Yang, H.; Dias, G.; Abd El-Aty, A.M.; Bekhit, A.E.-D. Identification of Six Phytochemical Compounds from Asparagus officinalis L. Root Cultivars from New Zealand and China Using UAE-SPE-UPLC-MS/MS: Effects of Extracts on H2O2-Induced Oxidative Stress. Nutrients 2019, 11, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ku, Y.G.; Bae, J.H.; Namieśnik, J.; Barasxh, D.; Nemirovski, A.; Katrich, E.; Gorinstein, S. Detection of Bioactive Compounds in Organically and Conventionally Grown Asparagus Spears. Food Anal. Methods 2018, 11, 309–318. [Google Scholar] [CrossRef]
- Chiriac, E.R.; Chiţescu, C.L.; Geană, E.I.; Gird, C.E.; Socoteanu, R.P.; Boscencu, R. Advanced analytical approaches for the analysis of polyphenols in plants matrices—A review. Separations 2021, 8, 65. [Google Scholar] [CrossRef]
- Villalva, M.; Santoyo, S.; Salas-Pérez, L.; Siles-Sánchez, M.d.l.N.; Rodríguez García-Risco, M.; Fornari, T.; Reglero, G.; Jaime, L. Sustainable Extraction Techniques for Obtaining Antioxidant and Anti-Inflammatory Compounds from the Lamiaceae and Asteraceae Species. Foods 2021, 10, 2067. [Google Scholar] [CrossRef]
- Kwiatkowski, M.; Kravchuk, O.; Skouroumounis, G.K.; Taylor, D.K. Microwave-assisted and conventional phenolic and colour extraction from grape skins of commercial white and red cultivars at veraison and harvest. J. Clean. Prod. 2020, 275, 122671. [Google Scholar] [CrossRef]
- Fuentes, J.A.M.; López-Salas, L.; Borrás-Linares, I.; Navarro-Alarcón, M.; Segura-Carretero, A.; Lozano-Sánchez, J. Development of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. Foods 2021, 10, 398. [Google Scholar] [CrossRef]
- Woloszyn, N.; Krabbe, R.D.; Fischer, B.; Bernardi, J.L.; Duarte, P.F.; Puton, B.M.S.; Cansian, R.L.; Paroul, N.; Junges, A. Use of pressurized liquid extraction technique to obtain extracts with biological and antioxidant activity from Mentha pulegium, Equisetum giganteum and Sida cordifolia. Chem. Pap. 2022, 76, 5775–5788. [Google Scholar] [CrossRef]
- Ho, T.C.; Kiddane, A.T.; Khan, F.; Cho, Y.J.; Park, J.S.; Lee, H.J.; Kim, G.D.; Kim, Y.M.; Chun, B.S. Pressurized liquid extraction of phenolics from Pseuderanthemum palatiferum (Nees) Radlk. leaves: Optimization, characterization, and biofunctional properties. J. Ind. Eng. Chem. 2022, 108, 418–428. [Google Scholar] [CrossRef]
- Dobroslavić, E.; Garofulić, I.E.; Šeparović, J.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V. Pressurized Liquid Extraction as a Novel Technique for the Isolation of Laurus nobilis L. Leaf Polyphenols. Molecules 2022, 27, 5099. [Google Scholar] [CrossRef]
- Katsinas, N.; Bento da Silva, A.; Enríquez-de-Salamanca, A.; Fernández, N.; Bronze, M.R.; Rodríguez-Rojo, S. Pressurized Liquid Extraction Optimization from Supercritical Defatted Olive Pomace: A Green and Selective Phenolic Extraction Process. ACS Sustain. Chem. Eng. 2021, 9, 5590–5602. [Google Scholar] [CrossRef]
- Barrales, F.M.; Silveira, P.; Menezes Barbosa, P.P.M.; Roggia Ruviaro, A.; Paulino, B.N.; Pastores, G.M.; Alves Macedo, G.; Martinez, J. Recovery of phenolic compounds from citrus by-products using pressurized liquids—An application to orange peel. Food Bioprod. Process. 2018, 112, 9–21. [Google Scholar] [CrossRef]
- Regulation, European Commission, (EC). No. 547/2000 (2000). Supplementing the Annex to Regulation (EC) No 2400/96 on the entry of certain names in the ‘Register of protected designations of origin and protected geographical indications’ provided for in Council Regulation (EEC) No 2081/92 on the protection of geographical indications and designations of origin for agricultural products and foodstuffs. Off. J. Eur. Union 2000, L67/8, 1–4. Available online: https://op.europa.eu/en/publication-detail/-/publication/a8716468-0703-48fe-9cfc-dd09a1d44c26/language-en/format-PDF/source-search (accessed on 1 May 2022).
- Yu, Q.; Li, J.; Fan, L. Effect of Drying Methods on the Microstructure, Bioactivity Substances, and Antityrosinase Activity of Asparagus Stems. J. Agric. Food Chem. 2019, 67, 1537–1545. [Google Scholar] [CrossRef]
- Bataglion, G.A.; Da Silva, F.M.A.; Eberlin, M.N.; Koolen, H.H.F. Determination of the phenolic composition from Brazilian tropical fruits by UHPLC-MS/MS. Food Chem. 2015, 180, 280–287. [Google Scholar] [CrossRef]
- Park, M. Sucrose delays senescence and preserves functional compounds in Asparagus officinalis L. Biochem. Biophys. Res. Commun. 2016, 480, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Motoki, S.; Kitazawa, H.; Maeda, T.; Suzuki, T.; Chiji, H.; Nishihara, E.; Shinohara, Y. Effects of various asparagus production methods on rutin and protodioscin contents in spears and cladophylls. Biosci. Biotechnol. Biochem. 2012, 76, 1047–1050. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Sánchez, C.; Lozano-Sánchez, J.; Rodríguez-Pérez, C.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Comprehensive, untargeted, and qualitative RP-HPLC-ESI-QTOF/MS2 metabolite profiling of green asparagus (Asparagus officinalis). J. Food Compos. Anal. 2016, 46, 78–87. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, C.; Pedregosa, F.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Identification of bioactive compounds of Asparagus officinalis L.: Permutation test allows differentiation among “triguero” and hybrid green varieties. Molecules 2021, 26, 1640. [Google Scholar] [CrossRef]
- Solana, M.; Boschiero, I.; Dall’Acqua, S.; Bertucco, A. A comparison between supercritical fluid and pressurized liquid extraction methods for obtaining phenolic compounds from Asparagus officinalis L. J. Supercrit. Fluids 2015, 100, 201–208. [Google Scholar] [CrossRef]
- Chen, X.H.; Ma, L.H.; Dong, Y.W.; Song, H.; Pu, Y.; Zhou, Q.Y. Evaluation of the differences in phenolic compounds and antioxidant activities of five green asparagus (Asparagus officinalis L.) cultivars. Qual. Assur. Saf. Crop. Foods 2017, 9, 479–487. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.; Shahidi, F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 2005, 93, 47–56. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Quirantes-Piné, R.; Segura-Carretero, A. Optimization of drying process and pressurized liquid extraction for recovery of bioactive compounds from avocado peel by-product. Electrophoresis 2018, 39, 1908–1916. [Google Scholar] [CrossRef] [PubMed]
- Rudke, A.R.; Mazzutti, S.; Andrade, K.S.; Vitali, L.; Ferreira, S.R.S. Optimization of green PLE method applied for the recovery of antioxidant compounds from buriti (Mauritia flexuosa L.) shell. Food Chem. 2019, 298, 125061. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.V.F.; Portugal, L.A.; dos Anjos, J.P.; de Jesus, O.N.; de Oliveira, E.J.; David, J.P.; Davida, J.M. Accelerated solvent extraction of phenolic compounds exploiting a Box-Behnken design and quantification of five flavonoids by HPLC-DAD in Passiflora species. Microchem. J. 2017, 132, 28–35. [Google Scholar] [CrossRef]
- Leyva-Jiménez, F.J.; Lozano-Sánchez, J.; Borrás-Linares, I.; Arráez-Román, D.; Segura-Carretero, A. Comparative study of conventional and pressurized liquid extraction for recovering bioactive compounds from Lippia citriodora leaves. Food Res. Int. 2018, 109, 213–222. [Google Scholar] [CrossRef]
- Viganó, J.; Brumer, I.Z.; Braga, P.A.C.; Silva, J.K.; Júnior, M.R.M.; Reyes, F.G.R.; Martínez, J. Pressurized liquids extraction as an alternative process to readily obtain bioactive compounds from passion fruit rinds. Food Bioprod. Process. 2016, 100, 382–390. [Google Scholar] [CrossRef]
- Herrero, M.; Castro-Puyana, M.; Mendiola, J.A.; Ibañez, E. Compressed Fluids for the Extraction of Bioactive Compounds. Trends Anal. Chem. 2013, 43, 67–83. [Google Scholar] [CrossRef]
Peak | RT 1 (min) | m/z (Exp) | m/z (Theor) | Error (ppm) | mSigma | Molecular Formula | Proposed Compound | PLE and SLE Extracts |
---|---|---|---|---|---|---|---|---|
1 | 3 | 191.0571 | 191.0561 | −4.3 | 7.9 | C7H12O6 | Quinic acid | PLE *, SLE |
2 | 9.2 | 353.0883 | 353.0878 | −1.4 | 22.1 | C16H18O9 | Chlorogenic acid | PLE *, SLE |
3 | 10.5 | 337.0915 | 337.0929 | 6.9 | 1.5 | C16H18O8 | Coumaroylquinic acid | PLE 1,2,3,4,5,6,7,8,9, 10,11,12,13,14,15,16,17, 18,19,21,22,23,24,25 |
4 | 11 | 367.1039 | 367.1035 | 1.1 | 21 | C17H20O9 | Feruloylquinic acid | PLE *, SLE |
5 | 11.2 | 311.0007 | 311.0028 | 1.4 | 6.8 | C18H30O4 | UK 1 | PLE * |
6 | 11.5 | 355.101 | 355.1035 | 5.9 | 42 | C16H20O9 | Feruloyl hexose | PLE 1,2,3,4,5,6,7,8,9, 10,11,12,13,14,15,16,17, 18,19,23,24,25, SLE |
7 | 11.8 | 311.0263 | 311.0256 | −1.7 | 63.5 | C9H12O12 | UK 2 | PLE * |
8 | 12.3 | 311.0005 | 311.0031 | −1.4 | 16.5 | C18H30O4 | UK 3 | PLE * |
9 | 12.6 | 771.2017 | 771.1989 | −2.2 | 28.9 | C33H40O21 | Quercetin glucosyl rutinoside | PLE *, SLE |
10 | 13.2 | 609.1562 | 609.1555 | −0.2 | 25.6 | C27C31O16 | Rutin | PLE *, SLE |
11 | 13.9 | 463.0883 | 463.0882 | 0.4 | 10.3 | C21H20O12 | Quercetin-glucoside | PLE *, SLE |
12 | 14.1 | 593.1525 | 593.1512 | −0.6 | 22.1 | C27H30O15 | Kaempferol-rutinoside | PLE *, SLE |
13 | 14.2 | 623.1619 | 623.1618 | 0.7 | 19.4 | C28H32O16 | Isorhamnetin-rutinoside | PLE *, SLE |
14 | 16 | 523.3837 | 523.2760 | 5.3 | 32.9 | C24H44O12 | UK 4 | PLE * |
15 | 21.1 | 329.2326 | 329.2333 | 3.7 | 12.5 | C18H34O5 | Trihydroxy-octadecaenoic acid | PLE * |
16 | 21.3 | 383.1128 | 383.1136 | 4.2 | 1.1 | C21H20O7 | Dicoumaroylglycerol | PLE *, SLE |
17 | 21.6 | 413.1239 | 413.1242 | 4.2 | 22.5 | C22H22O8 | Coumaroylferuloyl glycerol | PLE *, SLE |
18 | 21.9 | 443.1325 | 443.1348 | 5.9 | 7.9 | C23H24O9 | Diferuloyl glycerol | PLE *, SLE |
19 | 41.1 | 277.2161 | 277.2173 | 3.8 | 62.4 | C18H30O2 | Linolenic acid | PLE * |
20 | 43.7 | 279.2536 | 279.2540 | 4 | 28.2 | C18H32O2 | Linoleic acid | PLE * |
Y1 | |||||
---|---|---|---|---|---|
Variable | Sum of squares | d.f. | Mean Square | F-Ratio | p-Value |
X1: Temperature | 1748.27 | 1 | 1748.27 | 3793.99 | 0.0103 |
X2: % EtOH | 49.8912 | 1 | 49.8912 | 108.27 | 0.061 |
X3: Extraction time | 265.038 | 1 | 265.038 | 575.17 | 0.0265 |
X4: S–S | 20.6204 | 1 | 20.6204 | 44.75 | 0.0945 |
X2X2 | 140.293 | 1 | 140.293 | 304.45 | 0.0364 |
X2X3 | 46.6476 | 1 | 46.6476 | 101.23 | 0.0631 |
X2X4 | 487.792 | 1 | 487.792 | 1058.58 | 0.0196 |
X3X3 | 44.17 | 1 | 44.17 | 95.85 | 0.0648 |
X3X4 | 321.16 | 1 | 321.16 | 696.96 | 0.0241 |
X4X4 | 236.344 | 1 | 236.344 | 512.9 | 0.0281 |
Lack-of-fit | 1416.09 | 13 | 108.93 | 236.39 | 0.0502 |
Pure error | 0.4608 | 1 | 0.4608 | ||
Total (corr.) | 5048.77 | 24 | |||
R2 | 0.719427 | ||||
Y2 | |||||
Variable | Sum of squares | d.f. | Mean Square | F-Ratio | p-Value |
X1: Temperature | 3725.07 | 1 | 3725.07 | 275.52 | 0.0383 |
X2: % EtOH | 2980.15 | 1 | 2980.15 | 220.43 | 0.0428 |
X3: Extraction time | 0.356199 | 1 | 0.356199 | 0.03 | 0.8976 |
X4: S–S | 79.0719 | 1 | 79.0719 | 5.85 | 0.2496 |
X1X1 | 11.8109 | 1 | 11.8109 | 0.87 | 0.5215 |
X1X2 | 87.9975 | 1 | 87.9975 | 6.51 | 0.2378 |
X1X3 | 20.6351 | 1 | 20.6351 | 1.53 | 0.4332 |
X1X4 | 145.53 | 1 | 145.53 | 10.76 | 0.1883 |
X2X2 | 3.14735 × 10−5 | 1 | 3.14735 × 10−5 | 0 | 0.999 |
X2X3 | 120.993 | 1 | 120.993 | 8.95 | 0.2054 |
X2X4 | 851.39 | 1 | 851.39 | 62.97 | 0.0798 |
X3X3 | 19.0035 | 1 | 19.0035 | 1.41 | 0.4461 |
X3X4 | 1.05488 | 1 | 1.05488 | 0.08 | 0.8266 |
X4X4 | 11.0446 | 1 | 11.0446 | 0.82 | 0.5321 |
Lack-of-fit | 750.45 | 9 | 83.3833 | 6.17 | 0.2992 |
Pure error | 13.52 | 1 | 13.52 | ||
Total (corr.) | 9538.24 | 24 | |||
R2 | 0.919905 | ||||
Y3 | |||||
Variable | Sum of squares | d.f. | Mean Square | F-Ratio | p-Value |
X1: Temperature | 2446.91 | 1 | 2446.91 | 221.54 | 0.0427 |
X2: % EtOH | 2294.93 | 1 | 2294.93 | 207.78 | 0.0441 |
X3: Extraction time | 1.01332 | 1 | 1.01332 | 0.09 | 0.8128 |
X4: S–S | 40.7444 | 1 | 40.7444 | 3.69 | 0.3056 |
X1X1 | 1.21651 | 1 | 1.21651 | 0.11 | 0.796 |
X1X2 | 30.1739 | 1 | 30.1739 | 2.73 | 0.3464 |
X1X3 | 11.1687 | 1 | 11.1687 | 1.01 | 0.4982 |
X1X4 | 146.599 | 1 | 146.599 | 13.27 | 0.1705 |
X2X2 | 1.0669 | 1 | 1.0669 | 0.1 | 0.8082 |
X2X3 | 105.217 | 1 | 105.217 | 9.53 | 0.1995 |
X2X4 | 517.419 | 1 | 517.419 | 46.85 | 0.0924 |
X3X3 | 5.14163 | 1 | 5.14163 | 0.47 | 0.6188 |
X3X4 | 4.38077 | 1 | 4.38077 | 0.4 | 0.6422 |
X4X4 | 8.91063 | 1 | 8.91063 | 0.81 | 0.5341 |
Lack-of-fit | 603.555 | 9 | 67.0617 | 6.07 | 0.3014 |
Pure error | 11.045 | 1 | 11.045 | ||
Total (corr.) | 6793.25 | 24 | |||
R2 | 0.909528 | ||||
Y4 | |||||
Variable | Sum of squares | d.f. | Mean Square | F-Ratio | p-Value |
X1: Temperature | 135.195 | 1 | 135.195 | 1081.56 | 0.0194 |
X2: % EtOH | 44.5893 | 1 | 44.5893 | 356.71 | 0.0337 |
X3: Extraction time | 2.4977 | 1 | 2.4977 | 19.98 | 0.1401 |
X4: S–S | 6.54616 | 1 | 6.54616 | 52.37 | 0.0874 |
X1X1 | 5.70086 | 1 | 5.70086 | 45.61 | 0.0936 |
X1X2 | 14.8228 | 1 | 14.8228 | 118.58 | 0.0583 |
X1X3 | 1.53315 | 1 | 1.53315 | 12.27 | 0.1771 |
X1X4 | 0.00324709 | 1 | 0.00324709 | 0.03 | 0.8983 |
X2X2 | 1.11277 | 1 | 1.11277 | 8.9 | 0.2059 |
X2X3 | 0.49643 | 1 | 0.49643 | 3.97 | 0.2961 |
X2X4 | 41.479 | 1 | 41.479 | 331.83 | 0.0349 |
X3X3 | 4.74534 | 1 | 4.74534 | 37.96 | 0.1024 |
X3X4 | 1.15483 | 1 | 1.15483 | 9.24 | 0.2023 |
X4X4 | 0.125791 | 1 | 0.125791 | 1.01 | 0.499 |
Lack-of-fit | 32.3611 | 9 | 3.59568 | 28.77 | 0.1418 |
Pure error | 0.125 | 1 | 0.125 | ||
Total (corr.) | 299.83 | 24 | |||
R2 | 0.891652 |
Y1 | Y2 | Y3 | Y4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Run | Predicted | Exp. | CV | Predicted | Exp. | CV | Predicted | Exp. | CV | Predicted | Exp. | CV |
PLE 1 | 17.80 | 20.03 | 8.3 | 64.8 | 68 ± 0.6 | 3.4 | 51.0 | 50.8 ± 0.7 | 0.3 | 13.8 | 17.2 ± 0.1 | 10.3 |
PLE 2 | 34.55 | 23.86 | 25.9 | 46.4 | 34 ± 1 | 17.3 | 35.5 | 26 ± 1 | 16.3 | 9.5 | 7.49 ± 0.06 | 12.5 |
PLE 3 | 26.08 | 15.6 | 35.6 | 70.2 | 69 ± 3 | 1.1 | 56.1 | 57 ± 3 | 1.7 | 12.3 | 11.6 ± 0.5 | 4.8 |
PLE 4 | 42.87 | 50.25 | 11.2 | 74.1 | 80 ± 5 | 5.6 | 59.6 | 63 ± 5 | 3.5 | 16.1 | 17.7 ± 0.7 | 5.7 |
PLE 5 | 40.51 | 43.8 | 5.5 | 42.5 | 54 ± 3 | 16.2 | 32.0 | 40 ± 2 | 15.2 | 12.3 | 13.9 ± 0.9 | 8.0 |
PLE 6 | 25.97 | 21.61 | 13.0 | 72.4 | 86 ± 2 | 11.8 | 57.5 | 67 ± 2 | 11.0 | 16.6 | 18.4 ± 0.3 | 5.1 |
PLE 7 | 39.05 | 46.29 | 12.0 | 44.2 | 59 ± 2 | 20.4 | 34.0 | 49 ± 2 | 17.0 | 11.7 | 9.6 ± 0.3 | 10.8 |
PLE 8 | 17.65 | 23.11 | 19.0 | 44.7 | 32.6 ± 0.1 | 17.0 | 33.4 | 24.5 ± 0.2 | 16.6 | 10.0 | 8.1 ± 0.2 | 11.4 |
PLE 9 | 24.62 | 23.64 | 2.9 | 71.9 | 52 ± 3 | 23.0 | 58.2 | 41 ± 3 | 19.5 | 11.8 | 10.8 ± 0.4 | 5.4 |
PLE 10 | 32.27 | 35.61 | 7.0 | 44.9 | 38.5 ± 0.7 | 10.8 | 34.9 | 29.3 ± 0.7 | 12.4 | 9.9 | 9.24 ± 0.05 | 3.5 |
PLE 11 | 26.54 | 29 | 6.3 | 43.7 | 41.2 ± 1.6 | 4.1 | 33.4 | 32 ± 2 | 2.7 | 10.3 | 9.0 ± 0.2 | 7.0 |
PLE 12 | 45.03 | 35.58 | 16.6 | 43.3 | 48 ± 1 | 7.0 | 33.9 | 38 ± 1 | 7.5 | 9.1 | 10.1 ± 0.4 | 6.1 |
PLE 13 | 37.99 | 37.52 | 0.9 | 46.2 | 48 ± 2 | 2.2 | 36.5 | 39 ± 2 | 4.2 | 9.5 | 9 ± 1 | 11.1 |
PLE 14 | 43.04 | 34.24 | 16.1 | 24.4 | 18.2 ± 0.6 | 15.8 | 17.0 | 11.8 ± 0.5 | 20.1 | 7.4 | 6.4 ± 0.1 | 7.9 |
PLE 15 | 32.27 | 36.57 | 8.8 | 44.9 | 43.7 ± 0.9 | 1.9 | 34.9 | 34.0 ± 0.7 | 1.9 | 9.9 | 9.7 ± 0.2 | 2.0 |
PLE 16 | 38.52 | 39.66 | 2.1 | 65.5 | 77 ± 9 | 11.3 | 52.8 | 64 ± 8 | 13.2 | 12.4 | 13 ± 1 | 8.6 |
PLE 17 | 41.61 | 43.29 | 2.8 | 46.6 | 42.5 ± 0.4 | 6.5 | 36.0 | 32.1 ± 0.7 | 8.1 | 10.7 | 10.4 ± 0.3 | 2.9 |
PLE 18 | 45.48 | 50.32 | 7.1 | 45.6 | 50 ± 2 | 6.9 | 35.8 | 41 ± 1 | 9.0 | 11.3 | 9.6 ± 0.2 | 8.6 |
PLE 19 | 54.06 | 70.01 | 18.2 | 19.6 | 22.4 ± 0.3 | 9.3 | 13.7 | 15.1 ± 0.5 | 6.8 | 4.2 | 7.3 ± 0.2 | 23.9 |
PLE 20 | 58.56 | 61.72 | 3.7 | 17.4 | 23 ± 1 | 13.4 | 12.3 | 15.1 ± 0.5 | 10.1 | 6.4 | 8 ± 1 | 18.4 |
PLE 21 | 60.02 | 58.34 | 2.0 | 15.7 | 12.9 ± 0.2 | 14.1 | 10.3 | 6.8 ± 0.2 | 22.3 | 7.0 | 6.0 ± 0.1 | 7.6 |
PLE 22 | 37.16 | 30.22 | 14.6 | 17.9 | 21 ± 1 | 11.8 | 11.7 | 15.1 ± 0.9 | 18.2 | 4.7 | 6.1 ± 0.1 | 11.7 |
PLE 23 | 62.38 | 50.93 | 14.3 | 47.3 | 45 ± 3 | 4.0 | 37.9 | 36 ± 2 | 2.9 | 10.8 | 8.3 ± 0.8 | 15.5 |
PLE 24 | 45.59 | 61.69 | 21.2 | 43.4 | 27 ± 3 | 28.0 | 34.4 | 20 ± 2 | 33.1 | 7.0 | 7.1 ± 0.2 | 1.8 |
PLE 25 | 46.73 | 33.38 | 23.6 | 25.1 | 31.9 ± 0.7 | 11.5 | 18.8 | 24.8 ± 0.8 | 13.0 | 6.0 | 7.15 ± 0.07 | 8.7 |
Factors | Temperature X1 (°C) | EtOH X2 (%) | Time X3 (min) | Sand—Sample Ratio X4 (w/w) | Theoretical Optimum |
---|---|---|---|---|---|
Variable Response | |||||
Yield | 184.1 | 94.5 | 34.7 | 5.7 | 89.5% |
TPC | 35.9 | 94.5 | 29.0 | 5.2 | 87.30 mg/g |
Phenolic acids | 35.9 | 94.1 | 31.5 | 5.7 | 71.02 mg/g |
Flavonoids | 36.1 | 94.5 | 5.8 | 5.7 | 21.00 mg/g |
Multiple response | 67.6 | 92.9 | 34.8 | 5.7 | Yield = 66.4% TPC = 78.94 mg/g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Salas, L.; Borrás-Linares, I.; Quirantes-Piné, R.; Emanuelli, T.; Segura-Carretero, A.; Lozano-Sánchez, J. Enhancing the Production of the Phenolic Extracts of Asparagus Using an Advanced Green Process. Metabolites 2022, 12, 951. https://doi.org/10.3390/metabo12100951
López-Salas L, Borrás-Linares I, Quirantes-Piné R, Emanuelli T, Segura-Carretero A, Lozano-Sánchez J. Enhancing the Production of the Phenolic Extracts of Asparagus Using an Advanced Green Process. Metabolites. 2022; 12(10):951. https://doi.org/10.3390/metabo12100951
Chicago/Turabian StyleLópez-Salas, Lucía, Isabel Borrás-Linares, Rosa Quirantes-Piné, Tatiana Emanuelli, Antonio Segura-Carretero, and Jesús Lozano-Sánchez. 2022. "Enhancing the Production of the Phenolic Extracts of Asparagus Using an Advanced Green Process" Metabolites 12, no. 10: 951. https://doi.org/10.3390/metabo12100951
APA StyleLópez-Salas, L., Borrás-Linares, I., Quirantes-Piné, R., Emanuelli, T., Segura-Carretero, A., & Lozano-Sánchez, J. (2022). Enhancing the Production of the Phenolic Extracts of Asparagus Using an Advanced Green Process. Metabolites, 12(10), 951. https://doi.org/10.3390/metabo12100951