Identification and Distribution of Sterols, Bile Acids, and Acylcarnitines by LC–MS/MS in Humans, Mice, and Pigs—A Qualitative Analysis
Abstract
:1. Introduction
2. Results and Discussions
2.1. Detection and Distribution of Sterol, Bile Acid, and Acylcarnitine Standards
2.1.1. Sterol Characteristics in LC–MS/MS
2.1.2. Bile Acid Characteristics in LC–MS/MS
2.1.3. Acylcarnitines Characteristics in LC–MS/MS
2.2. Distribution of Sterol, Bile Acid, and Acylcarnitine Profiles in Biological Samples
2.2.1. Sterol/Bile Acid/Acylcarnitine Profiles in Liver Tissues
2.2.2. Sterol/Bile Acid/Acylcarnitine Profiles in Plasma and Heart Samples
2.2.3. Sterol/Bile Acid/Acylcarnitine Profiles in Intestinal Tissues and Contents
2.2.4. Sterol/Bile Acid/Acylcarnitine Profiles in Bile Samples
2.3. Strengths and Limitations of the Study
3. Materials and Methods
3.1. Reagents
3.2. Standard Preparation
3.3. Sample Collection
3.4. Sample Preparation
3.5. LC–MS Analysis
3.6. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lamichhane, S.; Sen, P.; Dickens, A.M.; Orešič, M.; Bertram, H.C. Gut metabolome meets microbiome: A methodological perspective to understand the relationship between host and microbe. Methods 2018, 149, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Molinero, N.; Ruiz, L.; Sánchez, B.; Margolles, A. Intestinal Bacteria Interplay With Bile and Cholesterol Metabolism: Implications on Host Physiology. Front. Physiol. 2019, 10, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, N.; Streiff, S.; Heissler, D.; Elhabiri, M.; Albrecht-Gary, A.M.; Atsumi, M.; Gotoh, M.; Désaubry, L.; Nakatani, Y.; Ourisson, G. Reinforcing effect of bi- and tri-cyclopolyprenols on “primitive” membranes made of polyprenyl phosphates. Tetrahedron 2007, 63, 3395–3407. [Google Scholar] [CrossRef]
- Dufourc, E.J. Sterols and membrane dynamics. J. Chem. Biol. 2008, 1, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Zampelas, A.; Magriplis, E. New Insights into Cholesterol Functions: A Friend or an Enemy? Nutrients 2019, 11, 1645. [Google Scholar] [CrossRef] [Green Version]
- Nseir, W.; Hellou, E.; Assy, N. Role of diet and lifestyle changes in nonalcoholic fatty liver disease. World J. Gastroenterol. 2014, 20, 9338–9344. [Google Scholar] [CrossRef]
- Ogbe, R.J.; Ochalefu, D.O.; Mafulul, S.G.; Olaniru, O.B. A review on dietary phytosterols: Their occurrence, metabolism and health benefits. Pelagia Res. Libr. Asian J. Plant Sci. Res. 2015, 5, 10–21. [Google Scholar]
- Lefebvre, P.; Cariou, B.; Lien, F.; Kuipers, F.; Staels, B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 2009, 89, 147–191. [Google Scholar] [CrossRef] [Green Version]
- Chiang, J.Y.L.; Pathak, P.; Liu, H.; Donepudi, A.; Ferrell, J.; Boehme, S. Intestinal Farnesoid X Receptor and Takeda G Protein Couple Receptor 5 Signaling in Metabolic Regulation. Dig. Dis. 2017, 35, 241–245. [Google Scholar] [CrossRef]
- Kliewer, S.A.; Mangelsdorf, D.J. Bile acids as hormones: The FXR-FGF15/19 pathway. Dig. Dis. 2015, 33, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Vernez, L. Analysis of Carnitine and Acylcarnitines in Biological Fluids and Application to a Clinical Study. Ph.D. Thesis, University of Basel, Basel, Switzerland, 2005. [Google Scholar]
- Flanagan, J.L.; Simmons, P.A.; Vehige, J.; Willcox, M.D.; Garrett, Q. Role of carnitine in disease. Nutr. Metab. 2010, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Gao, D. Function, Detection and Alteration of Acylcarnitine Metabolism in Hepatocellular Carcinoma. Metabolites 2019, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ruitang, D. Dysregulation of Bile Acids in Patients with NAFLD; Intech Open: London, UK, 2018. [Google Scholar]
- Enooku, K.; Nakagawa, H.; Fujiwara, N.; Kondo, M. Altered serum acylcarnitine profile is associated with the status of nonalcoholic fatty liver disease (NAFLD) and NAFLD-related hepatocellular carcinoma. Sci. Rep. 2019, 9, 10663. [Google Scholar] [CrossRef]
- Tiratterra, E.; Franco, P.; Porru, E.; Katsanos, K.H.; Christodoulou, D.K.; Roda, G. Role of bile acids in inflammatory bowel disease. Ann. Gastroenterol. 2018, 31, 266–272. [Google Scholar] [CrossRef]
- Simonen, P.; Kotronen, A.; Hallikainen, M.; Sevastianova, K.; Makkonen, J.; Hakkarainen, A.; Lundbom, N.; Miettinen, T.A.; Gylling, H.; Yki-järvinen, H. Cholesterol synthesis is increased and absorption decreased in non-alcoholic fatty liver disease independent of obesity. J. Hepatol. 2011, 54, 153–159. [Google Scholar] [CrossRef]
- Plat, J.; Hendrikx, T.; Bieghs, V.; Jeurissen, M.L.J.; Walenbergh, S.M.A.; Van Gorp, P.J.; De Smet, E.; Konings, M.; Vreugdenhil, A.C.E.; Guichot, Y.D.; et al. Protective Role of Plant Sterol and Stanol Esters in Liver Inflammation: Insights from Mice and Humans. PLoS ONE 2014, 9, e110758. [Google Scholar] [CrossRef]
- Lai, Y.; Xue, J.; Liu, C.W.; Gao, B.; Chi, L.; Tu, P.; Lu, K.; Ru, H. Serum metabolomics identifies altered bioenergetics, signaling cascades in parallel with exposome markers in Crohn’s disease. Molecules 2019, 24, 449. [Google Scholar] [CrossRef] [Green Version]
- Sjövall, J.; Setchell, K.D.R. Techniques for Extraction and Group Separation of Bile Acids. In The Bile Acids: Chemistry, Physiology, and Metabolism: Volume 4: Methods and Applications; Setchell, K.D.R., Kritchevsky, D., Nair, P.P., Eds.; Springer: Boston, MA, USA, 1988; pp. 1–42. ISBN 978-1-4613-0901-7. [Google Scholar]
- Perwaiz, S.; Tuchweber, B.; Mignault, D.; Gilat, T.; Yousef, I.M. Determination of bile acids in biological fluids by liquid chromatography-electrospray tandem mass spectrometry. J. Lipid Res. 2001, 42, 114–119. [Google Scholar] [CrossRef]
- Alnouti, Y.; Csanaky, I.L.; Klaassen, C.D. Quantitative-Profiling of Bile Acids and their Conjugates in Mouse Liver, Bile, Plasma, and Urine Using LC-MS/MS. J. Chromatogr. B Anal. Technol. 2008, 873, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Codesido, S.; Randazzo, G.M.; Lehmann, F.; Garc, A.; Xenarios, I.; Liechti, R. DynaStI: A Dynamic Retention Time Database for Steroidomics. Metabolites 2019, 9, 85. [Google Scholar] [CrossRef] [Green Version]
- Prinville, V.; Ohlund, L.; Sleno, L. Targeted Analysis of 46 Bile Acids to Study the Effect of Acetaminophen in Rat by LC-MS/MS. Metabolites 2020, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Klåvus, A.; Kokla, M.; Noerman, S.; Koistinen, V.M.; Tuomainen, M.; Zarei, I.; Meuronen, T.; Häkkinen, M.R.; Rummukainen, S.; Babu, A.F.; et al. “Notame”: Workflow for non-targeted LC-MS metabolic profiling. Metabolites 2020, 10, 135. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.R.; Kochhar, S.; Shim, S.M. Comparison of electrospray ionization and atmospheric chemical ionization coupled with the liquid chromatography-tandem mass spectrometry for the analysis of cholesteryl esters. Int. J. Anal. Chem. 2015, 2015, 650927. [Google Scholar] [CrossRef] [Green Version]
- Münger, L.H.; Boulos, S.; Nyström, L. UPLC-MS/MS Based Identification of Dietary Steryl Glucosides by Investigation of Corresponding Free Sterols. Front. Chem. 2018, 6, 342. [Google Scholar] [CrossRef]
- Huang, J.; Bathena, S.P.R.; Csanaky, I.L.; Alnouti, Y. Simultaneous characterization of bile acids and their sulfate metabolites in mouse liver, plasma, bile, and urine using LC-MS/MS. J. Pharm. Biomed. Anal. 2011, 55, 1111–1119. [Google Scholar] [CrossRef]
- Qiao, X.; Ye, M.; Liu, C.; Yang, W.; Miao, W.; Dong, J.; Guo, D. A tandem mass spectrometric study of bile acids: Interpretation of fragmentation pathways and differentiation of steroid isomers. Steroids 2012, 77, 204–211. [Google Scholar] [CrossRef]
- Meierhofer, D. Acylcarnitine profiling by low-resolution. PLoS ONE 2019, 14, e0221342. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef]
- Tsai, S.J.; Zhong, Y.; Weng, J.; Huang, H.; Hsieh, P. Determination of bile acids in pig liver, pig kidney and bovine liver by gas chromatography-chemical ionization tandem mass spectrometry with total ion chromatograms and extraction ion chromatograms. J. Chromatogr. A 2011, 1218, 524–533. [Google Scholar] [CrossRef]
- Tabas, I. Lipids and atherosclerosis. In New Comprehensive Biochemistry; Vance, D.E., Ed.; Elsevier: San Diego, CA, USA, 2002; pp. 579–605. ISBN 978-0-444-53219-0. [Google Scholar]
- Pataj, Z.; Liebisch, G.; Schmitz, G.; Matysik, S. Quantification of oxysterols in human plasma and red blood cells by liquid chromatography high-resolution tandem mass spectrometry. J. Chromatogr. A 2016, 1439, 82–88. [Google Scholar] [CrossRef]
- Meaney, S.; Hassan, M.; Sakinis, A.; Lütjohann, D.; Von, K.; Wennmalm, Å.; Diczfalusy, U.; Björkhem, I. Evidence that the major oxysterols in human circulation originate from distinct pools of cholesterol: A stable isotope study. J. Lipid Res. 2001, 42, 70–78. [Google Scholar] [CrossRef]
- Millington, D.S.; Stevens, R.D. Acylcarnitines: Analysis in Plasma and Whole Blood Using Tandem Mass Spectrometry. In Metabolic Profiling; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2011; Volume 708, pp. 55–72. ISBN 9781617379857. [Google Scholar]
- Vital, M.; Rud, T.; Rath, S.; Pieper, D.H.; Schlüter, D. Diversity of Bacteria Exhibiting Bile Acid-inducible 7 α-dehydroxylation Genes in the Human Gut. Comput. Struct. Biotechnol. J. 2019, 17, 1016–1019. [Google Scholar] [CrossRef] [PubMed]
- Lepercq, P.; Gérard, P.; Béguet, F.; Raibaud, P.; Grill, J.-P.; Relano, P.; Cayuela, C.; Juste, C. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by Clostridium baratii isolated from human feces. FEMS Microbiol. Lett. 2004, 235, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Limaye, P.; Renaud, H.; Klaassen, C. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice. Physiol. Behav. 2017, 176, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Eyssen, H.J.; Parmentier, G.G.; Mertens, J.A. Sulfated Bile Acids in Germ-Free and Conventional Mice. Eur. J. Biochem. 1976, 514, 507–514. [Google Scholar] [CrossRef]
- Kuipers, F.; Enserink, M.; Havinga, R.; van der Steen, A.B.; Hardonk, M.J.; Fevery, J.; Vonk, R.J. Separate transport systems for biliary secretion of sulfated and unsulfated bile acids in the rat. J. Clin. Investig. 1988, 81, 1593–1599. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Dawson, P.A. BBA—Molecular Basis of Disease Animal models to study bile acid metabolism. Biochim. Biophys. Acta BBA—Mol. Basis Dis. 2019, 1865, 895–911. [Google Scholar] [CrossRef]
- Burrin, D.; Stoll, B.; Moore, D. Digestive physiology of the pig symposium: Intestinal bile acid sensing is linked to key endocrine and metabolic signaling pathways. J. Anim. Sci 2013, 91, 1991–2000. [Google Scholar] [CrossRef]
- Lundell, K.; Wikvall, K. Species-Specific and Age-Dependent Bile Acid Composition: Aspects on CYP8B and CYP4A Subfamilies in Bile Acid Biosynthesis. Curr. Drug Metab. 2008, 9, 323–331. [Google Scholar] [CrossRef]
- Ko, H.; Choi, I.; Chang, K.; Jeong, G.; Gong, G.; Seo, H.; Ryu, D.; Lee, K.G.; Choi, D.; Chung, H.; et al. Amphiphilic metabolites in gallbladder bile: Potential biomarkers for gallbladder diseases. Appl. Spectrosc. Rev. 2016, 51, 706–717. [Google Scholar] [CrossRef]
- Smith, C.A.; O’Maille, G.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.; Abagyan, R.; Siuzdak, G. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2005, 27, 747–751. [Google Scholar] [CrossRef]
- Ruoppolo, M.; Caterino, M.; Albano, L.; Pecce, R.; Di Girolamo, M.G.; Crisci, D.; Costanzo, M.; Milella, L.; Franconi, F.; Campesi, I. Targeted metabolomic profiling in rat tissues reveals sex differences. Sci. Rep. 2018, 8, 4663. [Google Scholar] [CrossRef]
- Noerman, S.; Kärkkäinen, O.; Mattsson, A.; Paananen, J.; Lehtonen, M.; Nurmi, T.; Tuomainen, T.P.; Voutilainen, S.; Hanhineva, K.; Virtanen, J.K. Metabolic Profiling of High Egg Consumption and the Associated Lower Risk of Type 2 Diabetes in Middle-Aged Finnish Men. Mol. Nutr. Food Res. 2019, 63, 1800605. [Google Scholar] [CrossRef]
- Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The Human Metabolome Database. Nucleic Acids Res. 2007, 35, D521–D526. [Google Scholar] [CrossRef]
Species | Sample Type | Sterol | Bile Acid | Acylcarnitine | Total |
---|---|---|---|---|---|
Human | Stool | 4 | 24 | 9 | 37 |
Plasma | 5 | 4 | 10 | 19 | |
Mouse | Duodenum content | 5 | 23 | 16 | 44 |
Jejunum content | 5 | 24 | 14 | 43 | |
Ileum | 5 | 20 | 17 | 42 | |
Cecum | 4 | 15 | 15 | 34 | |
Liver | 3 | 7 | 17 | 27 | |
Pig | Bile | 9 | 20 | 10 | 39 |
Proximal colon | 4 | 13 | 19 | 36 | |
Cecum | 4 | 12 | 18 | 34 | |
Stool | 4 | 21 | 3 | 28 | |
Liver | 4 | 6 | 14 | 24 | |
Heart | 4 | 3 | 12 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babu, A.F.; Koistinen, V.M.; Turunen, S.; Solano-Aguilar, G.; Urban, J.F., Jr.; Zarei, I.; Hanhineva, K. Identification and Distribution of Sterols, Bile Acids, and Acylcarnitines by LC–MS/MS in Humans, Mice, and Pigs—A Qualitative Analysis. Metabolites 2022, 12, 49. https://doi.org/10.3390/metabo12010049
Babu AF, Koistinen VM, Turunen S, Solano-Aguilar G, Urban JF Jr., Zarei I, Hanhineva K. Identification and Distribution of Sterols, Bile Acids, and Acylcarnitines by LC–MS/MS in Humans, Mice, and Pigs—A Qualitative Analysis. Metabolites. 2022; 12(1):49. https://doi.org/10.3390/metabo12010049
Chicago/Turabian StyleBabu, Ambrin Farizah, Ville Mikael Koistinen, Soile Turunen, Gloria Solano-Aguilar, Joseph F. Urban, Jr., Iman Zarei, and Kati Hanhineva. 2022. "Identification and Distribution of Sterols, Bile Acids, and Acylcarnitines by LC–MS/MS in Humans, Mice, and Pigs—A Qualitative Analysis" Metabolites 12, no. 1: 49. https://doi.org/10.3390/metabo12010049
APA StyleBabu, A. F., Koistinen, V. M., Turunen, S., Solano-Aguilar, G., Urban, J. F., Jr., Zarei, I., & Hanhineva, K. (2022). Identification and Distribution of Sterols, Bile Acids, and Acylcarnitines by LC–MS/MS in Humans, Mice, and Pigs—A Qualitative Analysis. Metabolites, 12(1), 49. https://doi.org/10.3390/metabo12010049