Modulation of Plasma and Milk Sphingolipids in Dairy Cows Fed High-Starch Diets
Abstract
:1. Introduction
2. Results
2.1. Animal Parameters and Metabolic Status
2.2. Plasma and Milk Lipidome
3. Discussion
4. Materials and Methods
4.1. Experimental Design and Treatments
4.2. Management, Feeding and Blood and Milk Sampling
4.3. Experimental Analyses
4.3.1. Ruminal and Reticular pH
4.3.2. Lipidomics
4.4. Statistical Analyses
4.4.1. Univariate Data
4.4.2. Multivariate Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smilowitz, J.T.; Dillard, C.J.; German, J.B. Milk beyond essential nutrients: The metabolic food. Aust. J. Dairy Technol. 2005, 60, 77–83. [Google Scholar]
- Gaucheron, F. The minerals of milk. Reprod. Nutr. Dev. 2005, 45, 473–483. [Google Scholar] [CrossRef]
- Penedo, L.A.; Nunes, J.C.; Gama, M.A.S.; Leite, P.E.C.; Quirico-Santos, T.F.; Torres, A.G. Intake of butter naturally enriched with cis9, trans11 conjugated linoleic acid reduces systemic inflammatory mediators in healthy young adults. J. Nutr. Biochem. 2013, 24, 2144–2151. [Google Scholar] [CrossRef]
- Bernal-Santos, G.; O’Donnell, A.M.; Vicini, J.L.; Hartnell, G.F.; Bauman, D.E. Hot topic: Enhancing omega-3 fatty acids in milk fat of dairy cows by using stearidonic acid-enriched soybean oil from genetically modified soybeans. J. Dairy Sci. 2010, 93, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Stamey, J.A.; Shepherd, D.M.; De Veth, M.J.; Corl, B.A. Use of algae or algal oil rich in n-3 fatty acids as a feed supplement for dairy cattle. J. Dairy Sci. 2012, 95, 5269–5275. [Google Scholar] [CrossRef]
- Tanaka, K.; Hosozawa, M.; Kudo, N.; Yoshikawa, N.; Hisata, K.; Shoji, H.; Shinohara, K.; Shimizu, T. The pilot study: Sphingomyelin-fortified milk has a positive association with the neurobehavioural development of very low birth weight infants during infancy, randomized control trial. Brain Dev. 2013, 35, 45–52. [Google Scholar] [CrossRef]
- Norris, G.H.; Jiang, C.; Ryan, J.; Porter, C.M.; Blesso, C.N. Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. J. Nutr. Biochem. 2016, 30, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Norris, G.H.; Milard, M.; Michalski, M.C.; Blesso, C.N. Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. J. Nutr. Biochem. 2019, 73, 108224. [Google Scholar] [CrossRef]
- Noh, S.K.; Koo, S.I. Milk sphingomyelin is more effective than egg sphingomyelin in inhibiting intestinal absorption of cholesterol and fat in rats. Nutr. J. 2004, 134, 2611–2616. [Google Scholar] [CrossRef]
- Jensen, R.G. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 2002, 85, 295–350. [Google Scholar] [CrossRef]
- Liu, Z.; Rochfort, S.; Cocks, B. Milk lipidomics: What we know and what we don’t. Prog. Lipid Res. 2018, 71, 70–85. [Google Scholar] [CrossRef]
- Rico, J.E.; Mathews, A.T.; Lovett, J.; Haughey, N.J.; McFadden, J.W. Palmitic acid feeding increases ceramide supply in association with increased milk yield, circulating nonesterified fatty acids, and adipose tissue responsiveness to a glucose challenge. J. Dairy Sci. 2016, 99, 8817–8830. [Google Scholar] [CrossRef] [Green Version]
- Rico, J.E.; Giesy, S.L.; Haughey, N.J.; Boisclair, Y.R.; McFadden, J.W. Intravenous triacylglycerol infusion promotes ceramide accumulation and hepatic steatosis in dairy cows. Nutr. J. 2018, 148, 1529–1535. [Google Scholar] [CrossRef]
- McFadden, J.W.; Rico, J.E. Invited review: Sphingolipid biology in the dairy cow: The emerging role of ceramide. J. Dairy Sci. 2019, 102, 7619–7639. [Google Scholar] [CrossRef]
- Abdela, N. Sub-acute ruminal acidosis (SARA) and its consequence in dairy cattle: A review of past and recent research at global prospective. Achiev. Life Sci. 2016, 10, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Plaizier, J.C.; Krause, D.O.; Gozho, G.N.; McBride, B.W. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet. J. 2008, 176, 21–31. [Google Scholar] [CrossRef]
- Corl, B.A.; Butler, S.T.; Butler, W.R.; Bauman, D.E. Short Communication: Regulation of milk fat yield and fatty acid composition by insulin. J. Dairy Sci. 2006, 89, 4172–4175. [Google Scholar] [CrossRef] [Green Version]
- Sandri, E.C.; Lévesque, J.; Marco, A.; Couture, Y.; Gervais, R.; Rico, D.E. Transient reductions in milk fat synthesis and their association with the ruminal and metabolic profile in dairy cows fed high-starch, low-fat diets. Animal. 2020, 14, 2523–2534. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.; Noble, R.; Davies, G. Phospholipids in milk and dairy products. Int. J. Dairy Technol. 1987, 40, 10–12. [Google Scholar] [CrossRef]
- Graves, E.L.F.; Beaulieu, A.D.; Drackley, J.K. Factors affecting the concentration of sphingomyelin in bovine milk. J. Dairy Sci. 2007, 90, 706–715. [Google Scholar] [CrossRef] [Green Version]
- Haisan, J.; Inabu, Y.; Shi, W.; Oba, M. Effects of pre-and postpartum dietary starch content on productivity, plasma energy metabolites, and serum inflammation indicators of dairy cows. J. Dairy Sci. 2021, 104, 4362–4374. [Google Scholar] [CrossRef] [PubMed]
- Bäßler, S.C.; Kenéz, Á.; Scheu, T.T.; Koch, C.; Meyer, U.; Dänicke, S.; Huber, K. Association between alterations in plasma metabolome profiles and laminitis in intensively finished Holstein bulls in a randomized controlled study. Sci. Rep. 2021, 11, 12735. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, D.G.; Dunn, S.M.; Ametaj, B.N. Feeding high proportions of barley grain stimulate an inflammatory response in dairy cows. J. Dairy Sci. 2008, 91, 606–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albornoz, R.I.; Sordillo, L.M.; Contreras, G.A.; Nelli, R.; Mamedova, L.K.; Bradford, B.J.; Allen, M.S. Diet starch concentration and starch fermentability affect markers of inflammatory response and oxidant status in dairy cows during the early postpartum period. J. Dairy Sci. 2020, 103, 352–367. [Google Scholar] [CrossRef]
- Peraldi, P.; Hotamisligil, G.S.; Buurman, W.A.; White, M.F.; Spiegelman, B.M. Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. J. Biol. Chem. 1996, 271, 13018–13022. [Google Scholar] [CrossRef] [Green Version]
- Peraldi, P.; Spiegelman, B. TNF-α and insulin resistance: Summary and future prospects. Mol. Cell. Biochem. 1998, 182, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Rozenova, K.A.; Deevska, G.M.; Karakashian, A.A.; Nikolova-Karakashian, M.N. Studies on the role of acid sphingomyelinase and ceramide in the regulation of TACE activity and TNFα secretion in macrophages. J. Biol. Chem. 2010, 285, 21103–21113. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.L.; Xie, B.; Beatini, N.; Phu, P.; Marathe, S.; Johns, A.; Gold, P.W.; Hirsch, E.; Williams, K.J.; Licinio, J. Acute systemic inflammation up-regulates secretory sphingomyelinase in vivo: A possible link between inflammatory cytokines and atherogenesis. Proc. Natl. Acad. Sci. USA 2000, 97, 8681–8686. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Xu, X.; Zou, Y.; Yang, Z.; Li, S.; Cao, Z. Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp. J. Anim. Sci. Biotechnol. 2013, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Khafipour, E.; Krause, D.O.; Plaizier, J.C. Alfalfa pellet-induced subacute ruminal acidosis in dairy cows increases bacterial endotoxin in the rumen without causing inflammation. J. Dairy Sci. 2009, 92, 1712–1724. [Google Scholar] [CrossRef] [Green Version]
- Dalmas, E. Innate immune priming of insulin secretion. Curr. Opin. Immunol. 2019, 56, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Bradford, B.J.; Gour, A.D.; Nash, A.S.; Allen, M.S. Propionate challenge tests have limited value for investigating bovine metabolism. Nutr. J. 2006, 136, 1915–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmquist, D.L.; Harvatine, K.J. Origin of Fatty Acids and Influence of Nutritional Factors on Milk Fat. In Advanced Dairy Chemistry; Springer: Cham, Switzerland, 2020; Volume 2, pp. 33–66. [Google Scholar]
- Nilsson, Å.; Duan, R.D. Alkaline sphingomyelinases and ceramidases of the gastrointestinal tract. Chem. Phys. Lipids. 1999, 102, 97–105. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; Morais, D.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.E.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucl. Acids Res. 2021, 11, 6601. [Google Scholar] [CrossRef]
Item | HS | Control |
---|---|---|
Ingredients, % of DM | ||
Corn silage | 34.6 | 44.7 |
Alfalfa silage | 22.2 | 24.5 |
Ground corn | 21.7 | 4.67 |
Grass hay | 5.10 | 10.5 |
Corn gluten meal | 6.41 | 7.86 |
Soybean meal | 7.31 | 5.08 |
Limestone | 0.62 | 0.61 |
Mineral and vitamins mix 2 | 2.06 | 2.04 |
Chemical composition, % of DM | ||
OM | 93.4 | 92.7 |
CP | 16.1 | 17.2 |
NDF | 24.0 | 31.0 |
Total FA | 2.80 | 2.57 |
Starch | 29.4 | 20.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rico, J.E.; Sandri, E.C.; Sarmiento, A.C.; Lévesque, J.; Kenéz, Á.; Rico, D.E. Modulation of Plasma and Milk Sphingolipids in Dairy Cows Fed High-Starch Diets. Metabolites 2021, 11, 711. https://doi.org/10.3390/metabo11100711
Rico JE, Sandri EC, Sarmiento AC, Lévesque J, Kenéz Á, Rico DE. Modulation of Plasma and Milk Sphingolipids in Dairy Cows Fed High-Starch Diets. Metabolites. 2021; 11(10):711. https://doi.org/10.3390/metabo11100711
Chicago/Turabian StyleRico, Jorge Eduardo, Eveline C. Sandri, Andrea Celemín Sarmiento, Janie Lévesque, Ákos Kenéz, and Daniel E. Rico. 2021. "Modulation of Plasma and Milk Sphingolipids in Dairy Cows Fed High-Starch Diets" Metabolites 11, no. 10: 711. https://doi.org/10.3390/metabo11100711
APA StyleRico, J. E., Sandri, E. C., Sarmiento, A. C., Lévesque, J., Kenéz, Á., & Rico, D. E. (2021). Modulation of Plasma and Milk Sphingolipids in Dairy Cows Fed High-Starch Diets. Metabolites, 11(10), 711. https://doi.org/10.3390/metabo11100711