Profiling of Metabolomic Changes in Plasma and Urine of Pigs Caused by Illegal Administration of Testosterone Esters
Abstract
:1. Introduction
2. Results
2.1. Anabolic Effect of 17β-Testosterone (Esters)
2.2. Targeted Analysis of 17 β-Testosterone in Plasma
2.2.1. Identification of Analytes
2.2.2. Study Validation
2.2.3. Pharmacokinetic Profile of 17β-Testosterone
2.3. Metabolomic Study of Blood Plasma and Urine
2.4. QC Samples
3. Discussion
3.1. Anabolic Effect of 17β-Testosterone (Esters)
3.2. Targeted Determination of 17β-Testosterone in Plasma
3.3. Metabolomic Profiling of Changes in Plasma and Urine
3.4. Metabolomic Profiling for Identification of Biomarkers
4. Materials and Methods
4.1. Animal Experiment and Urine/Plasma Sampling
4.2. Reagents and Materials
4.3. Sample Preparation
4.3.1. Plasma Samples for Targeted Analysis
4.3.2. Samples for Metabolomics Profiling
4.4. Targeted Quantitative Analytical Method
4.4.1. LC Condition
4.4.2. MS/MS Parameters
4.4.3. Method Validation
4.5. Metabolomic Profiling
4.5.1. LC Separation
4.5.2. Non-Targeted Mass Spectrometry
4.6. Data Processing
4.7. Statistical Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- European Food Safety Authority. Report for 2018 on the results from the monitoring of veterinary medicinal product residues and other substances in live animals and animal products. EFSA Support. Publ. 2020, 17, 1775E. [Google Scholar]
- Rosner, W. Plasma steroid-binding proteins. Endocrinol. Metab. Clin. N. Am. 1991, 20, 697–720. [Google Scholar] [CrossRef]
- Westphal, U. Steroid-Protein Interactions Revisited. In Steroid-Protein Interactions II; Springer: Berlin/Heidelberg, Germany, 1986; pp. 1–7. [Google Scholar]
- Peng, S.H.; Segura, J.; Farré, M.; González, J.C.; De La Torre, X. Plasma and urinary markers of oral testosterone undecanoate misuse. Steroids 2002, 67, 39–50. [Google Scholar] [CrossRef]
- Nielen, M.W.F.; Nijrolder, A.W.J.M.; Hooijerink, H.; Stolker, A.A.M. Feasibility of desorption electrospray ionization mass spectrometry for rapid screening of anabolic steroid esters in hair. Anal. Chim. Acta 2011, 700, 63–69. [Google Scholar] [CrossRef]
- Van De Kerkhof, D.H.; De Boer, D.; Thijssen, J.H.H.; Maes, R.A.A. Evaluation of testosterone/epitestosterone ratio influential factors as determined in doping analysis. J. Anal. Toxicol. 2000, 24, 102–115. [Google Scholar] [CrossRef] [Green Version]
- Wada Laboratory Expert Group. WADA Technical Document TD2014EAAS—Endogenous Anabolic Androgenic Steroids Measurement and Reporting; World Anti-Doping Agency: Montreal, QC, Canada, 2014; pp. 1–8. [Google Scholar]
- Le Bizec, B.; Monteau, F.; Gaudin, I.; André, F. Evidence for the presence of endogenous 19-norandrosterone in human urine. J. Chromatogr. B Biomed. Sci. Appl. 1999, 723, 157–172. [Google Scholar] [CrossRef]
- Pinel, G.; Weigel, S.; Antignac, J.P.; Mooney, M.H.; Elliott, C.; Nielen, M.W.F.; Le Bizec, B. Targeted and untargeted profiling of biological fluids to screen for anabolic practices in cattle. Trends Anal. Chem. 2010, 29, 1269–1280. [Google Scholar] [CrossRef]
- Community Reference Laboratories. CRL Guidance Paper (7 December 2007)—CRL’s View on State of the Art Analytical Methods for National Residue Control Plans; RIVM—National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2007; pp. 1–8. [Google Scholar]
- Boschi, S.; De Iasio, R.; Mesini, P.; Bolelli, G.F.; Sciajno, R.; Pasquali, R.; Capelli, M. Measurement of steroid hormones in plasma by isocratic high performance liquid chromatography coupled to radioimmunoassay. Clin. Chim. Acta 1994, 231, 107–113. [Google Scholar] [CrossRef]
- Di Benedetto, L.T.; Dimitrakopoulos, T.; Davy, R.M.; Iles, P.J. Testosterone determination using rapid heterogeneous competitive-binding for enzyme-linked immunosorbent assay in flow injection. Anal. Lett. 1996, 29, 2125–2139. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, H.; Zhang, L.; Chen, X.; Liu, W.; Chen, G. Direct determination of anabolic steroids in pig urine by a new SPME-GC-MS method. Talanta 2009, 78, 1083–1089. [Google Scholar] [CrossRef]
- De la Torre, X.; Segura, J.; Polettini, A.; Montagna, M. Detection of testosterone esters in human plasma. J. Mass Spectrom. 1995, 30, 1393–1404. [Google Scholar] [CrossRef]
- He, C.; Li, S.; Liu, H.; Li, K.; Liu, F. Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt. J. Chromatogr. A 2005, 1082, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Shackleton, C.H.L.; Chuang, H.; Kim, J.; De La Torre, X.; Segura, J. Electrospray mass spectrometry of testosterone esters: Potential for use in doping control. Steroids 1997, 62, 523–529. [Google Scholar] [CrossRef]
- Konieczna, L.; Plenis, A.; Oldzka, I.; Kowalski, P.; Bczek, T. Optimization of LC method for the determination of testosterone and epitestosterone in urine samples in view of biomedical studies and anti-doping research studies. Talanta 2011, 83, 804–814. [Google Scholar] [CrossRef]
- Wang, G.; Hsieh, Y.; Cui, X.; Cheng, K.-C.; Korfmacher, W.A. Ultra-performance liquid chromatography/tandem mass spectrometric determination of testosterone and its metabolites in vitro samples. Rapid Commun. Mass Spectrom. 2006, 20, 2215–2221. [Google Scholar] [CrossRef]
- You, Y.; Uboh, C.E.; Soma, L.R.; Guan, F.; Li, X.; Liu, Y.; Rudy, J.A.; Chen, J.; Tsang, D. Simultaneous separation and determination of 16 testosterone and nandrolone esters in equine plasma using ultra high performance liquid chromatography-tandem mass spectrometry for doping control. J. Chromatogr. A 2011, 1218, 3982–3993. [Google Scholar] [CrossRef]
- Ponzetto, F.; Boccard, J.; Baume, N.; Kuuranne, T.; Rudaz, S.; Saugy, M.; Nicoli, R. High-resolution mass spectrometry as an alternative detection method to tandem mass spectrometry for the analysis of endogenous steroids in serum. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1052, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Aqai, P.; Stolker, A.A.M.; Lasaroms, J.J.P. Effect of sample pre-treatment on the determination of steroid esters in hair of bovine calves. J. Chromatogr. A 2009, 1216, 8233–8239. [Google Scholar] [CrossRef]
- Matraszek-Żuchowska, I.; Woźniak, B.; Sielska, K.; Posyniak, A. Determination of steroid esters in hair of slaughter animals by liquid chromatography with tandem mass spectrometry. J. Vet. Res. 2019, 63, 561–572. [Google Scholar] [CrossRef] [Green Version]
- Dervilly-Pinel, G.; Courant, F.; Chéreau, S.; Royer, A.L.; Boyard-Kieken, F.; Antignac, J.P.; Monteau, F.; Le Bizec, B. Metabolomics in food analysis: Application to the control of forbidden substances. Drug Test. Anal. 2012, 4, 59–69. [Google Scholar] [CrossRef]
- Rijk, J.C.W.; Lommen, A.; Essers, M.L.; Groot, M.J.; Van Hende, J.M.; Doeswijk, T.G.; Nielen, M.W.F. Metabolomics approach to anabolic steroid urine profiling of bovines treated with prohormones. Anal. Chem. 2009, 81, 6879–6888. [Google Scholar] [CrossRef] [PubMed]
- Kieken, F.; Pinel, G.; Antignac, J.P.; Monteau, F.; Paris, A.C.; Popot, M.A.; Bonnaire, Y.; Le Bizec, B. Development of a metabonomic approach based on LC-ESI-HRMS measurements for profiling of metabolic changes induced by recombinant equine growth hormone in horse urine. Anal. Bioanal. Chem. 2009, 394, 2119–2128. [Google Scholar] [CrossRef] [PubMed]
- Anizan, S.; Bichon, E.; Duval, T.; Monteau, F.; Cesbron, N.; Antignac, J.-P.; Le Bizec, B. Gas chromatography coupled to mass spectrometry-based metabolomic to screen for anabolic practices in cattle: Identification of 5α-androst-2-en-17-one as new biomarker of 4-androstenedione misuse. J. Mass Spectrom. 2012, 47, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Pinel, G.; Rambaud, L.; Monteau, F.; Elliot, C.; Le Bizec, B. Estranediols profiling in calves’ urine after 17β-nandrolone laureate ester administration. J. Steroid Biochem. Mol. Biol. 2010, 121, 626–632. [Google Scholar] [CrossRef]
- Dervilly-Pinel, G.; Weigel, S.; Lommen, A.; Chereau, S.; Rambaud, L.; Essers, M.; Antignac, J.P.; Nielen, M.W.F.; Le Bizec, B. Assessment of two complementary liquid chromatography coupled to high resolution mass spectrometry metabolomics strategies for the screening of anabolic steroid treatment in calves. Anal. Chim. Acta 2011, 700, 144–154. [Google Scholar] [CrossRef]
- Regal, P.; Anizan, S.; Antignac, J.P.; Le Bizec, B.; Cepeda, A.; Fente, C. Metabolomic approach based on liquid chromatography coupled to high resolution mass spectrometry to screen for the illegal use of estradiol and progesterone in cattle. Anal. Chim. Acta 2011, 700, 16–25. [Google Scholar] [CrossRef]
- Blokland, M.H.; Van Tricht, E.F.; Van Rossum, H.J.; Sterk, S.S.; Nielen, M.W.F. Endogenous steroid profiling by gas chromatography-tandem mass spectrometry and multivariate statistics for the detection of natural hormone abuse in cattle. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 1030–1045. [Google Scholar] [CrossRef] [Green Version]
- Dervilly-Pinel, G.; Chereau, S.; Cesbron, N.; Monteau, F.; Le Bizec, B. LC-HRMS based metabolomics screening model to detect various β-agonists treatments in bovines. Metabolomics 2015, 11, 403–411. [Google Scholar] [CrossRef]
- Blokland, M.H.; van Tricht, E.F.; van Ginkel, L.A.; Sterk, S.S. Applicability of an innovative steroid-profiling method to determine synthetic growth promoter abuse in cattle. J. Steroid Biochem. Mol. Biol. 2017, 174, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Peng, T.; Royer, A.L.; Guitton, Y.; Le Bizec, B.; Dervilly-Pinel, G. Serum-based metabolomics characterization of pigs treated with ractopamine. Metabolomics 2017, 13, 77. [Google Scholar] [CrossRef]
- European Commission. 2002/657/EC: Commission Decision of 12 August 2002 Implementing Council Directive 96/23EC Concerning the Performance of Analytical Methods and Interpretation of Results. Off. J. Eur. Communities 2002, 45, 8–36. [Google Scholar]
- European Medicines Agency. VICH GL49 Studies to Evaluate the Metabolism and Residue Kinetics of Veterinary Drugsin Food-Producing Animals: Validation of Analytical Methods Used in Residue Depletion Studies; European Medicines Agency: Amsterdam, The Netherlands, 2015.
- International Organization for Standardization. ISO 11843-1:1997. Capability of Detection—Part 1: Terms and Definitions; ISO: Geneva, Switzerland, 1997. [Google Scholar]
- Worley, B.; Powers, R. Multivariate Analysis in Metabolomics. Curr. Metab. 2013, 1, 92–107. [Google Scholar]
- Filzmoser, P.; Walczak, B. What can go wrong at the data normalization step for identification of biomarkers? J. Chromatogr. A 2014, 1362, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Chow, G.C. Tests of Equality Between Sets of Coefficients in Two Linear Regressions. Econometrica 1960, 28, 591–605. [Google Scholar] [CrossRef]
- Groot, M.J.; Lasaroms, J.J.P.; van Bennekom, E.O.; Meijer, T.; Vinyeta, E.; van der Klis, J.D.; Nielen, M.W.F. Illegal treatment of barrows with nandrolone ester: Effect on growth, histology and residue levels in urine and hair. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Holčapek, M.; Jirásko, R.; Lísa, M. Recent developments in liquid chromatography–mass spectrometry and related techniques. J. Chromatogr. A 2012, 1259, 3–15. [Google Scholar] [CrossRef]
- Rochat, B.; Kottelat, E.; McMullen, J. The future key role of LC–high-resolution-MS analyses in clinical laboratories: A focus on quantification. Bioanalysis 2012, 4, 2939–2958. [Google Scholar] [CrossRef]
- Stastny, K.; Stepanova, H.; Hlavova, K.; Faldyna, M. Identification and determination of deoxynivalenol (DON) and deepoxy-deoxynivalenol (DOM-1) in pig colostrum and serum using liquid chromatography in combination with high resolution mass spectrometry (LC-MS/MS (HR)). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1126–1127. [Google Scholar] [CrossRef]
- McCoard, S.; Wise, T.; Ford, J. Endocrine and molecular influences on testicular development in Meishan and White Composite boars. J. Endocrinol. 2003, 178, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Park, C.S.; Yi, Y.J. Comparison of semen characteristics, sperm freezability and testosterone concentration between Duroc and Yorkshire boars during seasons. Anim. Reprod. Sci. 2002, 73, 53–61. [Google Scholar] [CrossRef]
- Rejtharová, M.; Rejthar, L.; Čačková, K. Determination of testosterone esters and nortestosterone esters in animal blood serum by LC-MS/MS. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018, 35, 233–240. [Google Scholar] [CrossRef]
- Jacob, C.C.; Dervilly-Pinel, G.; Biancotto, G.; Le Bizec, B. Evaluation of specific gravity as normalization strategy for cattle urinary metabolome analysis. Metabolomics 2014, 10, 627–637. [Google Scholar] [CrossRef]
- Adusumilli, R.; Mallick, P. Data conversion with proteoWizard msConvert. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2017; Volume 1550, pp. 339–368. [Google Scholar]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Gardlo, A.; Friedecký, D.; Najdekr, L.; Karlíková, R.; Adam, T. Metabol: The Statistical Analysis of Metabolomic Data; Laboratory for Inherited Metabolic Disorders, Faculty of Medicine and Dentistry, Palacky University in Olomouc, University Hospital Olomouc: Olomouc, Czech Republic, 2019. [Google Scholar]
- Gelman, A. Exploratory data analysis for complex models. J. Comput. Graph. Stat. 2004, 13, 755–779. [Google Scholar] [CrossRef]
- Cook, T.; Ma, Y.; Gamagedara, S. Evaluation of statistical techniques to normalize mass spectrometry-based urinary metabolomics data. J. Pharm. Biomed. Anal. 2020, 177, 112854. [Google Scholar] [CrossRef] [PubMed]
Ni | Ear Number | Sex | BW (kg)/Week | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
1 | 1 | ♂ | 28.1 | 35.0 | 41.3 | 45.0 | 52.1 | 58.0 | 69.0 |
2 | 2 | ♂ | 29.4 | 33.4 | 36.9 | 43.8 | 52.1 | 53.8 | 63.6 |
3 | 4 | ♂ | 34.1 | 40.5 | 44.2 | 51.6 | 58.8 | 64.2 | 74.0 |
4 | 5 | ♂ | 26.0 | 30.8 | 36.6 | 45.5 | 52.0 | 60.5 | 66.5 |
5 | 7 | ♂ | 23.5 | 27.0 | 29.5 | 33.7 | 39.2 | 41.8 | 50.2 |
6 | 11 | ♀ | 19.9 | 23.2 | 24.7 | 30.0 | 35.6 | 38.6 | 47.0 |
7 | 13 | ♀ | 29.6 | 33.9 | 37.3 | 45.0 | 50.2 | 54.6 | 63.5 |
8 | 14 | ♀ | 37.4 | 43.4 | 45.5 | 55.0 | 59.2 | 65.8 | 75.0 |
9 | 16 | ♀ | 30.4 | 35.3 | 37.4 | 44.8 | 51.2 | 56.7 | 66.0 |
10 | 25 | ♀ | 32.7 | 32.0 | 38.0 | 40.0 | 45.0 | 52.0 | 56.0 |
11 | 26 | ♀ | 22.5 | 46.0 | 54.0 | 59.0 | 67.5 | 73.0 | 81.0 |
12 | 27 | ♂ | 19.9 | 34.0 | 38.0 | 40.5 | 47.0 | 54.0 | 60.0 |
13 | 28 | ♂ | 26.7 | 36.5 | 42.0 | 46.0 | 52.5 | 60.0 | 66.0 |
Female | |||||||||
Average | 26.8 | 33.9 | 38.4 | 43.7 | 50.5 | 56.1 | 64.2 | ||
CV | 20.1 | 18.2 | 23.3 | 30.5 | 36.7 | 53.0 | 57.2 | ||
SD | 4.5 | 4.3 | 4.8 | 5.5 | 6.1 | 7.3 | 7.5 | ||
CI (95%) lower | 22.7 | 30.0 | 33.9 | 38.6 | 44.9 | 49.3 | 57.2 | ||
CI (95%) upper | 31.0 | 37.8 | 42.8 | 48.8 | 56.1 | 62.8 | 71.2 | ||
Median | 26.7 | 34.0 | 38.0 | 45.0 | 52.1 | 58.0 | 66.0 | ||
SDm | 3.6 | 3.4 | 3.7 | 4.6 | 5.0 | 5.7 | 6.1 | ||
Male | |||||||||
Average | 28.8 | 35.6 | 39.5 | 45.6 | 51.5 | 56.8 | 64.7 | ||
CV | 42.3 | 67.7 | 95.4 | 108.7 | 122.4 | 140.5 | 152.8 | ||
SD | 6.5 | 8.2 | 9.8 | 10.4 | 11.1 | 11.9 | 12.4 | ||
CI (95%) lower | 21.9 | 27.0 | 29.2 | 34.7 | 39.8 | 44.3 | 51.8 | ||
CI (95%) upper | 35.6 | 44.3 | 49.7 | 56.6 | 63.1 | 69.2 | 77.7 | ||
Median | 30 | 34.6 | 37.7 | 44.9 | 50.7 | 55.7 | 64.8 | ||
SDm | 4.5 | 5.8 | 7.5 | 7.4 | 8.1 | 8.8 | 8.7 |
Ni | Ear Number | Sex | BW (kg)/Week | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
1 | 8 | ♂ | 26.1 | 31.1 | 36.0 | 43.0 | 49.0 | 51.9 | 57.0 |
2 | 9 | ♂ | 26.3 | 30.2 | 34.6 | 38.6 | 44.2 | 48.1 | 54.5 |
3 | 12 | ♀ | 28.8 | 33.9 | 37.5 | 43.5 | 50.4 | 52.6 | 58.9 |
4 | 15 | ♀ | 29.2 | 33.8 | 36.1 | 43.5 | 50.0 | 54.2 | 60.5 |
5 | 21 | ♀ | 29.4 | 33.1 | 38.0 | 42.5 | 48.0 | 52.1 | 58.6 |
6 | 22 | ♀ | 30.4 | 36.0 | 43.0 | 45.5 | 51.0 | 55.0 | 60.0 |
7 | 23 | ♂ | 30.9 | 34.5 | 40.5 | 44.0 | 48.0 | 52.5 | 60.5 |
8 | 24 | ♂ | 24.9 | 35.0 | 39.5 | 42.0 | 44.5 | 51.5 | 58.1 |
Average | 28.3 | 33.5 | 38.2 | 42.8 | 48.1 | 52.2 | 58.5 | ||
CV | 4.8 | 3.8 | 7.5 | 4.0 | 6.6 | 4.2 | 4.1 | ||
SD | 2.2 | 1.9 | 2.7 | 2.0 | 2.6 | 2.1 | 2.0 | ||
CI (95%) lower | 26.4 | 31.8 | 35.9 | 41.1 | 46.0 | 50.5 | 56.8 | ||
CI (95%) upper | 30.1 | 35.1 | 40.4 | 44.5 | 50.3 | 54.0 | 60.2 | ||
Median | 29.0 | 33.9 | 37.8 | 43.3 | 48.5 | 52.3 | 58.8 | ||
SDm | 1.5 | 1.5 | 2.1 | 1.8 | 1.7 | 1.8 | 1.5 |
Analyte | Intercept (a) | Slope (b) | SD of the Slope | Correlation Coefficient r | LOD (ng mL−1) | LOQ (ng mL−1) |
---|---|---|---|---|---|---|
17β-testosterone | 0.0518 | 0.0690 | 0.00096 | 0.9982 | 0.32 | 0.63 |
17β-testosterone propionate | 0.0291 | 0.0482 | 0.00086 | 0.9991 | 0.19 | 0.52 |
17β-testosterone decanoate | 0.0115 | 0.0713 | 0.00089 | 0.9979 | 0.21 | 0.54 |
17β-testosterone isocaproate | 0.0248 | 0.0448 | 0.000073 | 0.9996 | 0.17 | 0.43 |
No. | Name | p-Value | m/z | RT | Putative Metabolite | Vulcano | VIP | S-Plot | Name | p-Value | m/z | RT | Putative Metabolite | Vulcano | VIP | S-Plot |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plasma samples | Urine samples | |||||||||||||||
1 | M145T1_1 | 1.26 × 10−8 | 144.96248 | 0.75 | x | x | M127T5 | 3.60 × 10−3 | 127.01611 | 4.93 | x | x | ||||
2 | M288T13_3 | 8.58 × 10−5 | 288.34193 | 13.10 | x | x | M135T2_1 | 7.30 × 10−3 | 135.00340 | 1.65 | x | x | ||||
3 | M290T13_1 | 1.95 × 10−5 | 290.21876 | 12.96 | C19H30O2, DHT | x | x | x | M136T2_3 | 2.70 × 10−3 | 136.07603 | 1.65 | x | x | x | |
4 | M303T3_1 | 4.81 × 10−5 | 303.12451 | 3.41 | C17H19O5, myco-phenolic acide | x | x | x | M228T12 | 4.63 × 10−2 | 228.19606 | 11.98 | x | x | ||
5 | M349T1_1 | 1.88 × 10−9 | 348.92403 | 0.74 | x | x | M228T6 | 3.51 × 10−2 | 228.15024 | 5.57 | x | x | ||||
6 | M417T1 | 5.91 × 10−8 | 416.91155 | 0.74 | x | x | M271T20 | 2.42 × 10−2 | 271.20530 | 20.10 | C19H28O2-H2O, Androstane-dione, DHA, DHEA | x | x | |||
7 | M485T1 | 8.63 × 10−11 | 484.89886 | 0.74 | x | x | x | M339T15 | 0.90 × 10−4 | 339.17783 | 14.66 | x | ||||
8 | M553T1 | 2.50 × 10−8 | 552.88600 | 0.75 | x | x | x | M343T2 | 4.03 × 10−2 | 342.85174 | 1.68 | x | x | x | ||
9 | M581T1 | 1.25 × 10−9 | 580.88112 | 0.74 | x | x | x | M371T2_2 | 1.80 × 10−3 | 371.22826 | 1.66 | x | x | x | ||
10 | M588T1 | 3.50 × 10−9 | 587.88214 | 0.74 | x | x | x | M399T3 | 3.06 × 10−2 | 399.11460 | 2.55 | x | ||||
11 | M596T1 | 5.38 × 10−6 | 595.86801 | 0.75 | x | x | x | M441T14 | 3.73 × 10−2 | 441.21007 | 13.68 | x | ||||
12 | M601T1_2 | 6.98 × 10−5 | 601.38312 | 0.75 | x | x | M476T2 | 2.27 × 10−2 | 476.30732 | 2.18 | x | |||||
13 | M621T1 | 5.28 × 10−7 | 620.87317 | 0.74 | x | x | x | M520T3 | 2.65 × 10−2 | 520.33401 | 2.59 | x | ||||
14 | M622T1_2 | 5.39 × 10−8 | 621.87566 | 0.75 | x | x | x | M667T31 | 1.43 × 10−2 | 666.61850 | 30.81 | x | x | |||
15 | M632T30 | 6.82 × 10−5 | 632.17150 | 30.35 | x | x | ||||||||||
16 | M633T30 | 3.76 × 10−6 | 633.16927 | 30.36 | x | x | ||||||||||
17 | M649T1 | 8.55 × 10−9 | 648.86805 | 0.74 | x | x |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stastny, K.; Putecova, K.; Leva, L.; Franek, M.; Dvorak, P.; Faldyna, M. Profiling of Metabolomic Changes in Plasma and Urine of Pigs Caused by Illegal Administration of Testosterone Esters. Metabolites 2020, 10, 307. https://doi.org/10.3390/metabo10080307
Stastny K, Putecova K, Leva L, Franek M, Dvorak P, Faldyna M. Profiling of Metabolomic Changes in Plasma and Urine of Pigs Caused by Illegal Administration of Testosterone Esters. Metabolites. 2020; 10(8):307. https://doi.org/10.3390/metabo10080307
Chicago/Turabian StyleStastny, Kamil, Kristina Putecova, Lenka Leva, Milan Franek, Petr Dvorak, and Martin Faldyna. 2020. "Profiling of Metabolomic Changes in Plasma and Urine of Pigs Caused by Illegal Administration of Testosterone Esters" Metabolites 10, no. 8: 307. https://doi.org/10.3390/metabo10080307
APA StyleStastny, K., Putecova, K., Leva, L., Franek, M., Dvorak, P., & Faldyna, M. (2020). Profiling of Metabolomic Changes in Plasma and Urine of Pigs Caused by Illegal Administration of Testosterone Esters. Metabolites, 10(8), 307. https://doi.org/10.3390/metabo10080307