Evolution of Inflammatory and Oxidative Stress Markers in Romanian Obese Male Patients with Type 2 Diabetes Mellitus after Laparoscopic Sleeve Gastrectomy: One Year Follow-Up
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Picu, A.; Petcu, L.; Ştefan, S.; Mitu, M.; Lixandru, D.; Ionescu-Tîrgovişte, C.; Grădișteanu Pîrcălăbioru, G.; Ciulu-Costinescu, F.; Bubulica, M.V.; Chifiriuc, C.M. Markers of Oxidative Stress and Antioxidant Defense in Romanian Patients with Type 2 T2DM and Obesity. Molecules 2017, 22, 714. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of T2DM for 2010 and 2030. T2DM Res. Clin. Pract. 2010, 87, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Van Gaal, L.F.; Mertens, I.L.; De Block, C.E. Mechanisms linking obesity with cardiovascular disease. Nature 2006, 444, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Popa, S.; Moţa, M.; Popa, A.; Moţa, E.; Serafinceanu, C.; Guja, C.; Catrinoiu, D.; Hâncu, N.; Lichiardopol, R.; Bala, C.; et al. Prevalence of overweight/obesity, abdominal obesity and metabolic syndrome and atypical cardiometabolic phenotypes in the adult Romanian population: PREDATORR study. J. Endocrinol. Investig. 2016, 39, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Colquitt, J.L.; Picot, J.; Loveman, E.; Clegg, A.J. Surgery for obesity. Cochrane Database Syst. Rev. 2009, CD003641. [Google Scholar]
- Pories, W.J.; Albrecht, R.J. Etiology of typeII T2DM: Role of the foregut. World J. Surg. 2001, 25, 527–531. [Google Scholar] [CrossRef]
- Gloy, V.L.; Briel, M.; Bhatt, D.L.; Kashyap, S.R.; Schauer, P.R.; Mingrone, G.; Bucher, H.C.; Nordmann, A.J. Bariatric surgery versus non-surgical treatment for obesity: A systematic review and meta-analysis of randomised controlled trials. BMJ 2013, 347, f5934. [Google Scholar] [CrossRef] [Green Version]
- Abell, T.L.; Minocha, A. Gastrointestinal complications of bariatric surgery: Diagnosis and therapy. Am. J. Med. Sci. 2006, 331, 214–218. [Google Scholar] [CrossRef]
- Koliaki, S.; Liatis, S.; Le Roux, C.; Kokkinos, A. The role of bariatric surgery to treat T2DM: Current challenges and perspectives. BMC Endocr. Disord. 2017, 17, 50. [Google Scholar] [CrossRef] [Green Version]
- Major, P.; Wysocki, M.; Pędziwiatr, M.; Małczak, P.; Pisarska, M.; Budzyński, A. Laparoscopic sleeve gastrectomy for the treatment of T2DM type 2 patients—Single center early experience. Gland Surg. 2016, 5, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Schauer, P.R.; Bhatt, D.L.; Kirwan, J.P.; Wolski, K.; Aminian, A.; Brethauer, S.A.; Navaneethan, S.D.; Singh, R.P.; Pothier, C.E.; Nissen, S.E.; et al. Bariatric Surgery versus Intensive Medical Therapy for T2DM-5-Year Outcomes. N. Engl. J. Med. 2017, 376, 641–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seals, D.R.; Bell, C. Chronic sympathetic activation: Consequence and cause of age-associated obesity? T2DM 2004, 53, 276–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahn, S.; Prigeon, R.; Schwartz, R.S.; Fujimoto, W.Y.; Knopp, R.H.; Brunzell, J.D.; Porte, D., Jr. Obesity, body fat distribution, insulin sensitivity and islet beta-cell function as explanations for metabolic diversity. J. Nutr. 2001, 131, 354S–360S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastard, J.P.; Maachi, M.; Lagathu, C.; Kim, M.J.; Caron, M.; Vidal, H.; Capeau, J.; Feve, B. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw. 2006, 17, 4–12. [Google Scholar] [PubMed]
- Cersosimo, E.; Solis-Herrera, C.; Trautmann, M.E.; Malloy, J.; Triplitt, C. Assessment of pancreatic betacell function: Review of methods and clinical applications. Curr. T2DM Rev. 2014, 10, 2–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltasar, A.; Serra, C.; Pérez, N.; Bou, R.; Bengochea, M.; Ferri, L. Laparoscopic sleeve gastrectomy: A multi-purpose bariatric operation. Obes. Surg. 2005, 15, 1124–1128. [Google Scholar] [CrossRef]
- Moon-Han, S.; Kim, W.W.; Oh, J.H. Results of laparoscopic sleeve gastrectomy (LSG) at 1 year in morbidly obese Korean patients. Obes. Surg. 2005, 15, 1469–1475. [Google Scholar] [CrossRef]
- Mui, W.L.; Ng, E.K.; Tsung, B.Y.; Lam, C.C.; Yung, M.Y. Laparoscopic sleeve gastrectomy in ethnic obese Chinese. Obes. Surg. 2008, 18, 1571–1574. [Google Scholar] [CrossRef]
- Lee, W.J.; Ser, K.H.; Chong, K.; Lee, Y.-C.; Chen, S.-C.; Tsou, J.-J.; Chen, J.-C.; Chen, C.-M. Laparoscopic sleeve gastrectomy for T2DM treatment in nonmorbidly obese patients: Efficacy and change of insulin secretion. Surgery 2010, 147, 664–669. [Google Scholar] [CrossRef]
- Herron, D.M.; Tong, W. Role of surgery in management of T2DM mellitus. Mt. Sinai J. Med. 2009, 76, 281–293. [Google Scholar] [CrossRef]
- Dixon, J.B. Obesity and T2DM: The impact of bariatric surgery on type-2 T2DM. World J. Surg. 2009, 33, 2014–2021. [Google Scholar] [CrossRef] [PubMed]
- Cummings, D.E.; Overduin, J.; Foster-Schubert, K.E.; Carlson, M.J. Role of the bypassed proximal intestine in the anti-diabetic effects of bariatric surgery. Surg. Obes. Relat. Dis. 2007, 3, 109–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iosif, L.; Lixandru, D.; Găman, L.; Ilie, M.; Smeu, B.; Ştefan, D.S.; Petcu, L.; Picu, A.; Constantin, A.; Ionescu-Tîrgovişte, C.; et al. Oxidative stress profile and T2DM remission at 6 months after sleeve gastrectomy versus conservative treatment. Farmacia 2019, 67, 1–7. [Google Scholar] [CrossRef]
- Schmatz, R.; Bitencourt, M.R.; Patias, L.D.; Beck, M.; Da, C.; Alvarez, G.; Zanini, D.; Gutierres, J.M.; Diehl, L.N.; Pereira, L.B.; et al. Evaluation of the biochemical, inflammatory and oxidative profile of obese patients given clinical treatment and bariatric surgery. Clin. Chim. Acta 2016, 465, 72. [Google Scholar] [CrossRef]
- Tripathi, Y.B.; Pandey, V. Obesity and endoplasmic reticulum (ER) stresses. Front. Immunol. 2012, 3, 240. [Google Scholar] [CrossRef] [Green Version]
- Ionescu-Tîrgoviste, C. Insulin resistance-what is myth and what is reality? Acta Endocrinol. 2011, 7, 123–146. [Google Scholar] [CrossRef]
- Farey, J.E.; Preda, T.C.; Fisher, O.M.; Levert-Mignon, A.J.; Stewart, R.L.; Karsten, E.; Herbert, B.R.; Swarbrick, M.M.; Lord, R.V. Effect of laparoscopic sleeve gastrectomy on fasting gastrointestinal, pancreatic, and adipose-derived hormones and on non-esterified fatty acids. Obes. Surg. 2017, 27, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Botnariu, E.G.; Forna, N.C.; Popa, A.D. Presepsin as a Biomarker for Sepsis Evolutions in Diabetis. Rev. Chim. (Bucharest) 2015, 66, 2057–2059. [Google Scholar]
- Ronveaux, C.C.; Tome, D.; Raybould, H.E. Glucagon-Like Peptide 1 Interacts with Ghrelin and Leptin to Regulate Glucose Metabolism and Food Intake through Vagal Afferent Neuron Signaling. J. Nutr. 2015, 145, 672–680. [Google Scholar] [CrossRef] [Green Version]
- Langer, F.B.; Hoda, R.; Bohdjalian, A.; Felberbauer, F.X.; Zacherl, J.; Wenzl, E.; Schindler, K.; Anton, L.; Ludvik, B.; Prager, G. Sleeve gastrectomy and gastric banding: Effects on plasma ghrelin levels. Obes. Surg. 2005, 15, 1024–1029. [Google Scholar] [CrossRef]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Cummings, D.E.; Purnell, J.Q.; Frayo, R.S.; Schmidova, K.; Wisse, B.E.; Weigle, D.S. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. T2DM 2001, 50, 1714–1719. [Google Scholar] [CrossRef] [Green Version]
- Cummings, D.E.; Schwartz, M.W. Genetics and pathophysiology of human obesity. Annu. Rev. Med. 2003, 54, 453–471. [Google Scholar] [CrossRef]
- Cummings, D.E.; Shannon, M.H. Roles for ghrelin in the regulation of appetite and body weight. Arch. Surg. 2003, 138, 389–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariyasu, H.; Takaya, K.; Tagami, T.; Ogawa, Y.; Hosoda, K.; Akamizu, T.; Suda, M.; Koh, T.; Natsui, K.; Toyooka, S.; et al. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J. Clin. Endocrinol. Metab. 2001, 86, 4753–4758. [Google Scholar] [CrossRef] [PubMed]
- Date, Y.; Kojima, M.; Hosoda, H.; Sawaguchi, A.; Mondal, M.S.; Suganuma, T.; Matsukura, S.; Kangawa, K.; Nakazato, M. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 2000, 141, 4255–4261. [Google Scholar] [CrossRef]
- Asakawa, A.; Inui, A.; Kaga, T.; Yuzuriha, H.; Nagata, T.; Ueno, N.; Makino, S.; Fujimiya, M.; Niijima, A.; Fujino, M.A.; et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 2001, 120, 337–345. [Google Scholar] [CrossRef]
- Nakazato, M.; Murakami, N.; Date, Y.; Kojima, M.; Matsuo, H.; Kangawa, K.; Matsukura, S. A role for ghrelin in the central regulation of feeding. Nature 2001, 409, 194–198. [Google Scholar] [CrossRef]
- Faulconbridge, L.F.; Cummings, D.E.; Kaplan, J.M.; Grill, H.J. Hyperphagic effects of brainstem ghrelin administration. T2DM 2003, 52, 2260–2265. [Google Scholar] [CrossRef] [Green Version]
- Guldstrand, M.; Ahrén, B.; Adamson, U. Improved β-cell function after standardized weight reduction in severely obese subjects. Am. J. Physiol.-Endocrinol. Metab. 2003, 284, E557–E565. [Google Scholar] [CrossRef] [Green Version]
- Ionescu-Tirgovişte, C.; Despa, F. Biophysical alteration of the secretory track in b-cells due to molecular overcrowding: The relevance for T2DM. Integr. Biol. 2011, 3, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Pfutzner, A.; Forst, T. Elevated Intact Proinsulin Levels are Indicative of Beta-Cell Dysfunction, Insulin Resistance, and Cardiovascular Risk: Impact of the Antidiabetic Agent Pioglitazone. J. T2DM Sci. Technol. 2011, 5, 784–793. [Google Scholar] [CrossRef] [Green Version]
- Ionescu-Tirgovişte, C.; Vasilescu, R.; Timar, R.; Guja, C.; Gagniuc, P.; Băcanu, E.; Gligor, R.; Carniciu, S. The proinsulin-to-adiponectin ratio could be the best practical indicator of the early T2DM. Adipobiology 2012, 4, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Kassem, M.A.M.; Durda, M.A.; Stoicea, N.; Cavus, O.; Sahin, L.; Rogers, B. The impact of Bariatric Surgery on T2DM Mellitus and the Management of Hypoglycemic Events. Front. Endocrinol. (Lausanne) 2017, 8, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knuth, D.E. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 2nd ed.; Addison-Wesley: Reading, MA, USA, 1981. [Google Scholar]
- Ştefan, D.S.; Mihai, A.; Bajko, D.; Lixandru, D.; Petcu, L.; Picu, A.; Smeu, B.; Copăescu, C.; Ionescu-Tîrgovişte, C.; Guja, C. Comparison of sleeve gastrectomy and conservative treatment effect on biochemical and hormonal profile of obese T2DM subjects: CREDOR randomized controlled study results. Rev. Chem. (Buchar.) 2017, 68, 1622–1627. [Google Scholar]
- Buchwald, H. Health implications of bariatric surgery. J. Am. Coll Surg. 2005, 200, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Tsai, A.G.; Wadden, T.A. Systematic review: An evaluation of major commercial weight loss programs in the United States. Ann. Intern. Med. 2005, 142, 56–66. [Google Scholar] [CrossRef] [PubMed]
Hormones | CTG | LSG | CTG | LSG | CTG | LSG | p-Value |
---|---|---|---|---|---|---|---|
V1 | V1 | V2 | V2 | V3 | V3 | ||
n = 21 | n = 20 | n = 17 | n = 19 | n = 15 | n = 19 | ||
Insulin (μUI/mL) * | 22.12 (23.41) | 18.92 (24.35) | 17.43 (12.71) | 6.67 (5.68) | 14.13 (31.83) | 5.08 (4.17) | 0.5055 |
HOMA-IR (Homeostatic Model Assessment for Insulin Resistance) * | 8.12 (14.02) | 8.44 (10.56) | 7.35 (5.70) | 1.68 (1.70) | 6.32 (11.93) | 1.19 (0.80) | 0.1128 |
HOMA (Homeostatic Model Assessment)-β * | 90.68 (52.24) | 60.16 (84.72) | 86.76 (131.14) | 72.03 (97.63) | 67.54 (146.79) | 61.25 (49.27) | 0.7021 |
Proinsulin (pmol/L) * | 6.42 (19.76) | 5.86 (6.59) | 4.84 (6.60) | 0.87 (0.71) | 3.06 (5.31) | 0.70 (0.87) | 0.5946 |
Proinsulin/Insulin * | 0.44 (0.59) | 0.32 (0.29) | 0.21 (0.73) | 0.12 (0.12) | 0.19 (0.15) | 0.12 (0.18) | 0.9399 |
C Peptide (ng/mL) * | 9.82 (2.53) | 9.72 (1.33) | 7.66 (2.10) | 7.39 (2.09) | 14.13 (31.83) | 4.19 (1.70) | 0.0251 ** V3 |
Leptin (ng/mL) * | 15.50 (7.66) | 8.45 (6.39) | 10.16 (12.78) | 2.62 (1.29) | 8.62 (7.45) | 2.65 (0.79) | p < 0.0001 *** V2, ** V3 |
Adiponectin (μg/mL) * | 4.82 (9.28) | 2.09 (1.09) | 3.98 (6.50) | 3.63 (5.58) | 3.52 (2.61) | 7.53 (7.42) | 0.0082 * V3 |
GLP (Glucagon-like peptide)-1 (ng/mL) * | 47.13 (4.85) | 47.40 (12.17) | 50.54 (9.11) | 16.12 (17.61) | – | – | p < 0.0001 *** V2 |
Ghrelin (pg/mL) * | 100.47 (47.2) | 117.40 (42.9) | 136.75 (62.89) | 94.42 (15.72) | 140.48 (115.6) | 84.82 (32.86) | 0.0017 *** V3 |
Proinflammatory Markers | CTG (Control Group) | p | LSG (Laparoscopic Gastric Sleeve Group) | p | ||
---|---|---|---|---|---|---|
V2 | V3 | V2 | V3 | |||
n = 21 | n = 15 | n = 20 | n = 19 | |||
IL-6 * | 5.79 (13.41) | 11.51 (9.04) | 0.08325 | 3.34 (6.26) | 11.51 (11.47) | 0.0004 |
TNFα * | 0.73 (1.12) | 3.27 (3.56) | 0.00116 | 0.65 (0.90) | 2.90 (3.33) | 0.003342 |
Homocysteine * | 1.94 (0.95) | 1.94 (1.53) | 0.0637 1 | 1.96 (0.88) | 2.36 (0.71) | 0.1447 1 |
hsCRP * | 6.34 (6.21) | 12.33 (9.35) | 0.0946 1 | 9.47 (4.85) | 1.31 (2.48) | 0.0006447 1 |
Oxidative Stress Markers | Baseline | 6 Months | p-Value | ||
---|---|---|---|---|---|
CTG | LSG | CTG | LSG | ||
n = 21 | n = 20 | n = 17 | n = 19 | ||
RB LM/PMA (maximum RLU) | 0.06 ± 0.01 | 0.19 ± 0.05 | 0.09 ± 0.02 | 0.17 ± 0.04 | ns |
RB LG/PMA (maximum RLU) | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | ns |
RB LM /OZ (maximum RLU) | 0.12 ± 0.03 | 0.33 ± 0.09 | 0.23 ± 0.06 * | 0.37 ± 0.00 | <0.05 |
RB LG/OZ (maximum RLU) | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | ns |
GSH (μg/g Hb) | 0.27 ± 0.01 | 0.26 ± 0.01 | 0.28 ± 0.01 | 0.23 ± 0.00 ** | <0.05 |
8-OH-2dG (ng/mL) | 10.31 ± 0.54 | 13.10 ± 2.14 | 10.15 ± 1.82 | 12.04 ± 0.70 | ns |
Antioxidant Markers | V1 | V2 | V3 | |||
---|---|---|---|---|---|---|
CTG | LSG | CTG | LSG | CTG | LSG | |
(n = 21) | (n = 20) | (n = 17) | (n = 19) | (n = 15) | (n = 19) | |
GPx (U/g Hb) | 8.33 ± 0.49 | 6.26 ± 0.5 | 14.18 ± 0.96 ** | 8.80 ± 0.1* | 6.16 ± 0.6 *,$$ | 8.32 ± 0.12 $ |
SOD (U/g Hb) | 605.02 ± 14.6 | 626.47 ± 14 | 665.58 ± 35.9 | 586.16 ± 40.5 | 465.52 ± 38.7 *,$$ | 515.41 ± 28.05 |
CAT (k/g Hb) | 9.28 ± 0.46 | 9.96 ± 0.56 | 14.77 ± 1.8 * | 15.50 ± 1.48 * | 13.80 ± 0.8* | 19.95 ± 1.22 $ |
PON1dh (μmol/mL/min) | 2.15 ± 0.04 | 2.34 ± 0.06 | 2.26 ± 0.09 | 2.31 ± 0.05 | 2.04 ± 0.06 | 2.45 ± 0.08 |
PON1phe (μmol/mL/min) | 73.54 ± 2.5 | 73.94 ± 2.8 | 75.94 ± 1.7 | 73.94 ± 2.8 | 74.34 ± 2.2 | 71.92 ± 1.88 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picu, A.; Petcu, L.; Ştefan, D.S.; Grădișteanu Pîrcălăbioru, G.; Mitu, M.; Bajko, D.; Lixandru, D.; Guja, C.; Savu, O.; Stoian, A.P.; et al. Evolution of Inflammatory and Oxidative Stress Markers in Romanian Obese Male Patients with Type 2 Diabetes Mellitus after Laparoscopic Sleeve Gastrectomy: One Year Follow-Up. Metabolites 2020, 10, 308. https://doi.org/10.3390/metabo10080308
Picu A, Petcu L, Ştefan DS, Grădișteanu Pîrcălăbioru G, Mitu M, Bajko D, Lixandru D, Guja C, Savu O, Stoian AP, et al. Evolution of Inflammatory and Oxidative Stress Markers in Romanian Obese Male Patients with Type 2 Diabetes Mellitus after Laparoscopic Sleeve Gastrectomy: One Year Follow-Up. Metabolites. 2020; 10(8):308. https://doi.org/10.3390/metabo10080308
Chicago/Turabian StylePicu, Ariana, Laura Petcu, Diana Simona Ştefan, Grațiela Grădișteanu Pîrcălăbioru, Manuela Mitu, Daiana Bajko, Daniela Lixandru, Cristian Guja, Octavian Savu, Anca Pantea Stoian, and et al. 2020. "Evolution of Inflammatory and Oxidative Stress Markers in Romanian Obese Male Patients with Type 2 Diabetes Mellitus after Laparoscopic Sleeve Gastrectomy: One Year Follow-Up" Metabolites 10, no. 8: 308. https://doi.org/10.3390/metabo10080308
APA StylePicu, A., Petcu, L., Ştefan, D. S., Grădișteanu Pîrcălăbioru, G., Mitu, M., Bajko, D., Lixandru, D., Guja, C., Savu, O., Stoian, A. P., Constantin, A., Smeu, B., Copăescu, C., Chifiriuc, M. C., Ionica, E., & Ionescu-Tîrgovişte, C. (2020). Evolution of Inflammatory and Oxidative Stress Markers in Romanian Obese Male Patients with Type 2 Diabetes Mellitus after Laparoscopic Sleeve Gastrectomy: One Year Follow-Up. Metabolites, 10(8), 308. https://doi.org/10.3390/metabo10080308