First Insights into the Urinary Metabolome of Captive Giraffes by Proton Nuclear Magnetic Resonance Spectroscopy
Abstract
:1. Introduction
2. Results
2.1. Urinary Metabolites Identification by Untargeted 1H-NMR
2.2. Effects of Sampling Procedure and Location
2.3. Sex Affects the Giraffe Urine Molecular Profile
2.4. Effect of Age on the Urinary Metabolome
2.5. Pregnancy Related Urinary Metabolome
3. Discussion
3.1. Sex Affects the Giraffe Urine Molecular Profile
3.2. Effect of Age
3.3. Effect of Pregnancy
4. Materials and Methods
4.1. Compliance with Ethical Requirements
4.2. Sample Collection
4.3. Metabolomic Analysis
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Muller, Z.; Bercovitch, F.; Brand, R.; Brown, D.; Brown, M.; Bolger, D.; Carter, K.; Deacon, F.; Doherty, J.B.; Fennessy, J.; et al. Giraffa Camelopardalis. The IUCN Red List of Threatened Species 2016: e.T9194A51140239. Available online: https://www.iucnredlist.org/species/9194/109326950 (accessed on 17 April 2020).
- Paul-Murphy, J.; Molter, C. Overview of Animal Welfare in Zoos. In Fowler’s Zoo and Wild Animal Medicine Current Therapy; Miller, R.E., Lamberski, N., Calle, P.P., Eds.; Elsevier: St. Louis, MO, USA, 2019; Volume 9, pp. 64–72. ISBN 978-0-323-55228-8. [Google Scholar]
- Hosey, G.; Melfi, V.; Pankhurst, S. Animal Welfare. In Zoo Animals: Behaviour, Management, and Welfare, 2nd ed.; Oxford University Press: Oxford, UK, 2013; pp. 212–250. ISBN 0199693528. [Google Scholar]
- Normando, S.; Pollastri, I.; Florio, D.; Ferrante, L.; Macchi, E.; Isaja, V.; de Mori, B. Assessing animal welfare in animal-visitor interactions in zoos and other facilities. A pilot study involving giraffes. Animals 2018, 8, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagg, A.I. Physiology. In Giraffe: Biology, Behaviour and Conservation; Dagg, A.I., Ed.; Cambridge University Press: New York, NY, USA, 2014; pp. 117–134. ISBN 9781139542302. [Google Scholar]
- Gage, L.J. Giraffe Husbandry and Welfare. In Fowler’s Zoo and Wild Animal Medicine Current Therapy; Miller, R.E., Lamberski, N., Calle, P.P., Eds.; Elsevier: St. Louis, MO, USA, 2019; Volume 9, pp. 619–622. ISBN 978-0-323-55228-8. [Google Scholar]
- Glatston, A.R.; Smit, S. Analysis of the urine of the okapi (Okapia johnstoni). Acta Zool. Pathol. Antverp. 1980, 75, 49–58. [Google Scholar]
- Zhang, Q. Hypertension and Counter-Hypertension Mechanisms in Giraffes. Cardiovasc. Hematol. Disord. Targets 2012, 6, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Hargens, A.R.; Millard, R.W.; Pettersson, K.; Johansen, K. Gravitational haemodynamics and oedema prevention in the giraffe. Nature 1987, 329, 59–60. [Google Scholar] [CrossRef]
- Agaba, M.; Ishengoma, E.; Miller, W.C.; McGrath, B.C.; Hudson, C.N.; Bedoya Reina, O.C.; Ratan, A.; Burhans, R.; Chikhi, R.; Medvedev, P.; et al. Giraffe genome sequence reveals clues to its unique morphology and physiology. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Patel, K.P.; Luo, F.J.G.; Plummer, N.S.; Hostetter, T.H.; Meyer, T.W. The production of p-Cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin. J. Am. Soc. Nephrol. 2012, 7, 982–988. [Google Scholar] [CrossRef]
- Laghi, L.; Zhu, C.; Campagna, G.; Rossi, G.; Bazzano, M.; Laus, F. Probiotic supplementation in trained trotter horses: Effect on blood clinical pathology data and urine metabolomic assessed in field. J. Appl. Physiol. 2018, 125, 654–660. [Google Scholar] [CrossRef]
- Barbara, G.; Scaioli, E.; Barbaro, M.R.; Biagi, E.; Laghi, L.; Cremon, C.; Marasco, G.; Colecchia, A.; Picone, G.; Salfi, N.; et al. Gut microbiota, metabolome and immune signatures in patients with uncomplicated diverticular disease. Gut 2017, 66, 1252–1261. [Google Scholar] [CrossRef]
- Kok, D.E.G.; Rusli, F.; van der Lugt, B.; Lute, C.; Laghi, L.; Salvioli, S.; Picone, G.; Franceschi, C.; Smidt, H.; Vervoort, J.; et al. Lifelong calorie restriction affects indicators of colonic health in aging C57Bl/6J mice. J. Nutr. Biochem. 2018, 56, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Hu, R.; Wang, Z.; Peng, Q.; Dong, X.; Zhang, X.; Zou, H.; Pu, Q.; Xue, B.; Wang, L. Metabolomics Profiling of Serum and Urine in Three Beef Cattle Breeds Revealed Different Levels of Tolerance to Heat Stress. J. Agric. Food Chem. 2018, 66, 6926–6935. [Google Scholar] [CrossRef] [PubMed]
- Sink, C.A.; Weinstein, N.M. Specimen procurement. In Practical Veterinary Urinalysis; John Wiley & Sons: Chichester, West Sussex, UK, 2012; pp. 9–18. [Google Scholar]
- Zhu, C.; Li, C.; Wang, Y.; Laghi, L. Characterization of yak common biofluids metabolome by means of proton nuclear magnetic resonance spectroscopy. Metabolites 2019, 9, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.; Faillace, V.; Laus, F.; Bazzano, M.; Laghi, L. Characterization of trotter horses urine metabolome by means of proton nuclear magnetic resonance spectroscopy. Metabolomics 2018, 14, 106. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Laghi, L.; Zhang, Z.; He, Y.; Wu, D.; Zhang, H.; Huang, Y.; Li, C.; Zou, L. First Steps toward the Giant Panda Metabolome Database: Untargeted Metabolomics of Feces, Urine, Serum, and Saliva by 1 H NMR. J. Proteome Res. 2020, 19, 1052–1059. [Google Scholar] [CrossRef]
- Chen, X.; Kyle, D.; Orskov, E.; Hovell, F. Renal clearance of plasma allantoin in sheep. Exp. Physiol. 1991, 76, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Sheedy, J.R.; Gooley, P.R.; Nahid, A.; Tull, D.L.; McConville, M.J.; Kukuljan, S.; Nowson, C.A.; Daly, R.M.; Ebeling, P.R. 1H-NMR analysis of the human urinary metabolome in response to an 18-month multi-component exercise program and calcium–vitamin-D3 supplementation in older men. Appl. Physiol. Nutr. Metab. 2014, 39, 1294–1304. [Google Scholar] [CrossRef]
- Mukherjee, K.; Edgett, B.A.; Burrows, H.W.; Castro, C.; Griffin, J.L.; Schwertani, A.G.; Gurd, B.J.; Funk, C.D. Whole blood transcriptomics and urinary metabolomics to define adaptive biochemical pathways of high- intensity exercise in 50-60 year old masters athletes. PLoS ONE 2014, 9, e92031. [Google Scholar] [CrossRef] [Green Version]
- Enea, C.; Seguin, F.; Petitpas-Mulliez, J.; Boildieu, N.; Boisseau, N.; Delpech, N.; Diaz, V.; Eugène, M.; Dugué, B. 1H NMR-based metabolomics approach for exploring urinary metabolome modifications after acute and chronic physical exercise. Anal. Bioanal. Chem. 2010, 396, 1167–1176. [Google Scholar] [CrossRef]
- Ginnett, T.F.; Demment, M.W. Sex differences in giraffe foraging behavior at two spatial scales. Oecologia 1997, 110, 291–300. [Google Scholar] [CrossRef]
- Mayneris-Perxachs, J.; Bolick, D.T.; Leng, J.; Medlock, G.L.; Kolling, G.L.; Papin, J.A.; Swann, J.R.; Guerrant, R.L. Protein-and zinc-deficient diets modulate the murine microbiome and metabolic phenotype. Am. J. Clin. Nutr. 2016, 104, 1253–1262. [Google Scholar] [CrossRef]
- Schüßler, D.; Greven, H. Quantitative aspects of the ruminating process in giraffes (Giraffa camelopardalis) fed with different diets. Zoo Biol. 2017, 36, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Schnackenberg, L.K.; Sun, J.; Espandiari, P.; Holland, R.D.; Hanig, J.; Beger, R.D. Metabonomics evaluations of age-related changes in the urinary compositions of male Sprague Dawley rats and effects of data normalization methods on statistical and quantitative analysis. In Proceedings of the BMC Bioinformatics, Hong Kong, China, 27–30 August 2007. [Google Scholar]
- Slupsky, C.M.; Rankin, K.N.; Wagner, J.; Fu, H.; Chang, D.; Weljie, A.M.; Saude, E.J.; Lix, B.; Adamko, D.J.; Shah, S.; et al. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Anal. Chem. 2007, 79, 6995–7004. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, M.K.; France, J. Rumen microorganisms and their interactions. In Quantitative Aspects of Ruminant Digestion and Metabolism; Dijkstra, J., Forbes, J., France, J., Eds.; CAB International: Wallingford, Oxfordshire, UK, 2009; Volume 2, pp. 207–228. [Google Scholar]
- Schmidt, J.M.; Henken, S.; Dowd, S.E.; McLaughlin, R.W. Analysis of the Microbial Diversity in the Fecal Material of Giraffes. Curr. Microbiol. 2018, 75, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Soupart, P. Urinary excretion of free amino acids in normal adult men and women. Clin. Chim. Acta 1959, 4, 265–271. [Google Scholar] [CrossRef]
- Pechlivanis, A.; Kostidis, S.; Saraslanidis, P.; Petridou, A.; Tsalis, G.; Mougios, V.; Gika, H.G.; Mikros, E.; Theodoridis, G.A. 1H NMR-based metabonomic investigation of the effect of two different exercise sessions on the metabolic fingerprint of human urine. J. Proteome Res. 2010, 9, 6405–6416. [Google Scholar] [CrossRef] [PubMed]
- Karen, A.; Szabados, K.; Reiczigel, J.; Beckers, J.F.; Szenci, O. Accuracy of transrectal ultrasonography for determination of pregnancy in sheep: Effect of fasting and handling of the animals. Theriogenology 2004, 61, 1291–1298. [Google Scholar] [CrossRef]
- Sun, L.; Guo, Y.; Fan, Y.; Nie, H.; Wang, R.; Wang, F. Metabolic profiling of stages of healthy pregnancy in Hu sheep using nuclear magnetic resonance (NMR). Theriogenology 2017, 92, 121–128. [Google Scholar] [CrossRef]
- Kenéz, Á.; Dänicke, S.; Rolle-Kampczyk, U.; von Bergen, M.; Huber, K. A metabolomics approach to characterize phenotypes of metabolic transition from late pregnancy to early lactation in dairy cows. Metabolomics 2016, 12, 165. [Google Scholar] [CrossRef]
- Diaz, S.O.; Barros, A.S.; Goodfellow, B.J.; Duarte, I.F.; Carreira, I.M.; Galhano, E.; Pita, C.; Almeida, M.D.C.; Gil, A.M. Following healthy pregnancy by nuclear magnetic resonance (NMR) metabolic profiling of human urine. J. Proteome Res. 2013, 12, 969–979. [Google Scholar] [CrossRef]
- Bouckenooghe, T.; Remacle, C.; Reusens, B. Is taurine a functional nutrient? Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 728–733. [Google Scholar] [CrossRef]
- Bristow, A.W.; Whitehead, D.C.; Cockburn, J.E. Nitrogenous constituents in the urine of cattle, sheep and goats. J. Sci. Food Agric. 1992, 59, 387–394. [Google Scholar] [CrossRef]
- Dasarathy, J.; Gruca, L.L.; Bennett, C.; Parimi, P.S.; Duenas, C.; Marczewski, S.; Fierro, J.L.; Kalhan, S.C. Methionine metabolism in human pregnancy. Am. J. Clin. Nutr. 2010, 91, 357–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarosiek, I.; Schicho, R.; Blandon, P.; Bashashati, M. Urinary metabolites as noninvasive biomarkers of gastrointestinal diseases: A clinical review. World J. Gastrointest. Oncol. 2016, 8, 459. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.M.; Cunningham, S.A.; Dunlop, A.L.; Corwin, E.J. The Maternal Gut Microbiome during Pregnancy. MCN Am. J. Matern. Nurs. 2017, 42, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Bercovitch, F.B.; Berry, P.S.M. Reproductive life history of Thornicroft’s giraffe in Zambia. Afr. J. Ecol. 2010, 48, 535–538. [Google Scholar] [CrossRef]
- Bercovitch, F.B.; Berry, P.S.M. Giraffe birth locations in the South Luangwa National Park, Zambia: Site fidelity or microhabitat selection? Afr. J. Ecol. 2015, 53, 206–213. [Google Scholar] [CrossRef]
- Lee, D.E.; Bond, M.L.; Bolger, D.T. Season of birth affects juvenile survival of giraffe. Popul. Ecol. 2017, 59, 45–54. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; Vienna, Austria, 2011; Volume 1. Available online: http://www.r-project.org (accessed on 24 March 2020).
- Kneen, M.A.; Annegarn, H.J. Algorithm for fitting XRF, SEM and PIXE X-ray spectra backgrounds. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1996, 109–110, 209–213. [Google Scholar] [CrossRef]
- Liland, K.H.; Almøy, T.; Mevik, B.H. Optimal choice of baseline correction for multivariate calibration of spectra. Appl. Spectrosc. 2010, 64, 1007–1016. [Google Scholar] [CrossRef]
- Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem. 2006, 78, 4281–4290. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B 2018, 26, 211–243. [Google Scholar] [CrossRef]
- Chambers, J.M.; Freeny, A.; Heiberger, R.M. Analysis of variance; designed experiments. In Statistical Models in S; Wadsworth and Brooks/Cole Advanced Books and Software; Springer: Pacific Grove, CA, USA, 1992; pp. 145–193. [Google Scholar]
- Bazzano, M.; Laghi, L.; Zhu, C.; Magi, G.E.; Serri, E.; Spaterna, A.; Tesei, B.; Laus, F. Metabolomics of tracheal wash samples and exhaled breath condensates in healthy horses and horses affected by equine asthma. J. Breath Res. 2018, 12, 46015. [Google Scholar] [CrossRef] [PubMed]
- Hubert, M.; Rousseeuw, P.J.; Vanden Branden, K. ROBPCA: A new approach to robust principal component analysis. Technometrics 2005, 47, 64–79. [Google Scholar] [CrossRef]
Females (6) | Males (7) | Trend | p Value | |
---|---|---|---|---|
Acetate | 2.04 (5.23 × 10−1) | 1.33 (9.04 × 10−1) | ↓ | 0.034 |
Hippurate | 13.50 (10.70) | 19.30 (19.50) | ↑ | 0.047 |
Lactate | 2.77 × 10−1 (8.90 × 10−2) | 1.28 × 10−1 (7.35 × 10−2) | ↓ | 0.003 |
Phenylacetylglycine | 7.82 (2.41) | 15.20 (5.53) | ↑ | 0.014 |
Succinate | 2.48 × 10−1 (3.00 × 10−2) | 1.66 × 10−1 (8.80 × 10−2) | ↓ | 0.006 |
Thymine | 1.77 × 10−1 (4.94 × 10−2) | 2.86 × 10−1 (1.79 × 10−1) | ↑ | 0.043 |
Giulietta | Nicole | |||
---|---|---|---|---|
Not Pregnant | Pregnant 1 | Not Pregnant | Pregnant | |
Phenylacetylglycine | 10.20 | 3.52 ↓ | 10.40 | 5.02 ↓ |
Benzoate | 2.14 | 3.88 ↑ | 2.46 | 12.22 ↑ |
Glycine | 1.06 | 3.04 ↑ | 1.79 | 11.65 ↑ |
Taurine | 1.75 × 10−1 | 2.93 × 10−1 ↑ | 7.98 × 10−2 | 1.33 × 10−1 ↑ |
p-Cresol sulfate | 1.46 × 10−2 | 2.15 × 10−2 ↑ | 6.37 × 10−2 | 3.50 × 10−1 ↑ |
Sample ID | Name | Sex | Age (years) | Zoo |
---|---|---|---|---|
N.01 | Ronny | Male | 14 | FA |
N.02 | Nicole | Female | 14 | FA |
N.03 | Giulietta | Female | 17 | FA |
N.04 | Marcello | Male | 9 | FA |
N.05 | Italia | Female | 8 | FA |
N.06 | Carlos | Male | 2 | RA |
N.07 | Daniele | Male | 11 | RA |
N.08 | Cleopatra | Female | 20 | PT |
N.09 | Alto | Male | 2 | FA |
N.10 | Congo | Male | 0.3 | FA |
N.11 | Roberto | Male | 0.6 | RA |
N.12 | Martina | Female | 0.6 | RA |
N.13 | Linda | Female | 16 | BG |
N.14 | Sandy | Female | 16 | BG |
N.15 | Raffa | Female | 7 | BG |
N.16 | Telete | Female | 2 | BG |
N.17 | Rusman | Male | 16 | BG |
N.18 | Akuna | Female | 10 | BG |
N.19 | Ciokwe | Male | 5 | BG |
N.20 | Miro | Male | 9 | BG |
N.21 | Lucia | Female | 16 | BG |
N.22 | Nuvola | Female | 7 | BG |
N.23 | Sahel | Female | 2 | BG |
N.24 | Russel | Male | 16 | BG |
N.25 | Ramiro | Male | 3 | BG |
N.26 | Madiba | Male | 6 | BG |
N.27 | Nasanta | Female | 2 | BG |
N.28 | Macchia | Male | 5 | VR |
N.29 | Secondo | Male | 11 | VR |
N.30 | Akasha | Male | 7 | VR |
N.31 | Quarto | Male | 9 | VR |
N.32 | Luna | Female | 15 | FA |
N.33 | Kenya | Female | 20 | FA |
N.34 | Alessia | Female | 4 | FA |
N.35 | Mina | Female | 14 | FA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Fasoli, S.; Isani, G.; Laghi, L. First Insights into the Urinary Metabolome of Captive Giraffes by Proton Nuclear Magnetic Resonance Spectroscopy. Metabolites 2020, 10, 157. https://doi.org/10.3390/metabo10040157
Zhu C, Fasoli S, Isani G, Laghi L. First Insights into the Urinary Metabolome of Captive Giraffes by Proton Nuclear Magnetic Resonance Spectroscopy. Metabolites. 2020; 10(4):157. https://doi.org/10.3390/metabo10040157
Chicago/Turabian StyleZhu, Chenglin, Sabrina Fasoli, Gloria Isani, and Luca Laghi. 2020. "First Insights into the Urinary Metabolome of Captive Giraffes by Proton Nuclear Magnetic Resonance Spectroscopy" Metabolites 10, no. 4: 157. https://doi.org/10.3390/metabo10040157
APA StyleZhu, C., Fasoli, S., Isani, G., & Laghi, L. (2020). First Insights into the Urinary Metabolome of Captive Giraffes by Proton Nuclear Magnetic Resonance Spectroscopy. Metabolites, 10(4), 157. https://doi.org/10.3390/metabo10040157