Industrial Applications of Power Electronics
Abstract
:1. Introduction
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rehg, J.A.; Sartori, G.J. Industrial Electronics, 1st ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006; ISBN 978-0-13-206418-7. [Google Scholar]
- Rashid, M.H. (Ed.) Power Electronics Handbook, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 2011. [Google Scholar]
- Perreault, D.J.; Afridi, K.K.; Khan, I.A. 32-Automotive Applications of Power Electronics. In Power Electronics Handbook, 4th ed.; Rashid, M.H., Ed.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 1067–1090. ISBN 978-0-12-811407-0. [Google Scholar]
- Pollefliet, J. 15-Applications of Power Electronics. In Power Electronics; Pollefliet, J., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 15.1–15.44. ISBN 978-0-12-814643-9. [Google Scholar]
- Siwakoti, Y.P.; Forouzesh, M.; Ha Pham, N. Chapter 1-Power Electronics Converters—An Overview. In Control of Power Electronic Converters and Systems; Blaabjerg, F., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 3–29. ISBN 978-0-12-805245-7. [Google Scholar]
- Funcke, S.; Ruppert-Winkel, C. Storylines of (de)centralisation: Exploring infrastructure dimensions in the German electricity system. Renew. Sustain. Energy Rev. 2020, 121, 109652. [Google Scholar] [CrossRef]
- Agnew, S.; Smith, C.; Dargusch, P. Understanding transformational complexity in centralized electricity supply systems: Modelling residential solar and battery adoption dynamics. Renew. Sustain. Energy Rev. 2019, 116, 109437. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Chen, Z.; Kjaer, S.B. Power electronics as efficient interface in dispersed power generation systems. IEEE Trans. Power Electron. 2004, 19, 1184–1194. [Google Scholar] [CrossRef]
- Mahmoudian, M.; Rodrigues, E.M.G.; Pouresmaeil, E. An Efficient H7 Single-Phase Photovoltaic Grid Connected Inverter for CMC Conceptualization and Mitigation Method. Electronics 2020, 9, 1440. [Google Scholar] [CrossRef]
- Shahnazian, F.; Adabi, E.; Adabi, J.; Pouresmaeil, E.; Rouzbehi, K.; Rodrigues, E.M.G.; Catalão, J.P.S. Control of MMC-Based STATCOM as an Effective Interface between Energy Sources and the Power Grid. Electronics 2019, 8, 1264. [Google Scholar] [CrossRef] [Green Version]
- Heidary, A.; Radmanesh, H.; Bakhshi, A.; Rouzbehi, K.; Pouresmaeil, E. A Compound Current Limiter and Circuit Breaker. Electronics 2019, 8, 551. [Google Scholar] [CrossRef] [Green Version]
- Rouzbehi, K.; Miranian, A.; Escaño, J.M.; Rakhshani, E.; Shariati, N.; Pouresmaeil, E. A Data-Driven Based Voltage Control Strategy for DC-DC Converters: Application to DC Microgrid. Electronics 2019, 8, 493. [Google Scholar] [CrossRef] [Green Version]
- Heidary, A.; Radmanesh, H.; Moghim, A.; Ghorbanyan, K.; Rouzbehi, K.; Rodrigues, E.M.G.; Pouresmaeil, E. A Multi-Inductor H Bridge Fault Current Limiter. Electronics 2019, 8, 795. [Google Scholar] [CrossRef] [Green Version]
- Pellitteri, F.; Miceli, R.; Schettino, G.; Viola, F.; Schirone, L. Design and Realization of a Bidirectional Full Bridge Converter with Improved Modulation Strategies. Electronics 2020, 9, 724. [Google Scholar] [CrossRef]
- Samadaei, E.; Salehi, A.; Iranian, M.; Pouresmaeil, E. Single DC Source Multilevel Inverter with Changeable Gains and Levels for Low-Power Loads. Electronics 2020, 9, 937. [Google Scholar] [CrossRef]
- Samadaei, E.; Kaviani, M.; Iranian, M.; Pouresmaeil, E. The P-Type Module with Virtual DC Links to Increase Levels in Multilevel Inverters. Electronics 2019, 8, 1460. [Google Scholar] [CrossRef] [Green Version]
- Rząsa, J. An Alternative Carrier-Based Implementation of Space Vector Modulation to Eliminate Common Mode Voltage in a Multilevel Matrix Converter. Electronics 2019, 8, 190. [Google Scholar] [CrossRef] [Green Version]
- Husev, O.; Shults, T.; Vinnikov, D.; Roncero-Clemente, C.; Romero-Cadaval, E.; Chub, A. Comprehensive Comparative Analysis of Impedance-Source Networks for DC and AC Application. Electronics 2019, 8, 405. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Chen, C.; Gu, X.; Wang, Z.; Li, X. An Improved Model Predictive Torque Control for a Two-Level Inverter Fed Interior Permanent Magnet Synchronous Motor. Electronics 2019, 8, 769. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Zhang, L.; Ouyang, B.; Liu, Y. Nonlinear Effects of Three-Level Neutral-Point Clamped Inverter on Speed Sensorless Control of Induction Motor. Electronics 2019, 8, 402. [Google Scholar] [CrossRef] [Green Version]
- Nandakumar, M.; Ramalingam, S.; Nallusamy, S.; Rangarajan, S.S. Novel Efficacious Utilization of Fuzzy-Logic Controller-Based Two-Quadrant Operation of PMBLDC Motor Drive Systems for Multipass Hot-Steel Rolling Processes. Electronics 2020, 9, 1008. [Google Scholar] [CrossRef]
- Ji, Y.-B.; Lee, J.-H. Feedforward Interpolation Error Compensation Method for Field Weakening Operation Region of PMSM Drive. Electronics 2019, 8, 1052. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, C.; Lv, D.; Zhu, H.; Xing, H. An Experimental Study on the Effect of Multiple Lightning Waveform Parameters on the Aging Characteristics of ZnO Varistors. Electronics 2020, 9, 930. [Google Scholar] [CrossRef]
- Zhang, C.; Xing, H.; Li, P.; Li, C.; Lv, D.; Yang, S. An Experimental Study of the Failure Mode of ZnO Varistors Under Multiple Lightning Strokes. Electronics 2019, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-L.; Wu, P.-L.; Chen, Y.-J. Robust ESD-Reliability Design of 300-V Power N-Channel LDMOSs with the Elliptical Cylinder Super-Junctions in the Drain Side. Electronics 2020, 9, 730. [Google Scholar] [CrossRef]
- Wang, X.; Fu, Z.; Wang, Y.; Wang, W.; Liu, W.; Zhao, J. A Wide-Frequency Constant-Amplitude Transmitting Circuit for Frequency Domain Electromagnetic Detection Transmitter. Electronics 2019, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Gao, F.; Dai, H.; Wang, Z. A Topology-Based Approach to Improve Vehicle-Level Electromagnetic Radiation. Electronics 2019, 8, 364. [Google Scholar] [CrossRef] [Green Version]
- Mendes, T.D.P.; Godina, R.; Rodrigues, E.M.G.; Matias, J.C.O.; Catalão, J.P.S. Smart and energy-efficient home implementation: Wireless communication technologies role. In Proceedings of the 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), Riga, Latvia, 11–13 May 2015; pp. 377–382. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, E.M.G.; Godina, R.; Pouresmaeil, E. Industrial Applications of Power Electronics. Electronics 2020, 9, 1534. https://doi.org/10.3390/electronics9091534
Rodrigues EMG, Godina R, Pouresmaeil E. Industrial Applications of Power Electronics. Electronics. 2020; 9(9):1534. https://doi.org/10.3390/electronics9091534
Chicago/Turabian StyleRodrigues, Eduardo M. G., Radu Godina, and Edris Pouresmaeil. 2020. "Industrial Applications of Power Electronics" Electronics 9, no. 9: 1534. https://doi.org/10.3390/electronics9091534
APA StyleRodrigues, E. M. G., Godina, R., & Pouresmaeil, E. (2020). Industrial Applications of Power Electronics. Electronics, 9(9), 1534. https://doi.org/10.3390/electronics9091534