Broadband Millimeter-Wave Power Amplifier Using Modified 2D Distributed Power Combining
Abstract
1. Introduction
2. Circuit Design
3. Implementation and Measured Results
3.1. Implementation
3.2. Measured Results
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- ETSI. NR; User Equipment (UE) Radio Transmission and Reception; Part 2: Range 2 Standalone (Release 15). 3GPP TS 38.101-2; ETSI: Sophia Antipolis, France, 2020; pp. 35–39. [Google Scholar]
- Zhong, M.; Yang, Y.; Yao, H.; Fu, X.; Dobre, O.A.; Postolache, O. 5G and IoT: Towards a new era of communications and measurements. IEEE Instrum. Meas. Mag. 2019, 22, 18–26. [Google Scholar] [CrossRef]
- Kim, Y.; Kwon, Y. Analysis and design of millimetre-wave power amplifier using stacked-FET structure. IEEE Trans. Microw. Theory Tech. 2015, 63, 691–702. [Google Scholar] [CrossRef]
- Fei, W.; Yu, H.; Liang, Y.; Lim, W.M. A 54 to 62.8 GHz PA with 95.2mW/mm2 output power density by 4 x 4 distributed in-phase power combining in 65nm CMOS. In Proceedings of the IEEE MTT-S International Microwave Symposium, Tampa, FL, USA, 1–6 June 2014; pp. 1–4. [Google Scholar]
- Fei, W.; Yu, H.; Shang, Y.; Yeo, K.S. A 2-D distributed power combining by metamaterial-based zero phase shifter for 60-GHz power amplifier in 65-nm CMOS. IEEE Trans. Microw. Theory Tech. 2012, 61, 505–516. [Google Scholar] [CrossRef]
- Wu, C.-T.M.; Itoh, T. Dual-fed distributed amplifier-based CRLH-leaky wave antenna for gain-enhanced power combining. In Proceedings of the IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, Kyoto, Japan, 10–11 May 2012; pp. 87–90. [Google Scholar]
- Wu, C.-T.M.; Dong, Y.; Sun, J.S.; Itoh, T. Ring-resonator-inspired power recycling scheme for gain-enhanced distributed amplifier-based CRLH-transmission line leaky wave antennas. IEEE Trans. Microw. Theory Tech. 2012, 60, 1027–1037. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J. Resonance frequency and bandwidth of the negative/positive nth mode of a composite right-/left-handed transmission line. J. Electromagn. Eng. Sci. 2018, 1, 1–6. [Google Scholar] [CrossRef]
- Ng-Molina, F.Y.; Martin-Guerrero, T.M.; Camacho-Penalosa, C. Power and gain considerations in distributed amplifiers based on composite right/lefthanded transmission lines. IET Microw. Antennas Propag. 2010, 4, 1000–1006. [Google Scholar] [CrossRef]
- Vigilante, M.; Reynaert, P. A wideband class-AB power amplifier with 29–57-GHz AM–PM compensation in 0.9-V 28-nm bulk CMOS. IEEE J. Solid State Circuits 2018, 53, 1288–1301. [Google Scholar] [CrossRef]
- Wu, P.; Huang, T.; Wang, H. An 18–71 GHz multi-band and high gain GaAs MMIC medium power amplifier for millimeter-wave applications. In Proceedings of the IEEE MTT-S International Microwave Symposium, Philadelphia, PA, USA, 8–13 June 2003; pp. 863–866. [Google Scholar]
- Chuang, M.; Wu, P.; Lei, M.; Wang, H.; Wang, Y.; Wu, C.S. A miniature 15–50-GHz medium power amplifier. In Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, San Francisco, CA, USA, 10–13 June 2006; pp. 471–474. [Google Scholar]
- El-Aassar, O.; Rebeiz, G.M. Compact pMOS stacked-SOI distributed power amplifier with over 100-GHz bandwidth and up to 22-dBm saturated output power. IEEE J. Solid State Circuits Lett. 2019, 2, 9–12. [Google Scholar] [CrossRef]
UE Power Class | UE Application | Operating Band | Minimum Peak EIRP 1 (dBm) |
---|---|---|---|
1 | Fixed wireless access (FWA) | n257 (26.5~29.5 GHz) | 40 |
n258 (24.25~27.5 GHz) | 40 | ||
n260 (37~40 GHz) | 38 | ||
n261 (27.5~28.35 GHz) | 40 | ||
2 | Vehicle | n257 (26.5~29.5 GHz) | 29 |
n258 (24.25~27.5 GHz) | 29 | ||
n261 (27.5~28.35 GHz) | 29 | ||
3 | Handheld | n257 (26.5~29.5 GHz) | 22.4 |
n258 (24.25~27.5 GHz) | 22.4 | ||
n260 (37~40 GHz) | 20.6 | ||
n261 (27.5~28.35 GHz) | 22.4 | ||
4 | High power non-handheld | n257 (26.5~29.5 GHz) | 34 |
n258 (24.25~27.5 GHz) | 34 | ||
n260 (37~40 GHz) | 31 | ||
n261 (27.5~28.35 GHz) | 34 |
Reference | Frequency (GHz) | Technology | Psat (dBm) | P1dB (dBm) | Peak PAE (%) | Power Bandwidth Product 1 | Gain (dB) | Topology |
---|---|---|---|---|---|---|---|---|
[10] | 29–57 | 28 nm CMOS | 15.1–16.6 | 10.9–13.4 | 24.2 | 0.91 | 20 | Transformer-based combining |
[11] | 19–57 | 0.15 μm GaAs pHEMT | 16–19 | NA | NA | 1.51 | 15–27 | DA + cascade amp |
[12] | 15–50 | 0.15 μm GaAs pHEMT | 18–22 | 15–19 | 19 | 2.21 | 15 | Cascaded DA |
[13] | 20–60 | 45 nm SOI PMOS | 19–21.7 | 17.5–19 | 18.4 | 3.18 | 16 | Stacked DA |
[4] | 53–62.8 | 65 nm CMOS | 16–17.2 | 15.5–16.6 | 11.3 | 0.39 | 14.5–17.5 | SEDFDC |
[5] | 44–60 | 65 nm CMOS | 11 2 | 9.7 2 | 7.1 2 | 0.20 | 8.3 2 | SEDFDC |
This work | 26–56 | 0.15 μm GaAs pHEMT | 20.3–24.2 | 19.9–22.8 | 12.7 | 3.21 | 12.9–21.8 | Modified SEDFDC |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J. Broadband Millimeter-Wave Power Amplifier Using Modified 2D Distributed Power Combining. Electronics 2020, 9, 899. https://doi.org/10.3390/electronics9060899
Kim J. Broadband Millimeter-Wave Power Amplifier Using Modified 2D Distributed Power Combining. Electronics. 2020; 9(6):899. https://doi.org/10.3390/electronics9060899
Chicago/Turabian StyleKim, Jihoon. 2020. "Broadband Millimeter-Wave Power Amplifier Using Modified 2D Distributed Power Combining" Electronics 9, no. 6: 899. https://doi.org/10.3390/electronics9060899
APA StyleKim, J. (2020). Broadband Millimeter-Wave Power Amplifier Using Modified 2D Distributed Power Combining. Electronics, 9(6), 899. https://doi.org/10.3390/electronics9060899