Design and Realization of a Bidirectional Full Bridge Converter with Improved Modulation Strategies
Abstract
:1. Introduction
2. Analysis of the Full Bridge Converter (FBC)
2.1. Energy Sources Model
2.2. Full Bridge Converter Analysis
2.3. Possible Modulation Techniques
3. Design and Modulation Strategies for the Proposed Converter
3.1. Choice of the n:m Transformer Ratio
3.2. Modulation Strategies
4. Experimental Tests
4.1. H-bridges Realization
4.2. Reactive Components Realization
4.3. Experimental Setup
4.3.1. SOSC-Side Setup
4.3.2. Bus-Side Setup
4.4. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Livreri, P.; Caruso, M.; Castiglia, V.; Pellitteri, F.; Schettino, G. Dynamic reconfiguration of electrical connections for partially shaded PV modules: Technical and economical performances of an Arduino-based prototype. Int. J. Renew. Energy Res. 2018, 8, 336–344. [Google Scholar]
- Di Carlo, C.A.; Di Donato, L.; Mauro, G.S.; La Rosa, R.; Livreri, P.; Sorbello, G. A circularly polarized wideband high gain patch antenna for wireless power transfer. Microw. Opt. Technol. Lett. 2018, 60, 620–625. [Google Scholar] [CrossRef]
- La Rosa, R.; Zoppi, G.; Finocchiaro, A.; Papotto, G.; Di Donato, L.; Sorbello, G.; Bellomo, F.; Di Carlo, C.A.; Livreri, P. An over-the-distance wireless battery charger based on RF energy harvesting. In Proceedings of the 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Giardini Naxos, Italy, 12–15 June 2017; pp. 1–4. [Google Scholar]
- Yoo, H.; Sul, S.-K.; Park, Y.; Jeong, J. System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries. IEEE Trans. Ind. Appl. 2008, 44, 108–114. [Google Scholar] [CrossRef]
- Abdelhedi, R.; Chiheb Ammari, A.; Sari, A.; Lahyani, A.; Venet, P. Optimal power sharing between batteries and supercapacitors in Electric vehicles. In Proceedings of the 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), Hammamet, Tunisia, 18–20 December 2016; pp. 97–103. [Google Scholar]
- Angerer, C.; Krapf, S.; Wassiliadis, N.; Lienkamp, M. Reduction of aging-effects by supporting a conventional battery pack with ultracapacitors. In Proceedings of the Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 11–13 April 2017; pp. 1–12. [Google Scholar]
- Shah, N.; Czarkowski, D. Supercapacitors in Tandem with Batteries to Prolong the Range of UGV Systems. Electronics 2018, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, G. Experimental Study on a Semi-Active Battery-Supercapacitor Hybrid Energy Storage System for Electric Vehicle Application. IEEE Trans. Power Electron. 2019, 35, 1014–1021. [Google Scholar] [CrossRef]
- Yaïci, W.; Kouchachvili, L.; Entchev, E.; Longo, M. Dynamic Simulation of Battery/Supercapacitor Hybrid Energy Storage System for the Electric Vehicles. In Proceedings of the International Conference on Renewable Energy Research and Applications (ICRERA), Brasov, Romania, 3–6 November 2019; pp. 460–465. [Google Scholar]
- Pellitteri, F.; Castiglia, V.; Livreri, P.; Miceli, R. Analysis and design of bi-directional DC-DC converters for ultracapacitors management in EVs. In Proceedings of the International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 10–12 April 2018; pp. 1–6. [Google Scholar]
- Livreri, P.; Castiglia, V.; Pellitteri, F.; Miceli, R. Design of a Battery/Ultracapacitor Energy Storage System for Electric Vehicle Applications. In Proceedings of the 4th International Forum on Research and Technologies for Society and Industry (RTSI), Palermo, Italy, 10–13 September 2018; pp. 1–5. [Google Scholar]
- Castiglia, V.; Livreri, P.; Miceli, R.; Pellitteri, F.; Schettino, G.; Viola, F. Power Management of a Battery/Supercapacitor System for E-Mobility Applications. In Proceedings of the AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Torino, Italy, 2–4 July 2019; pp. 1–5. [Google Scholar]
- Chakraborty, S.; Vu, H.N.; Hasan, M.M.; Tran, D.D.; Baghdadi, M.E.; Hegazy, O. DC-DC Converter Topologies for Electric Vehicles, Plug-in Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends. Energies 2019, 12, 1569. [Google Scholar] [CrossRef] [Green Version]
- Karbozov, A.; Ibanez, F.M. Optimal Design Methodology for High-Power Interleaved Bidirectional Buck-Boost Converters for Supercapacitors in Vehicular Applications. In Proceedings of the 8th International Conference on Renewable Energy Research and Applications (ICRERA), Brasov, Romania, 3–6 November 2019; pp. 152–157. [Google Scholar]
- Sadoun, R.; Rizoug, N.; Bartholumeus, P.; Barbedette, B.; LeMoigne, P. Sizing of hybrid supply (battery-supercapacitor) for electric vehicle taking into account the weight of the additional buck-boost chopper. In Proceedings of the First International Conference on Renewable Energies and Vehicular Technology, Hammamet, Tunisia, 26–28 March 2012; pp. 8–14. [Google Scholar]
- Camara, M.B.; Gualous, H.; Gustin, F.; Berthon, A. Design and new control of DC/DC converters to share energy between supercapacitors and batteries in hybrid vehicles. IEEE Trans. Veh. Technol. 2013, 57, 2721–2735. [Google Scholar] [CrossRef]
- Xue, L.K.; Wang, P.; Wang, Y.F.; Bei, T.Z.; Yan, H.Y. A four-phase high voltage conversion ratio bidirectional DC-DC converter for battery applications. Energies 2015, 8, 6399–6426. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Chen, Y.; Park, S.J.; Kim, D.H. A Family of Bidirectional DC–DC Converters for Battery Storage System with High Voltage Gain. Energies 2019, 12, 1289. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.M. Development of a novel bidirectional DC/DC converter topology with high voltage conversion ratio for electric vehicles and DC-microgrids. Energies 2016, 9, 410. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, S.; Kajiwara, K.; Tsuji, K.; Kurokawa, F. Efficiency improvement of isolated bidirectional boost full bridge dc-dc converter. In Proceedings of the 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 14–17 October 2018; pp. 673–676. [Google Scholar]
- Lee, I.O.; Lee, J.Y. A High-Power DC-DC Converter Topology for Battery Charging Applications. Energies 2017, 10, 871. [Google Scholar] [CrossRef]
- Shen, C.L.; Shen, Y.S.; Tsai, C.T. Isolated DC-DC Converter for Bidirectional Power Flow Controlling with Soft-Switching Feature and High Step-Up/Down Voltage Conversion. Energies 2017, 10, 296. [Google Scholar] [CrossRef] [Green Version]
- Pellitteri, F.; Boscaino, V.; Di Tommaso, A.O.; Miceli, R.; Capponi, G. Experimental test on a Contactless Power Transfer system. In Proceedings of the Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 25–27 March 2014; pp. 1–6. [Google Scholar]
- Inoue, S.; Akagi, H. A bidirectional DC–DC converter for an energy storage system with galvanic isolation. IEEE Trans. Power Electron. 2007, 22, 2299–2306. [Google Scholar] [CrossRef]
- Pellitteri, F.; Caruso, M.; Castiglia, V.; Di Tommaso, A.O.; Miceli, R.; Schirone, L. An inductive charger for automotive applications. In Proceedings of the 42nd Annual Conference of the IEEE Industrial Electronics Society (IECON), Florence, Italy, 23–26 October 2016; pp. 4482–4486. [Google Scholar]
- Caruso, M.; Castiglia, V.; Di Tommaso, A.O.; Miceli, R.; Pellitteri, F.; Schirone, L. Efficient contactless power transfer system for EVs. In Proceedings of the 51st International Universities Power Engineering Conference (UPEC), Coimbra, Portugal, 6–9 September 2016; pp. 1–6. [Google Scholar]
- Pellitteri, F.; Boscaino, V.; Di Tommaso, A.O.; Miceli, R.; Capponi, G. Control subsystem design for wireless power transfer. In Proceedings of the International Conference on Renewable Energy Research and Application (ICRERA), Milwaukee, WI, USA, 19–22 October 2014; pp. 980–984. [Google Scholar]
CSOSC | RSOSC | Vmin | Vmax |
---|---|---|---|
4 F | 70 mΩ | 35 V | 70 V |
Vmin | Vnom | Vmaz |
---|---|---|
24 V | 28 V | 32 V |
Conventional PSM | Improved PSM | ||||
---|---|---|---|---|---|
V1 | V2 | η | V1 | V2 | η |
70 V | 32 V | 0.72 | 70 V | 32 V | 0.84 |
70 V | 24 V | 0.62 | 70 V | 24 V | 0.80 |
35 V | 32 V | 0.73 | 35 V | 32 V | 0.84 |
35 V | 24 V | 0.67 | 35 V | 24 V | 0.85 |
Core | Material | n | m | Measured Lm | Measured L1 |
---|---|---|---|---|---|
EE80/38/20 | 3C95 | 4 | 6 | 60 μH | 140 nH |
Core | Material | Turns | Measured L2 |
---|---|---|---|
00K7228E040 | Kool Mμ® 40 | 13.5 | 24 μH |
Parameter | Value |
---|---|
fsw | 50 kHz |
L2 | 24 μH |
C1 | 130 μF |
C2 | 200 μH |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellitteri, F.; Miceli, R.; Schettino, G.; Viola, F.; Schirone, L. Design and Realization of a Bidirectional Full Bridge Converter with Improved Modulation Strategies. Electronics 2020, 9, 724. https://doi.org/10.3390/electronics9050724
Pellitteri F, Miceli R, Schettino G, Viola F, Schirone L. Design and Realization of a Bidirectional Full Bridge Converter with Improved Modulation Strategies. Electronics. 2020; 9(5):724. https://doi.org/10.3390/electronics9050724
Chicago/Turabian StylePellitteri, Filippo, Rosario Miceli, Giuseppe Schettino, Fabio Viola, and Luigi Schirone. 2020. "Design and Realization of a Bidirectional Full Bridge Converter with Improved Modulation Strategies" Electronics 9, no. 5: 724. https://doi.org/10.3390/electronics9050724
APA StylePellitteri, F., Miceli, R., Schettino, G., Viola, F., & Schirone, L. (2020). Design and Realization of a Bidirectional Full Bridge Converter with Improved Modulation Strategies. Electronics, 9(5), 724. https://doi.org/10.3390/electronics9050724