A Two-Module Linear Regulator with 3.9–10 V Input, 2.5 V Output, and 500 mA Load
Abstract
:1. Introduction
2. Configuration of the Proposed HV Linear Regulator Circuit
3. Implementation of the Proposed HV Linear Regulator
3.1. The Preregulator Featuring an Active Low-Pass Filter
3.2. The Core Linear Regulator
3.3. Bandgap and Protection Circuits
4. Measurements
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Affanni, A.; Bellini, A.; Franceshini, G.; Guglielmi, P.; Tassoni, C. Battery choice and management for new-generation electric vehicles. IEEE Trans. Ind. Electron. 2005, 52, 1343–1349. [Google Scholar] [CrossRef]
- AS1117 Datasheet, ALPHA Semiconductor Excellence in Analog Power Products. Available online: https://www.alldatasheet.com/view.jsp?Searchword=AS1117R-3-3/TR (accessed on 6 July 2019).
- Avalur, K.K.G.; Azeemuddin, S. A 6–18 V hybrid power management IC with adaptive dropout for improved system efficiency up to 150 °C. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 477–484. [Google Scholar] [CrossRef]
- Shen, Z.H.; Min, H. Combination method of DC-DC converter and LDO to improve efficiency and load regulation. Electron. Lett. 2011, 47, 615–617. [Google Scholar] [CrossRef]
- Yodwong, B.; Guilbert, D.; Kaewmanee, W.; Phattanasak, M. Energy efficiency based control strategy of a three-level interleaved DC-DC buck converter supplying a proton exchange membrane electrolyzer. Electronics 2019, 8, 933. [Google Scholar] [CrossRef]
- Maity, A.; Patra, A. A hybrid-mode operational transconductance amplifier for an adaptively biased low dropout regulator. IEEE Trans. Power Electron. 2017, 32, 1245–1254. [Google Scholar] [CrossRef]
- Javed, K.; Yeo, J.; Lee, J.; Roh, J. Fast-transient DC-DC converter using a high-performance error amplifier with a rapid output-voltage control technique. Int. J. Circuit Theory Appl. 2017, 45, 1431–1438. [Google Scholar] [CrossRef]
- Saberkari, A.; Qaraqanabadi, F.; Shirmohammadli, V.; Martnez, H.; Alarcon, E. Output capacitorless segmented low dropout voltage regulator with controlled pass transistors. Int. J. Circuit Theory Appl. 2016, 44, 460–475. [Google Scholar] [CrossRef]
- Tang, J.; Lee, J.; Roh, J. Low-power fast-transient capacitor-less LDO regulator with high slew-rate class-AB amplifier. IEEE Trans. Circuits Syst. Express Briefs 2019, 66, 462–466. [Google Scholar] [CrossRef]
- Vaisband, I.; Friedman, E.G. Stability of distributed power delivery systems with multiple parallel on-chip LDO regulators. IEEE Trans. Power Electron. 2016, 31, 5625–5634. [Google Scholar] [CrossRef]
- Rincon-Mora, G.A.; Allen, P.E. A low-voltage, low quiescent current, low drop-out regulator. IEEE J. Solid-State Circuits 1998, 33, 36–44. [Google Scholar] [CrossRef]
- Yun, S.J.; Kim, J.S.; Kim, Y.S. Capless LDO Regulator Achieving -76 dB PSR and 96.3 fs FOM. IEEE Trans. Circuits Syst. Express Briefs 2017, 64, 1147–1151. [Google Scholar] [CrossRef]
- Du, H.; Lai, X.; Chi, Y. A high voltage LDO with dynamic compensation network. Analog Integr. Circuit Signal Process. 2014, 80, 233–241. [Google Scholar] [CrossRef]
- Liu, Z.; Jin, X.; Jin, N.; He, Y.; Cheng, Y. Design of wide power supply, high performance voltage regulator with BCD process. In Proceedings of the 2010 Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), Shanghai, China, 22–24 September 2010. [Google Scholar]
- Yang, X. A low-quiescent current low-dropout regulator with wide input range. Int. J. Electron. Electr. Eng. 2015, 3, 182–186. [Google Scholar] [CrossRef]
- Razavi, B. Design of Analog CMOS Integrated Circuits; Mc Graw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Andreou, M.; Koudounas, S.; Georgiou, J. A novel wide-temperature-range, 3.9-ppm/℃ CMOS bandgap reference circuit. IEEE J. Solid-State Circuits 2012, 45, 574–581. [Google Scholar] [CrossRef]
- Ivanov, V.V.; Filanovsky, I.M. Operational Amplifier Speed and Accuracy Improvement: Analog Circuit Design with Structural Methodology; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Liang, Y.; Zhu, Z. A 0.6 V 31 nW 25 ppm/℃ MOSFET-only sub-threshold voltage reference. Microelectron. J. 2017, 66, 25–30. [Google Scholar] [CrossRef]
- Huang, S.; Duan, Q.; Guo, T.; Cheng, Y.; Yin, J.; Ding, Y. A 300 mA load CMOS low-dropout regulator without an external capacitor for SOC and embedded applications. Int. J. Circuit Theory Appl. 2017, 45, 2281–2289. [Google Scholar] [CrossRef]
- Leung, N.; Mok, P.K.T. A capacitor-free CMOS low-dropout regulator with damping-factor-control frequency compensation. IEEE J. Solid-State Circuits 2003, 38, 1691–1702. [Google Scholar] [CrossRef]
- Ho, M.; Guo, J.; Mak, K.; Goh, W.; Bu, S.; Zheng, Y.; Tang, X.; Leung, K. A CMOS low-dropout regulator with dominant-pole substitution. IEEE Trans. Power Electron. 2016, 31, 6362–6371. [Google Scholar] [CrossRef]
Components | Value | Components | Value |
---|---|---|---|
DM1(W/L) | 40 µm/0.4 µm | M1(W/L) | 200 µm/0.5 µm |
DM2(W/L) | 600 µm/0.4 µm | M2(W/L) | 1 µm/10 µm |
DM3 (W/L) | 20 µm/0.45 µm | C1 (pF) | 5.3 |
DM4, DM5(W/L) | 20 µm/5 µm | R1/R2/R3/R4/R5 (kΩ) | 1800/320/1/400/75 |
Components | C0,1/R2,3 (pF) | R0,1/R2,3 (kΩ) | DM1 (Width/Length) | k | DM3 (Width/Length) | Q1 (Number) |
---|---|---|---|---|---|---|
Value | 1.3/3.0 | 45/22.5 | 40 µm/800 nm | 400 | 400 µm/450 nm | 984 (5 µm × 5 µm) |
Research. | Ref. [3] | Ref. [6] | Ref. [12] | Ref. [13] | Ref. [15] | Ref. [22] | This Work |
---|---|---|---|---|---|---|---|
Input voltage range Vin (V) | 6–18 | 1.4–1.8 | 1.8–2.2 | 4–40 | 3.5–24 | 1.2–1.8 | 3.9–10 |
Typical output voltage Vout (V) | 1.8–3.3 | 1.2 | 1.6 | 2.5–5 | 3 | 1.0 | 2.5 |
Dropout voltage (mV) | - | 200 | 200 | >200 | >200 | 200 | >200 |
Quiescent current (μA) | - | 1.6–200 | 71–101 | 8 | 3.7 | 135.1 | 350 (Including BGR, OCP and OTP) |
Load Regulation (mV/mA) | - | 0.1 | - | 5.3 | 0.067 | 0.075 | 0.0328 @ (0-450 mA) |
Line Regulation (mV/V) | - | 5.5 | 131 | 10 | 0.88 @ 5 V | 22.7 | 0.2 @ (5–10 V) |
Max. load current (mA) | 450 | 50 | 100 | 30 | 150 | 100 | 500 |
Current Efficiency (%) | - | 99.6 | 99.9 | 99.9 | 99.9 | 99.8 | 99.9 |
FOM1 (ns) | - | 1.92 | 0.21 | 0.182 | 0.592 | 0.439 | 3.388 |
FOM2 (ns) | - | 10.56 | 27.51 | 1.82 | 0.521 | 0.935 | 0.6776 |
Topology | DC–DC converter+LDO | LDO | LDO | HV-LDO | HV-LDO | LDO | Two-module linear regulator |
System ripple | 10 mV | no | no | no | no | no | no |
Technology | 0.35 µm HV CMOS | 0.18 µm CMOS | 0.18 µm CMOS | 0.6 µm CMOS with DMOS device | 0.35 µm Bi-CMOS | 0.18 µm CMOS | 0.25 µm CMOS with DMOS device |
Chip area (mm2) | 6.4 (including BGR and pads) | 0.0285 | 0.033 | 0.3 (including pads) | 0.7912 (including BGR pads) | 0.024 | 1.67 (including pads, BGR, OCP and OTP) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Q.; Li, W.; Huang, S.; Ding, Y.; Meng, Z.; Shi, K. A Two-Module Linear Regulator with 3.9–10 V Input, 2.5 V Output, and 500 mA Load. Electronics 2019, 8, 1143. https://doi.org/10.3390/electronics8101143
Duan Q, Li W, Huang S, Ding Y, Meng Z, Shi K. A Two-Module Linear Regulator with 3.9–10 V Input, 2.5 V Output, and 500 mA Load. Electronics. 2019; 8(10):1143. https://doi.org/10.3390/electronics8101143
Chicago/Turabian StyleDuan, Quanzhen, Weidong Li, Shengming Huang, Yuemin Ding, Zhen Meng, and Kai Shi. 2019. "A Two-Module Linear Regulator with 3.9–10 V Input, 2.5 V Output, and 500 mA Load" Electronics 8, no. 10: 1143. https://doi.org/10.3390/electronics8101143
APA StyleDuan, Q., Li, W., Huang, S., Ding, Y., Meng, Z., & Shi, K. (2019). A Two-Module Linear Regulator with 3.9–10 V Input, 2.5 V Output, and 500 mA Load. Electronics, 8(10), 1143. https://doi.org/10.3390/electronics8101143