Capacity Configuration and Scheduling Optimization on Wind–Photovoltaic–Storage System Considering Variable Reservoir–Irrigation Load
Abstract
1. Introduction
2. System Modeling
2.1. System Description
2.2. Power Interface Architecture
2.3. Pump–Turbine Unit Model
2.4. Battery Energy Storage Model
3. Optimization Model
3.1. Objective Functions
3.2. Constraints
- (1)
- Power Balance Constraint:
- (2)
- Battery Energy Storage Constraints: Battery operational feasibility is imposed through the standard MILP constraint set in (23)–(28), with related BESS/bi-directional converter modeling treatments available in [23]. Specifically, (23) links the power rating to the energy capacity, (24) enforces SOC bounds, (25) and (26) prevent simultaneous charging and discharging, and (27) and (28) limit charge/discharge power via binary operating states.
4. Solution Method
4.1. Problem Decomposition
4.2. Complementary Allocation Mechanism
4.3. Nash Product-Based Incentive
4.4. Augmented Lagrangian Formulation
4.5. Objective Function of AL-NP-NSGA-II Algorithm
4.6. AL-NP-NSGA-II Algorithm
4.7. Uncertainty Analysis
5. Case Simulation and Analysis
5.1. Case Description
5.2. Resource Parameters and Data
5.3. Results and Analysis
5.4. Optimization Results
6. Case Analysis and Discussion
7. Conclusions and Future Work
8. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Xu, Y.; Fu, Q.; Singh, V.P.; Liu, D.; Li, T. Efficient irrigation water allocation and its impact on agricultural sustainability and water scarcity under uncertainty. J. Hydrol. 2020, 586, 124888. [Google Scholar] [CrossRef]
- Li, M.; Fu, Q.; Singh, V.P.; Liu, D.; Gong, X. Risk-based agricultural water allocation under multiple uncertainties. Agric. Water Manag. 2020, 233, 106105. [Google Scholar] [CrossRef]
- Gu, Z.; Zhu, T.; Jiao, X.; Xu, J.; Qi, Z. Neural network soil moisture model for irrigation scheduling. Comput. Electron. Agric. 2021, 180, 105801. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, H.; Gao, Z.; Fan, Y.; Chang, X.; Yang, M.; Fang, B. Water distribution and scheduling model of an irrigation canal system. Comput. Electron. Agric. 2023, 209, 107866. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Chen, J.J.; Yang, Z.J.; Peng, K.; Zhao, Y.L.; Zhang, X.H. Stochastic day-ahead scheduling of irrigation system integrated agricultural microgrid with pumped storage and uncertain wind power. Energy 2021, 237, 121638. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, R.; Lin, Z.; Chen, Y.; Chen, Z.; Chen, X.; Yuan, J. Day-ahead scheduling model for agricultural microgrid with pumped-storage hydro plants considering irrigation uncertainty. J. Energy Storage 2024, 95, 112468. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, H.; Ren, C.; Sun, D.; Yang, J. Optimization allocation of irrigation water resources based on crop water requirement under considering effective precipitation and uncertainty. Agric. Water Manag. 2020, 239, 106264. [Google Scholar] [CrossRef]
- Gilmore, N.; Britz, T.; Maartensson, E.; Orbegoso-Jordan, C.; Schroder, S.; Malerba, M. Continental-scale assessment of micro-pumped hydro energy storage using agricultural reservoirs. Appl. Energy 2023, 349, 121715. [Google Scholar] [CrossRef]
- Ghasemi, A. Coordination of pumped-storage unit and irrigation system with intermittent wind generation for intelligent energy management of an agricultural microgrid. Energy 2018, 142, 1–13. [Google Scholar] [CrossRef]
- Mousavi, N.; Kothapalli, G.; Habibi, D.; Das, C.K.; Baniasadi, A. A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas. Appl. Energy 2020, 262, 114284. [Google Scholar] [CrossRef]
- Yousef, B.A.A.; Amjad, R.; Alajmi, N.A.; Rezk, H. Feasibility of integrated photovoltaic and mechanical storage systems for irrigation purposes in remote areas: Optimization, energy management, and multicriteria decision-making. Case Stud. Therm. Eng. 2022, 38, 102363. [Google Scholar] [CrossRef]
- Gioutsos, D.M.; Blok, K.; van Velzen, L.; Moorman, S. Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe. Appl. Energy 2018, 226, 437–449. [Google Scholar] [CrossRef]
- Iweh, C.D.; Akupan, E.R. Control and optimization of a hybrid solar PV-Hydro power system for off-grid applications using particle swarm optimization (PSO) and differential evolution (DE). Energy Rep. 2023, 10, 4253–4270. [Google Scholar] [CrossRef]
- He, Y.; Guo, S.; Dong, P.; Zhang, Y.; Huang, J.; Zhou, J. A state-of-the-art review and bibliometric analysis on the sizing optimization of off-grid hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2023, 183, 113476. [Google Scholar] [CrossRef]
- Uwineza, L.; Kim, H.G.; Kim, C.K. Feasibility study of integrating the renewable energy system in Popova Island using the Monte Carlo model and HOMER. Energy Strategy Rev. 2021, 33, 100607. [Google Scholar] [CrossRef]
- Javed, M.S.; Ma, T.; Jurasz, J.; Canales, F.A.; Lin, S.; Ahmed, S.; Zhang, Y. Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island. Renew. Energy 2021, 164, 1376–1394. [Google Scholar] [CrossRef]
- Javed, M.S.; Ma, T.; Jurasz, J.; Ahmed, S.; Mikulik, J. Performance comparison of heuristic algorithms for optimization of hybrid off-grid renewable energy systems. Energy 2020, 210, 118599. [Google Scholar] [CrossRef]
- Mousavi, N.; Kothapalli, G.; Habibi, D.; Das, C.K.; Baniasadi, A. Modelling, design, and experimental validation of a grid-connected farmhouse comprising a photovoltaic and a pumped hydro storage system. Energy Convers. Manag. 2020, 210, 112675. [Google Scholar] [CrossRef]
- Mahfoud, R.J.; Alkayem, N.F.; Zhang, Y.; Zheng, Y.; Sun, Y.; Alhelou, H.H. Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives. Renew. Sustain. Energy Rev. 2023, 178, 113267. [Google Scholar] [CrossRef]
- Zhou, S.; Hu, T.; Zhu, R.; Wu, F.; Wang, X. A bilevel modeling approach for optimizing irrigation canal scheduling under a hierarchical institutional arrangement. Agric. Water Manag. 2023, 284, 108322. [Google Scholar] [CrossRef]
- Ding, X.; Mao, C.; Guo, P.; Xiong, J.; Xu, Z.; Sun, W.; Harrison, G.P. Dual-module coupled rolling optimization for hydro-wind-PV-battery complementary system: Considering battery capacity degradation. J. Energy Storage 2025, 134, 118104. [Google Scholar] [CrossRef]
- Kırat, O.; Çiçek, A.; Yerlikaya, T. A New Artificial Intelligence-Based System for Optimal Electricity Arbitrage of a Second-Life Battery Station in Day-Ahead Markets. Appl. Sci. 2024, 14, 10032. [Google Scholar] [CrossRef]
- Liang, Z.; Chung, C.Y.; Zhang, W.; Wang, Q.; Lin, W.; Wang, C. Enabling high-efficiency economic dispatch of hybrid AC/DC networked microgrids: Steady-state convex bi-directional converter models. IEEE Trans. Smart Grid 2025, 16, 45–61. [Google Scholar] [CrossRef]












| Parameter | Value | Parameter | Value |
|---|---|---|---|
| 2 | 0.8 | ||
| 0.2 | 0.8 | ||
| 0.8 | 60 ha | ||
| 1 × 1010 | 40 ha | ||
| 0.1 | 70 ha | ||
| 4 | 30 ha | ||
| 0.65 | 40 | ||
| 0.05/kW | 50 | ||
| 0.85 | 70 | ||
| 110 | 20 | ||
| 50 | 0.03/kWh | ||
| 80 | 0.02/kWh | ||
| 100 | 1 | ||
| 1 × 103 | 1 | ||
| 0.85 | 1 × 105 |
| Canal 1 | Canal 2 | Canal 3 | Canal 4 | |
|---|---|---|---|---|
| Optimized irrigation depths (mm) | 61.91 | 61.99 | 46.42 | 54.76 |
| Required irrigation depth (mm) | 40 | 50 | 70 | 20 |
| Surplus water [≤overflow threshold (m3)] | +13,148.47 | +4795.84 | −16,504.95 | +10,427.41 |
| Supported water volume (m3) | 0 | 0 | 16,524.95 | 0 |
| Complementary irrigation depth (mm) | 59.78 | 50 | 70 | 20 |
| NSGA-II | NP-NSGA-II | AL-NSGA-II | AL-NP-NSGA-II | |
|---|---|---|---|---|
| Shortfall? | No | No | No | No |
| Overflow? | Yes | Yes | No | No |
| Economic Benefit (×104 CNY) | 1.506542 | 1.676303 | 1.206453 | 1.517164 |
| Battery Capacity (kWh) | 485.97 | 504.36 | 438.82 | 440.98 |
| Surplus water (m3) | +13,894.47 | +14,284.45 | +234.61 | +11,866.77 |
| Feasible Ratio | Mean Economic Benefit | Max Overflow Exceeds Threshold? | |
|---|---|---|---|
| 1 × 104 | 50.24 | 16,364.34 | Yes |
| 1 × 105 | 78.72 | 15,071.64 | No |
| 1 × 106 | 82.91 | 14,843.82 | No |
| 1 × 107 | 91.52 | 12,234.93 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhu, J.-h.; He, Y.; Gu, J.; Zhang, X.; Zhang, J.; Ge, Y.; Luo, K.; Zhu, J. Capacity Configuration and Scheduling Optimization on Wind–Photovoltaic–Storage System Considering Variable Reservoir–Irrigation Load. Electronics 2026, 15, 454. https://doi.org/10.3390/electronics15020454
Zhu J-h, He Y, Gu J, Zhang X, Zhang J, Ge Y, Luo K, Zhu J. Capacity Configuration and Scheduling Optimization on Wind–Photovoltaic–Storage System Considering Variable Reservoir–Irrigation Load. Electronics. 2026; 15(2):454. https://doi.org/10.3390/electronics15020454
Chicago/Turabian StyleZhu, Jian-hong, Yu He, Juping Gu, Xinsong Zhang, Jun Zhang, Yonghua Ge, Kai Luo, and Jiwei Zhu. 2026. "Capacity Configuration and Scheduling Optimization on Wind–Photovoltaic–Storage System Considering Variable Reservoir–Irrigation Load" Electronics 15, no. 2: 454. https://doi.org/10.3390/electronics15020454
APA StyleZhu, J.-h., He, Y., Gu, J., Zhang, X., Zhang, J., Ge, Y., Luo, K., & Zhu, J. (2026). Capacity Configuration and Scheduling Optimization on Wind–Photovoltaic–Storage System Considering Variable Reservoir–Irrigation Load. Electronics, 15(2), 454. https://doi.org/10.3390/electronics15020454

