Artificial Intelligence in Maritime Cybersecurity: A Systematic Review of AI-Driven Threat Detection and Risk Mitigation Strategies
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Eligibility Criteria
2.3. Search Strategy
2.4. Study Selection and Data Extraction
2.5. Data Analysis
3. Results
3.1. Study Selection Process
3.2. Overview of Selected Studies
3.3. Bias Assessment and Threats to Validity
3.3.1. Selection Bias and Dataset Limitations
3.3.2. Validation Bias from Simulations
3.3.3. Algorithmic Bias and Explainability Gaps
3.3.4. Deployment Bias and Limited Real-World Testing
3.3.5. Adversarial Vulnerabilities
3.3.6. Regulatory Blind Spots and Systemic Bias
3.3.7. Implications and Recommendations for Reducing Bias
- (1)
- Development of real-world maritime cybersecurity datasets: The lack of maritime-specific data requires collaborative efforts between academia, industry, and regulatory bodies to build and share high-quality, labeled datasets. This will enable AI models to be trained on realistic maritime cyberattack patterns, rather than synthetic or general-purpose data [93].
- (2)
- Real-world testing and deployment pilots: To overcome the limitations of simulation-based validation, studies must move beyond controlled environments. Pilot implementations of AI frameworks on actual vessels, fleets, and port infrastructures are essential for understanding operational constraints and ensuring model robustness under real-world conditions [94].
- (3)
- Incorporation of explainable AI (XAI): Interpretability is a key requirement in high-risk, regulated environments such as maritime operations. Future systems should adopt XAI techniques that make decision-making processes transparent and comprehensible to human operators [95]. This fosters trust and enables security teams to act on AI-generated insights with confidence [96].
- (4)
- Adversarial robustness: As adversarial manipulation of input data is a growing threat, AI models must be hardened using adversarial training, defensive distillation, and anomaly-aware learning architectures [97]. Such measures ensure that models are resilient to deceptive inputs and can maintain detection accuracy in adversarial scenarios [98].
- (5)
- Integration of regulatory compliance: AI frameworks must be aligned with international cybersecurity standards and legal requirements, including data protection regulations, IMO cybersecurity guidelines, and operational safety protocols [99,100]. Compliance ensures that security models are not only technically feasible but also legally deployable across national and organizational borders [101,102].
3.4. Summary of Findings
- Dataset availability and specificity;
- Validation methods;
- Algorithm transparency;
- Resistance to adversarial threats;
- Alignment with legal and regulatory frameworks.
- The development of large-scale, maritime-specific cybersecurity datasets;
- Improved interpretability and transparency of AI models;
- Real-world testing in operational settings;
- Integration of advanced technologies such as blockchain, federated learning, and quantum cryptography.
4. Discussion
4.1. Summary of Main Findings
4.2. Limitations of AI Approaches in Maritime Cybersecurity
- Data Limitations and Training Bias
- Adversarial Attacks and Model Vulnerabilities
- Lack of Explainability and Interpretability
- Regulatory and Legal Constraints
4.3. Future Research Directions
- Quantum-Resilient AI Security
- 2.
- Federated Learning for Privacy-Preserving Collaboration
- 3.
- Enhancing Explainable AI (XAI)
- 4.
- Development of AI-Specific Maritime Cybersecurity Standards
- (a)
- Accountability for AI-generated decisions;
- (b)
- Standardized metrics for evaluating AI performance in maritime contexts;
- (c)
- Frameworks for cross-border cyber risk governance;
- (d)
4.4. Policy and Regulatory Implications
- Legal Liability and Accountability
- Define clear accountability structures for AI-related incidents;
- Establish audit mechanisms for reviewing AI-generated cybersecurity decisions;
- Promote human–AI collaboration guidelines, ensuring that AI serves as a decision-support system, not a fully autonomous actor.
- Need for International Coordination
- Creating internationally recognized compliance frameworks for AI in maritime cybersecurity;
- Developing shared threat intelligence platforms to enable real-time cooperation between national agencies, port authorities, and private operators;
- Launching certification programs for professionals working with AI-driven security systems to ensure competence in explainability, risk assessment, and adversarial defense.
- Ethical Oversight and AI Governance
- 1.
- Define boundaries between cybersecurity and surveillance use cases;
- 2.
- Enforce privacy-preserving AI design principles, especially for civilian vessels and commercial operations;
- 3.
- Require transparency disclosures for AI systems involved in monitoring human or cargo movement.
4.5. Addressing the Research Questions
- (1)
- (2)
- (3)
- Reinforcement learning for adaptive cybersecurity strategies [140];
- (4)
- (5)
- (6)
- (1)
- Improved detection accuracy, particularly in supervised learning contexts;
- (2)
- Faster response times, reducing the window of exposure;
- (3)
- Automation of threat mitigation strategies in dynamic environments.
- (1)
- (2)
- (3)
- (4)
- (5)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Risk of Bias Assessment
Bias Type | Low | Moderate | High |
---|---|---|---|
Selection Bias | 100 | 115 | 85 |
Reporting Bias | 104 | 90 | 106 |
Publication Bias | 84 | 105 | 111 |
Funding Bias | 112 | 94 | 94 |
Appendix A.2. Effect Measures
- Accuracy, which represents the proportion of correct predictions made by the AI model;
- Precision, which assesses how many of the detected cyber threats were actual security risks;
- Recall (Sensitivity), which evaluates the ability of the AI model to correctly identify all real threats;
- F1-score, which balances precision and recall to provide a comprehensive performance metric.
Appendix A.3. Reporting Bias Assessment
- Studies disclosed all tested AI models, including those that underperformed;
- Performance metrics were reported consistently, avoiding the cherry-picking of favorable outcomes;
- Limitations, such as data constraints or algorithmic weaknesses, were explicitly acknowledged.
Appendix A.4. Certainty of Evidence Assessment
- Consistency of Findings—Whether multiple studies reported similar outcomes for a given AI approach;
- Precision of Results—Whether effect measures demonstrated low variability and strong statistical support;
- Risk of Bias—Whether the study was free from selection, reporting, and funding biases;
- Applicability to Maritime Cybersecurity—Whether the findings could be generalized to real-world cybersecurity challenges in maritime environments.
Outcome | Number of Studies | Certainty Level | Confidence in Evidence |
---|---|---|---|
Intrusion Detection | 82 | High | Strong |
Anomaly Detection | 63 | Moderate | Moderate |
Threat Prediction | 55 | Low | Weak |
Zero-Trust Security | 47 | Moderate | Moderate |
Blockchain Security | 45 | Low | Weak |
Appendix A.5. Synthesis of Findings and Heterogeneity Analysis
- Supervised Learning Models, which classify threats using labeled cybersecurity datasets;
- Unsupervised Learning Approaches, which detect anomalies without prior labeling;
- Reinforcement Learning Techniques, which dynamically adapt AI security protocols based on threat patterns.
- Differences in AI model architectures—Some studies used deep learning, while others relied on traditional machine learning classifiers;
- Variability in dataset quality—Certain studies used real-world maritime cybersecurity datasets, while others relied on simulated attack scenarios;
- Diverse evaluation metrics—Some studies focused on accuracy, while others prioritized recall or precision.
Heterogeneity Factor | Description |
---|---|
AI Model Architecture | Differences in AI architectures (e.g., CNN vs. RNN vs. Transformer) affect detection rates and efficiency |
Dataset Quality | Studies use diverse datasets; some rely on real-world data, while others use synthetic or simulated datasets |
Evaluation Metrics | Lack of standardization in reporting performance metrics (accuracy, recall, F1-score) leads to inconsistencies |
Real-World Validation | Many AI models are tested in controlled environments rather than real-world maritime cybersecurity settings |
Sample Size | Studies vary in dataset size, with smaller sample sizes leading to higher variability in results |
Cybersecurity Context | Differences in cyber threats across commercial, military, and offshore maritime networks influence AI performance |
Algorithm Complexity | Some studies use simple decision trees, while others employ complex deep learning frameworks with high computational demands |
Feature Selection | Feature engineering varies; some studies apply automated feature selection, while others rely on manual selection |
Computational Resources | Availability of high-performance computing resources influences model training and real-time applicability |
Regulatory Constraints | Regulatory and compliance requirements vary between jurisdictions, affecting model deployment feasibility |
References
- Chen, J.; Wang, Z.; Srivastava, G.; Alghamdi, T.A.; Khan, F.; Kumari, S.; Xiong, H. Industrial Blockchain Threshold Signatures in Federated Learning for Unified Space-Air-Ground-Sea Model Training. J. Ind. Inf. Integr. 2024, 39, 100593. [Google Scholar] [CrossRef]
- Xing, B.; Jiang, Y.; Liu, Y.; Cao, S. Risk Data Analysis Based Anomaly Detection of Ship Information System. Energies 2018, 11, 3403. [Google Scholar] [CrossRef]
- Van Persie, M.; Noorbergen, H.H.S.; Oostdijk, A. Harbour Pattern of Life Analysis with Time Series of Medium Resolution Satellite Images. In Proceedings of the 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, Belgium, 27–29 June 2017; pp. 1–3. [Google Scholar]
- Fernandez Arguedas, V.; Pallotta, G.; Vespe, M. Maritime Traffic Networks: From Historical Positioning Data to Unsupervised Maritime Traffic Monitoring. IEEE Trans. Intell. Transp. Syst. 2018, 19, 722–732. [Google Scholar] [CrossRef]
- Danial, S.N.; Smith, D.; Veitch, B. A Method to Detect Anomalies in Complex Socio-Technical Operations Using Structural Similarity. J. Mar. Sci. Eng. 2021, 9, 212. [Google Scholar] [CrossRef]
- Clavijo Mesa, M.V.; Patino-Rodriguez, C.E.; Guevara Carazas, F.J. Cybersecurity at Sea: A Literature Review of Cyber-Attack Impacts and Defenses in Maritime Supply Chains. Information 2024, 15, 710. [Google Scholar] [CrossRef]
- Dogancay, K.; Tu, Z.; Ibal, G. Research into Vessel Behaviour Pattern Recognition in the Maritime Domain: Past, Present and Future. Digit. Signal Process. 2021, 119, 103191. [Google Scholar] [CrossRef]
- Lohrer, A.; Binder, J.J.; Kröger, P. Group Anomaly Detection for Spatio-Temporal Collective Behaviour Scenarios in Smart Cities. In Proceedings of the 15th ACM SIGSPATIAL International Workshop on Computational Transportation Science, ACM, Seattle, WA, USA, 3 November 2022; pp. 1–4. [Google Scholar]
- Ide, M. High Stability Anomaly Detection in Random Environments. Int. FLAIRS Conf. Proc. 2021, 34. [Google Scholar] [CrossRef]
- Singh, S.K.; Heymann, F. Machine Learning-Assisted Anomaly Detection in Maritime Navigation Using AIS Data. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, USA, 20–23 April 2020; pp. 832–838. [Google Scholar]
- Drozdenko, B.; Powell, M. Utilizing Deep Learning Techniques to Detect Zero Day Exploits in Network Traffic Flows. In Proceedings of the 2022 IEEE 13th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 26–29 October 2022; pp. 163–172. [Google Scholar]
- Silva, R.; Hickert, C.; Sarfaraz, N.; Brush, J.; Silbermann, J.; Sookoor, T. AlphaSOC: Reinforcement Learning-Based Cybersecurity Automation for Cyber-Physical Systems. In Proceedings of the 2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS), Milano, Italy, 4–6 May 2022; pp. 290–291. [Google Scholar]
- Ivanovic, P.; Windmann, A.; Neumann, P. SmartShip: Data Decoding Optimization for Onboard AI Anomaly Detection. In Proceedings of the 2024 23rd International Symposium on Parallel and Distributed Computing (ISPDC), Chur, Switzerland, 8–10 July 2024; pp. 1–5. [Google Scholar]
- Oruc, A.; Kavallieratos, G.; Gkioulos, V.; Katsikas, S. Cyber Risk Assessment for SHips (CRASH). Trans. Nav. Int. J. Mar. Navig. Saf. Sea Transp. 2024, 18, 115–124. [Google Scholar] [CrossRef]
- Oh, Y.; Kim, S. Exploiting Logistics Anomaly Detection Using Maritime Big Data. In Proceedings of the 2019 IISE Annual Conference; Norcross Institute of Industrial and Systems Engineers: Norcross, Georgia, 2019; pp. 964–969. [Google Scholar]
- Liu, W.; Xu, X.; Wu, L.; Qi, L.; Jolfaei, A.; Ding, W.; Khosravi, M.R. Intrusion Detection for Maritime Transportation Systems with Batch Federated Aggregation. IEEE Trans. Intell. Transp. Syst. 2023, 24, 2503–2514. [Google Scholar] [CrossRef]
- Agnew, D.; Rice-Bladykas, A.; Mcnair, J. Detection of Zero-Day Attacks in a Software-Defined LEO Constellation Network Using Enhanced Network Metric Predictions. IEEE Open J. Commun. Soc. 2024, 5, 6611–6634. [Google Scholar] [CrossRef]
- Rong, H.; Teixeira, A.P.; Guedes Soares, C. Data Mining Approach to Shipping Route Characterization and Anomaly Detection Based on AIS Data. Ocean Eng. 2020, 198, 106936. [Google Scholar] [CrossRef]
- Herrero, D.A.; Pedroche, D.S.; Herrero, J.G.; Lopez, J.M.M. AIS Trajectory Classification Based on IMM Data. In Proceedings of the 2019 22th International Conference on Information Fusion (FUSION), Ottawa, ON, Canada, 2–5 July 2019; pp. 1–8. [Google Scholar]
- Shao, X.; Li, H.; Lin, H.; Kang, X.; Lu, T. Ship Detection in Optical Satellite Image Based on RX Method and PCAnet. Sens. Imaging 2017, 18, 21. [Google Scholar] [CrossRef]
- Charmi, A.; Heimann, J.; Duffner, E.; Hashemi, S.; Prager, J. Application of Deep Learning for Structural Health Monitoring of a Composite Overwrapped Pressure Vessel Undergoing Cyclic Loading. E-J. Nondestruct. Test. 2024, 29. [Google Scholar] [CrossRef] [PubMed]
- Wamba, S.F.; Queiroz, M.M.; Trinchera, L. Dynamics between blockchain adoption determinants and supply chain performance: An empirical investigation. Int. J. Prod. Econ. 2020, 229, 107791. [Google Scholar] [CrossRef]
- Mehri, S.; Alesheikh, A.A.; Basiri, A. A Contextual Hybrid Model for Vessel Movement Prediction. IEEE Access 2021, 9, 45600–45613. [Google Scholar] [CrossRef]
- Rogers, M.; Weigand, P.; Happa, J.; Rasmussen, K. Detecting CAN Attacks on J1939 and NMEA 2000 Networks. IEEE Trans. Dependable Secur. Comput. 2022, 20, 1–15. [Google Scholar] [CrossRef]
- Orye, M.E.; Visky, G.; Rohl, A.; Maennel, O. Enhancing the Cyber Resilience of Sea Drones. In Proceedings of the 2024 16th International Conference on Cyber Conflict: Over the Horizon (CyCon), Tallinn, Estonia, 28 May 2024; pp. 83–102. [Google Scholar]
- Schroeder, A.; McClure, P.; Thulasiraman, P. Anomaly Detection in Operational Technology Systems Using Non-Intrusive Load Monitoring Based on Supervised Learning. In Proceedings of the 2024 IEEE International Conference on Cyber Security and Resilience (CSR), London, UK, 2–4 September 2024; pp. 1–6. [Google Scholar]
- Macdonald, A.J.; Lim, M.; Prystay, E.; Matasci, G.; Martin-Boyd, L.; Webster, A.; Busler, J. Unsupervised Behaviour Anomaly Detection from Fixed Camera Full Motion Video. In Proceedings of the Artificial Intelligence and Machine Learning in Defense Applications II, Online Only, 20 September 2020; Dijk, J., Ed.; SPIE: London, UK, 2020; p. 22. [Google Scholar]
- Olson, C.C.; Judd, K.P.; Nichols, J.M. Manifold Learning Techniques for Unsupervised Anomaly Detection. Expert Syst. Appl. 2018, 91, 374–385. [Google Scholar] [CrossRef]
- Olson, C.C.; Doster, T. A Parametric Study of Unsupervised Anomaly Detection Performance in Maritime Imagery Using Manifold Learning Techniques. In Proceedings of the Conference Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII, Baltimore, MD, USA, 25 May 2016; p. 984016. [Google Scholar]
- Thulasiraman, P. Cyber Analytics for Intrusion Detection on the Navy Smart Grid Using Supervised Learning. In Proceedings of the 2022 IEEE International Systems Conference (SysCon), Montreal, QC, Canada, 25 April 2022; pp. 1–7. [Google Scholar]
- Lei, P.-R. A Framework for Anomaly Detection in Maritime Trajectory Behavior. Knowl. Inf. Syst. 2016, 47, 189–214. [Google Scholar] [CrossRef]
- Niyonsaba, S.; Konate, K.; Soidridine, M.M. A Survey on Cybersecurity in Unmanned Aerial Vehicles: Cyberattacks, Defense Techniques and Future Research Directions. Int. J. Comput. Netw. Appl. 2023, 10, 688. [Google Scholar] [CrossRef]
- Galdorisi, G.; Tollefson, B.; Volner, R. Maximizing the Utility of Naval Unmanned Systems. In Proceedings of the 2017 IEEE/MTS Oceans Conference, Anchorage, AK, USA, 18–21 September 2017. [Google Scholar]
- Silverajan, B.; Ocak, M.; Nagel, B. Cybersecurity Attacks and Defences for Unmanned Smart Ships. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July 2018; pp. 15–20. [Google Scholar]
- Wang, W.; Peng, Z.; Wang, S.; Li, H.; Liu, M.; Xue, L.; Zhang, N. IFP-ADAC: A Two-Stage Interpretable Fault Prediction Model for Multivariate Time Series. In Proceedings of the 2021 22nd IEEE International Conference on Mobile Data Management (MDM), Toronto, ON, Canada, 15–18 June 2021; pp. 29–38. [Google Scholar]
- Hu, Q.; Han, W.; Zhang, H. Ship Identity Authentication Security Model Based on Blockchain. In Proceedings of the 2021 4th International Conference on Data Science and Information Technology, ACM, Shanghai China, 23 July 2021; pp. 135–142. [Google Scholar]
- Kim, H.; Xiao, Z.; Zhang, X.; Fu, X.; Qin, Z. Rethinking Blockchain Technologies for the Maritime Industry. Future Internet 2024, 16, 454. [Google Scholar] [CrossRef]
- Walter, M.J.; Barrett, A.; Tam, K. A Red Teaming Framework for Securing AI in Maritime Autonomous Systems. arXiv 2023, arXiv:2312.11500. [Google Scholar] [CrossRef]
- Bennett, K.W.; Robertson, J. An AI-Based Framework for Remote Sensing Supporting Multi-Domain Operations. In Proceedings of the Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications IV, SPIE, Orlando, FL, USA, 6 June 2022; p. 16. [Google Scholar]
- Pruim, R.H.R.; Van Opbroek, A.; Kruithof, M.; Den Hollander, R.J.M.; Baan, J.; Van Den Broek, S.P.; Van Der Stap, N.; Dijk, J. Spatiotemporal Detection of Maritime Targets Using Neural Networks. In Proceedings of the Artificial Intelligence and Machine Learning in Defense Applications, SPIE, Strasbourg, France, 19 September 2019; p. 4. [Google Scholar]
- Weng, L.; Liang, M.; Gao, R.; Chen, Z.S. Deep Learning-Empowered Unsupervised Maritime Anomaly Detection. In Neural Information Processing; Luo, B., Cheng, L., Wu, Z.-G., Li, H., Li, C., Eds.; Communications in Computer and Information Science; Springer Nature: Singapore, 2024; Volume 1967, pp. 189–202. ISBN 978-981-99-8177-9. [Google Scholar]
- Vanem, E.; Brandsæter, A. Unsupervised Anomaly Detection Based on Clustering Methods and Sensor Data on a Marine Diesel Engine. J. Mar. Eng. Technol. 2021, 20, 217–234. [Google Scholar] [CrossRef]
- Diaz, R.; Ungo, R.; Smith, K.; Haghnegahdar, L.; Singh, B.; Phuong, T. Applications of AI/ML in Maritime Cyber Supply Chains. Procedia Comput. Sci. 2024, 232, 3247–3257. [Google Scholar] [CrossRef]
- Kong, Z.; Jones, A.; Belta, C. Temporal Logics for Learning and Detection of Anomalous Behavior. IEEE Trans. Autom. Control 2017, 62, 1210–1222. [Google Scholar] [CrossRef]
- Zhang, Z.; Suo, Y.; Yang, S.; Zhao, Z. Detection of Complex Abnormal Ship Behavior Based on Event Stream. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6 November 2020; pp. 5730–5735. [Google Scholar]
- Coraddu, A.; Oneto, L.; Ilardi, D.; Stoumpos, S.; Theotokatos, G. Marine Dual Fuel Engines Monitoring in the Wild through Weakly Supervised Data Analytics. Eng. Appl. Artif. Intell. 2021, 100, 104179. [Google Scholar] [CrossRef]
- Bauw, M.; Velasco-Forero, S.; Angulo, J.; Adnet, C.; Airiau, O. From Unsupervised to Semi-Supervised Anomaly Detection Methods for HRRP Targets. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21 September 2020; pp. 1–6. [Google Scholar]
- Shafer, S.; Harguess, J.; Forero, P.A. Sparsity-Driven Anomaly Detection for Ship Detection and Tracking in Maritime Video. In Proceedings of the Automatic Target Recognition XXV Conference, Baltimore, MD, USA, 22 May 2015; p. 947608. [Google Scholar]
- Westlake, S.; Volonakis, T.N.; Jackman, J.; James, D.B.; Sherriff, A. Deep Learning for Automatic Target Recognition with Real and Synthetic Infrared Maritime Imagery. In Proceedings of the Artificial Intelligence and Machine Learning in Defense Applications II; SPIE, Online Only, 20 September 2020; p. 7. [Google Scholar]
- Hellton, K.H.; Tveten, M.; Stakkeland, M.; Engebretsen, S.; Haug, O.; Aldrin, M. Real-Time Prediction of Propulsion Motor Overheating Using Machine Learning. J. Mar. Eng. Technol. 2022, 21, 334–342. [Google Scholar] [CrossRef]
- İnceişçi, F.K.; Ayça, A.K. Fault analysis of ship machinery using machine learning techniques. Int. J. Marit. Eng. 2022, 164. [Google Scholar] [CrossRef]
- Bahrami, Z.; Zhang, R.; Rayhana, R.; Liu, Z. Deep Learning-Based Framework for Shipping Container Security Seal Detection. In Proceedings of the 2021 Joint 10th International Conference on Informatics, Electronics & Vision (ICIEV) and 2021 5th International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Kitakyushu, Japan, 16 August 2021; pp. 1–7. [Google Scholar]
- Carrega, A.; Cipollini, F.; Oneto, L. Simple Continuous Optimal Regions of the Space of Data. Neurocomputing 2019, 349, 91–104. [Google Scholar] [CrossRef]
- Lokuliyana, S.; Wellalage, S.; Warusavithana, L.; Pathirana, M.; Kodithuwakku, S.; Munasinghe, T. Aqua Safe: Blockchain Based Maritime Communication System Using Ad Hoc Network. In Proceedings of the 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 3 October 2022; pp. 1–6. [Google Scholar]
- Wannenwetsch, K.; Ostermann, I.; Priel, R.; Gerschner, F.; Theissler, A. Blockchain for supply chain management: A literature review and open challenges. Procedia Comput. Sci. 2023, 225, 1312–1321. [Google Scholar] [CrossRef]
- Priya, J.C.; Rudzki, K.; Nguyen, X.H.; Nguyen, H.P.; Chotechuang, N.; Pham, N.D.K. Blockchain-Enabled Transfer Learning for Vulnerability Detection and Mitigation in Maritime Logistics. Pol. Marit. Res. 2024, 31, 135–145. [Google Scholar] [CrossRef]
- Huang, G.; Lai, S.; Ye, C.; Zhou, H. Ship Trajectory Anomaly Detection Based on Multi-Feature Fusion. In Proceedings of the 2021 IEEE International Conference on Smart Data Services (SMDS), Chicago, IL, USA, 5–10 September 2021; pp. 72–81. [Google Scholar]
- Praczyk, T. Ship Trajectory Anomaly Detection. Intell. Data Anal. 2019, 23, 1021–1040. [Google Scholar] [CrossRef]
- Chatzikokolakis, K.; Zissis, D.; Vodas, M.; Spiliopoulos, G.; Kontopoulos, I. A Distributed Lightning Fast Maritime Anomaly Detection Service. In Proceedings of the OCEANS 2019—Marseille, Marseille, France, 17–20 June 2019; pp. 1–8. [Google Scholar]
- Nourmohammadi, F.; Jumabayev, A.; Wings, E. Anomaly Detection in the Time Series Data from Fehn Pollux Ship with ECO Flettner Rotor. In Proceedings of the 2021 IEEE 19th International Conference on Industrial Informatics (INDIN), Palma de Mallorca, Spain, 21 July 2021; pp. 1–6. [Google Scholar]
- Makridis, G.; Kyriazis, D.; Plitsos, S. Predictive Maintenance Leveraging Machine Learning for Time-Series Forecasting in the Maritime Industry. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20 September 2020; pp. 1–8. [Google Scholar]
- Doster, T.; Olson, C.C. Building Robust Neighborhoods for Manifold Learning-Based Image Classification and Anomaly Detection. In Proceedings of the SPIE Defence + Security, Baltimore, MD, USA, 25 May 2016; p. 984015. [Google Scholar]
- Kim, D.; Kim, T.; An, M.; Cho, Y.; Baek, Y. Edge AI-Based Early Anomaly Detection of LNG Carrier Main Engine Systems. In Proceedings of the OCEANS 2023—Limerick, IEEE, Limerick, Ireland, 5 June 2023; pp. 1–6. [Google Scholar]
- McKay, J.; Monga, V.; Raj, R.G. Robust Sonar ATR Through Bayesian Pose-Corrected Sparse Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5563–5576. [Google Scholar] [CrossRef]
- Khan, M.; Micelli, S.; Scipolo, V.; Uchiteleva, E.; Van Der Walt, S. BOF Advanced Slop Detection Warning and Mitigation Results at ArcelorMittal South Africa. In the AISTech 2024 Proceedings; AIST: Tokyo, Japan, 2024; pp. 495–505. [Google Scholar]
- Guo, S.; Mou, J.; Chen, L.; Chen, P. An Anomaly Detection Method for AIS Trajectory Based on Kinematic Interpolation. J. Mar. Sci. Eng. 2021, 9, 609. [Google Scholar] [CrossRef]
- d’Afflisio, E.; Braca, P.; Millefiori, L.M.; Willett, P. Maritime Anomaly Detection Based on Mean-Reverting Stochastic Processes Applied to a Real-World Scenario. In Proceedings of the 2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; pp. 1171–1177. [Google Scholar]
- Haruna, M.; Gebremeskel, K.G.; Troscia, M.; Tardo, A.; Pagano, P. Mechanisms for Securing Autonomous Shipping Services and Machine Learning Algorithms for Misbehaviour Detection. Telecom 2024, 5, 1031–1050. [Google Scholar] [CrossRef]
- Tirkolaee, E.B.; Sadeghi, S.; Mooseloo, F.M.; Vandchali, H.R.; Aeini, S. Application of machine learning in supply chain management: A comprehensive overview of the main areas. Math. Probl. Eng. 2021, 1, 1476043. [Google Scholar] [CrossRef]
- Yang, Z.; Li, S.; Da, X.; Wang, J.; Yang, K.; Ma, Y. Robust Online Compensation and Magnetic Anomaly Detection on a Rotating Platform with Three-Axis Magnetometers. IEEE Trans. Geosci. Remote Sens. 2025, 63, 1–11. [Google Scholar] [CrossRef]
- Shahir, H.Y.; Glasser, U.; Shahir, A.Y.; Wehn, H. Maritime Situation Analysis Framework: Vessel Interaction Classification and Anomaly Detection. In Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November 2015; pp. 1279–1289. [Google Scholar]
- Choo, K.-K.R.; Dehghantanha, A.; Dietrich, G. Machine Learning and Cyber Threat Intelligence and Analytics: An Overview and Introduction to the Mini-Track. In Proceedings of the 54th Hawaii International Conference on System Sciences, Koloa, Kauai, HI, USA, 5–8 January 2021. [Google Scholar]
- Zainudin, A.; Alief, R.N.; Putra, M.A.P.; Akter, R.; Kim, D.-S.; Lee, J.-M. Blockchain-Based Decentralized Trust Aggregation for Federated Cyber-Attacks Classification in SDN-Enabled Maritime Transportation Systems. In Proceedings of the 2023 IEEE International Conference on Communications Workshops (ICC Workshops), Rome, Italy, 28 May 2023; pp. 182–187. [Google Scholar]
- Abielmona, R.; Falcon, R.; Vachon, P.W.; Groza, V.Z. Vessel Tracking and Anomaly Detection Using Level 0/1 and High-Level Information Fusion Techniques. In Soft Computing Applications; Balas, V.E., Jain, L.C., Kovačević, B., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2016; Volume 357, pp. 769–780. ISBN 978-3-319-18415-9. [Google Scholar]
- Huang, J.; Zhu, F.; Huang, Z.; Wan, J.; Ren, Y. Research on Real-Time Anomaly Detection of Fishing Vessels in a Marine Edge Computing Environment. Mob. Inf. Syst. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Syed, M.A.B.; Ahmed, I. A CNN-LSTM Architecture for Marine Vessel Track Association Using Automatic Identification System (AIS) Data. Sensors 2023, 23, 6400. [Google Scholar] [CrossRef]
- Glashier, T.; Kromanis, R.; Buchanan, C. Temperature-Based Damage Detection for the Commissioning Dataset of the MX3D Bridge. E-J. Nondestruct. Test. 2024, 29, 1–8. [Google Scholar] [CrossRef]
- Czaplewski, B.; Dzwonkowski, M. A Novel Approach Exploiting Properties of Convolutional Neural Networks for Vessel Movement Anomaly Detection and Classification. ISA Trans. 2022, 119, 1–16. [Google Scholar] [CrossRef]
- He, J.; Liu, Z.; Zhang, Y.; Jin, Z.; Zhang, Q. Power Allocation Based on Federated Multi-Agent Deep Reinforcement Learning for NOMA Maritime Networks. IEEE Internet Things J. 2025. [Google Scholar] [CrossRef]
- Cheng, R.; Liang, M.; Li, H.; Yuen, K.F. Benchmarking Feed-Forward Randomized Neural Networks for Vessel Trajectory Prediction. Comput. Electr. Eng. 2024, 119, 109499. [Google Scholar] [CrossRef]
- Murray, B.; Perera, L.P. Unsupervised Trajectory Anomaly Detection for Situation Awareness in Maritime Navigation. In Proceedings of the Volume 6A: Ocean Engineering; American Society of Mechanical Engineers, Virtual, 3 August 2020; p. V06AT06A024. [Google Scholar]
- Aurdal, L.; Løkken, K.H.; Klausen, R.A.; Brattli, A.; Palm, H.C. Adversarial Camouflage (AC) for Naval Vessels. In Proceedings of the Artificial Intelligence and Machine Learning in Defense Applications, SPIE, Strasbourg, France, 19 September 2019; p. 17. [Google Scholar]
- Zheng, H.; Zhu, W.; Wu, Y.; Chen, P. Detection of Abnormal Ship Trajectory Points Based on Statistical Learning. In Proceedings of the 2022 International Conference on Computer Technologies (ICCTech), Melaka, Malaysia, 24–26 February 2022; pp. 110–115. [Google Scholar]
- Olesen, K.V.; Boubekki, A.; Kampffmeyer, M.C.; Jenssen, R.; Christensen, A.N.; Hørlück, S.; Clemmensen, L.H. A Contextually Supported Abnormality Detector for Maritime Trajectories. J. Mar. Sci. Eng. 2023, 11, 2085. [Google Scholar] [CrossRef]
- Yousaf, A.; Amro, A.; Kwa, P.T.H.; Li, M.; Zhou, J. Cyber Risk Assessment of Cyber-Enabled Autonomous Cargo Vessel. Int. J. Crit. Infrastruct. Prot. 2024, 46, 100695. [Google Scholar] [CrossRef]
- Thomopoulos, S.C.A.; Rizogannis, C.; Thanos, K.G.; Dimitros, K.; Panou, K.; Zacharakis, D. OCULUS SeaTM Forensics: An Anomaly Detection Toolbox for Maritime Surveillance. In Business Information Systems Workshops; Abramowicz, W., Corchuelo, R., Eds.; Lecture Notes in Business Information Processing; Springer International Publishing: Cham, Switzerland, 2019; Volume 373, pp. 485–495. ISBN 978-3-030-36690-2. [Google Scholar]
- Svenson, P.; Holst, A.; Wallberg, A.; Nevalainen, P.; Farahnakian, F.; Álamo, A.; Germinara, V.; Schweizer, D.; Leicht, M.; Anneken, M.; et al. AI-ARC Baltic Demo: Detecting Illegal Activities at Sea. In Proceedings of the 2024 27th International Conference on Information Fusion (FUSION), Venice, Italy, 8 July 2024; pp. 1–8. [Google Scholar]
- Pitropakis, N.; Logothetis, M.; Andrienko, G.; Stefanatos, J.; Karapistoli, E.; Lambrinoudakis, C. Towards the Creation of a Threat Intelligence Framework for Maritime Infrastructures. In Computer Security; Katsikas, S., Cuppens, F., Cuppens, N., Lambrinoudakis, C., Kalloniatis, C., Mylopoulos, J., Antón, A., Gritzalis, S., Pallas, F., Pohle, J., et al., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 11980, pp. 53–68. ISBN 978-3-030-42047-5. [Google Scholar]
- Nita, C.; Vandewal, M. CNN-Based Object Detection and Segmentation for Maritime Domain Awareness. In Proceedings of the Artificial Intelligence and Machine Learning in Defense Applications II, SPIE, Online Only, 20 September 2020; p. 4. [Google Scholar]
- Emerson, T.H.; Doster, T.; Olson, C.C. Path-Based Background Model Augmentation for Hyperspectral Anomaly Detection. In Proceedings of the 2018 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 23–26 September 2018; pp. 1–5. [Google Scholar]
- Bombara, G.; Vasile, C.-I.; Penedo, F.; Yasuoka, H.; Belta, C. A Decision Tree Approach to Data Classification Using Signal Temporal Logic. In Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control, ACM, Vienna, Austria, 11 April 2016; pp. 1–10. [Google Scholar]
- Tian, B.; Wu, Y.; Hong, H. A Review of Research on Magnetic Detection Methods for Underwater Target. In Proceedings of the 2024 3rd International Conference on Artificial Intelligence and Computer Information Technology (AICIT), Yichang, China, 20 September 2024; pp. 1–6. [Google Scholar]
- Burton, J.; Soare, S.R. Understanding the Strategic Implications of the Weaponization of Artificial Intelligence. In Proceedings of the 2019 11th International Conference on Cyber Conflict (CyCon), Tallinn, Estonia, 28–31 May 2019; pp. 1–17. [Google Scholar]
- Gkerekos, C.; Lazakis, I.; Theotokatos, G. Exploiting Machine Learning for Ship Systems Anomaly Detection and Healthiness Forecasting; Royal Institution of Naval Architects: London, UK, 2018. [Google Scholar]
- Christos, S.C.; Panayiotis, T.; Panagiotis, P.; Nikos, D.; Tzioridis, Z.; Christos, G. Development of a Novel Decision-Making Tool for Vessel Efficiency Optimization Using IoT and DL. In Proceedings of the 2021 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain, 7 December 2021; pp. 479–483. [Google Scholar]
- Freitas, S.; Silva, H.; Almeida, J.M.; Silva, E. Convolutional Neural Network Target Detection in Hyperspectral Imaging for Maritime Surveillance. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419842991. [Google Scholar] [CrossRef]
- Nguyen, D.; Vadaine, R.; Hajduch, G.; Garello, R.; Fablet, R. A Multi-Task Deep Learning Architecture for Maritime Surveillance Using AIS Data Streams. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy, 1–3 October 2018; pp. 331–340. [Google Scholar]
- Gunes, B.; Kayisoglu, G.; Bolat, P. Cyber Security Risk Assessment for Seaports: A Case Study of a Container Port. Comput. Secur. 2021, 103, 102196. [Google Scholar] [CrossRef]
- Kontopoulos, I.; Varlamis, I.; Tserpes, K. A Distributed Framework for Extracting Maritime Traffic Patterns. Int. J. Geogr. Inf. Sci. 2021, 35, 767–792. [Google Scholar] [CrossRef]
- Yoo, J.; Jo, Y. Formulating Cybersecurity Requirements for Autonomous Ships Using the SQUARE Methodology. Sensors 2023, 23, 5033. [Google Scholar] [CrossRef]
- Gribbestad, M.; Hassan, M.U.; Hameed, I.A. Transfer Learning for Prognostics and Health Management (PHM) of Marine Air Compressors. J. Mar. Sci. Eng. 2021, 9, 47. [Google Scholar] [CrossRef]
- Dhoot, A.; Nazarov, A.N.; Koupaei, A.N.A. A Security Risk Model for Online Banking System. In Proceedings of the 2020 Systems of Signals Generating and Processing in the Field of on Board Communications, IEEE, Moscow, Russia, 19–20 March 2020; pp. 1–4. [Google Scholar]
- Huang, H.; Xu, B.; Luo, H.; Zhuang, H.; Liu, X.; Ma, L. Anomaly Detection-Oriented High-Frequency Signal Storage for Diesel Engines. In Proceedings of the 2021 IEEE 4th International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 13 August 2021; pp. 360–363. [Google Scholar]
- Schaum, A.; Allman, E.; Stites, M. Clairvoyant Fusion Detection of Ocean Anomalies in WorldView-2 Spectral Imagery. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 19 September 2016; p. 99760G. [Google Scholar]
- Hoque, X.; Sharma, S.K. Ensembled Deep Learning Approach for Maritime Anomaly Detection System. In Proceedings of ICETIT 2019; Singh, P.K., Panigrahi, B.K., Suryadevara, N.K., Sharma, S.K., Singh, A.P., Eds.; Lecture Notes in Electrical Engineering; Springer International Publishing: Cham, Switzerland, 2020; Volume 605, pp. 862–869. ISBN 978-3-030-30576-5. [Google Scholar]
- Kharchenko, V.; Illiashenko, O.; Fesenko, H.; Babeshko, I. AI Cybersecurity Assurance for Autonomous Transport Systems: Scenario, Model, and IMECA-Based Analysis. In Multimedia Communications, Services and Security; Dziech, A., Mees, W., Niemiec, M., Eds.; Communications in Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2022; Volume 1689, pp. 66–79. ISBN 978-3-031-20214-8. [Google Scholar]
- Botts, C.H. A Novel Metric for Detecting Anomalous Ship Behavior Using a Variation of the DBSCAN Clustering Algorithm. SN Comput. Sci. 2021, 2, 412. [Google Scholar] [CrossRef]
- Zhou, A.; Zhu, Q.; Zhang, J.; Meng, K. Ship Intrusion Detection Technology Based on Bayesian Optimization Algorithm and XGBoost. In Proceedings of the 2023 3rd International Conference on Electrical Engineering and Control Science (IC2ECS), Hangzhou, China, 29 December 2023; pp. 1647–1652. [Google Scholar]
- Zor, C.; Kittler, J. Maritime Anomaly Detection in Ferry Tracks. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 2647–2651. [Google Scholar]
- Keane, K.R. Detecting Motion Anomalies. In Proceedings of the 8th ACM SIGSPATIAL Workshop on GeoStreaming, ACM, Redondo Beach, CA, USA, 7 November 2017; pp. 21–28. [Google Scholar]
- Hasan, H.R.; Salah, K. Blockchain-Based Proof of Delivery of Physical Assets With Single and Multiple Transporters. IEEE Access 2018, 6, 46781–46793. [Google Scholar] [CrossRef]
- Lee, J.; Nam, D.-W.; Lee, J.; Moon, S.; Oh, A.; Yoo, W. A Study on the Composition of Image-Based Ship-Type/Class Identification System. In Proceedings of the 2020 22nd International Conference on Advanced Communication Technology (ICACT), PyeongChang, Republic of Korea, 16–19 February 2020; pp. 203–206. [Google Scholar]
- Srivastava, A.; Gupta, V.; Malik, P. AI-Driven Maritime Anomaly Detection Using Enhanced Feature Encoding and Transfer Learning. arXiv 2024, arXiv:2401.00112. [Google Scholar] [CrossRef]
- Li, M.; Zhou, J.; Chattopadhyay, S.; Goh, M. Maritime Cybersecurity: A Comprehensive Review. arXiv 2024, arXiv:2409.11417. [Google Scholar] [CrossRef]
- Li, X.; Du, Y.; Chen, Y.; Nguyen, S.; Zhang, W.; Schönborn, A.; Sun, Z. Data Fusion and Machine Learning for Ship Fuel Efficiency Modeling: Part I—Voyage Report Data and Meteorological Data. Commun. Transp. Res. 2022, 2, 100074. [Google Scholar] [CrossRef]
- Nikula, R.-P.; Ruusunen, M.; Böhme, S.A. On Training Data Selection in Condition Monitoring Applications—Case Azimuth Thrusters. Appl. Sci. 2022, 12, 4024. [Google Scholar] [CrossRef]
- Wang, T.; Ye, C.; Zhou, H.; Ou, M.; Cheng, B. AIS Ship Trajectory Clustering Based on Convolutional Auto-Encoder. In Intelligent Systems and Applications; Arai, K., Kapoor, S., Bhatia, R., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2021; Volume 1251, pp. 529–546. ISBN 978-3-030-55186-5. [Google Scholar]
- Soleimani, B.H.; Souza, E.N.D.; Hilliard, C.; Matwin, S. Anomaly Detection in Maritime Data Based on Geometrical Analysis of Trajectories. In Proceedings of the 18th International Conference on Information Fusion, Washington, DC, USA, 6–9 July 2015. [Google Scholar]
- Pappagallo, A.; Ortame, F.; Massacci, G.; Sisti, F.; Pugliese, F. Deep Learning for the Classification of Ports in Maritime Transport Statistics via AIS Data. In Learning and Intelligent Optimization; Festa, P., Ferone, D., Pastore, T., Pisacane, O., Eds.; Lecture Notes in Computer Science; Springer Nature Switzerland: Cham, Switzerland, 2025; Volume 14990, pp. 318–332. ISBN 978-3-031-75622-1. [Google Scholar]
- Mazzarella, F.; Vespe, M.; Alessandrini, A.; Tarchi, D.; Aulicino, G.; Vollero, A. A Novel Anomaly Detection Approach to Identify Intentional AIS On-off Switching. Expert Syst. Appl. 2017, 78, 110–123. [Google Scholar] [CrossRef]
- Nguyen, D.; Simonin, M.; Hajduch, G.; Vadaine, R.; Tedeschi, C.; Fablet, R. Detection of Abnormal Vessel Behaviours from AIS Data Using GeoTrackNet: From the Laboratory to the Ocean. In Proceedings of the 2020 21st IEEE International Conference on Mobile Data Management (MDM), Versailles, France, 30 June–3 July 2020; pp. 264–268. [Google Scholar]
- Androjna, A.; Perkovič, M.; Pavic, I.; Mišković, J. AIS Data Vulnerability Indicated by a Spoofing Case-Study. Appl. Sci. 2021, 11, 5015. [Google Scholar] [CrossRef]
- Sadeghi, Z.; Matwin, S. Anomaly Detection for Maritime Navigation Based on Probability Density Function of Error of Reconstruction. J. Intell. Syst. 2023, 32, 20220270. [Google Scholar] [CrossRef]
- Boudehenn, C.; Jacq, O.; Lannuzel, M.; Cexus, J.-C.; Boudraa, A. Navigation Anomaly Detection: An Added Value for Maritime Cyber Situational Awareness. In Proceedings of the 2021 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), Dublin, Ireland, 14 June 2021; pp. 1–4. [Google Scholar]
- Zhu, F. Abnormal Vessel Trajectories Detection in a Port Area Based on AIS Data. In Proceedings of the ICTE 2015, American Society of Civil Engineers, Dailan, China, 25 September 2015; pp. 2043–2049. [Google Scholar]
- Zang, Y.; Mukherjee, A.; Fei, C.; Liu, T.; Lampropoulos, G. Deep Learning for Anomaly Detection in Maritime Vessels Using AIS-Cued Camera Imagery. In Proceedings of the SPIE Defence + Security, Anaheim, CA, USA, 4 May 2017; p. 101900G. [Google Scholar]
- Velasco-Gallego, C.; Lazakis, I. RADIS: A Real-Time Anomaly Detection Intelligent System for Fault Diagnosis of Marine Machinery. Expert Syst. Appl. 2022, 204, 117634. [Google Scholar] [CrossRef]
- Bouritsas, G.; Daveas, S.; Danelakis, A.; Thomopoulos, S.C.A. Automated Real-Time Anomaly Detection in Human Trajectories Using Sequence to Sequence Networks. In Proceedings of the 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Taipei, Taiwan, 18–21 September 2019; pp. 1–8. [Google Scholar]
- Liu, D.; Shi, G. Ship Collision Risk Assessment Based on Collision Detection Algorithm. IEEE Access 2020, 8, 161969–161980. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Li, G.; Zhang, Z.; Liu, Y. Harnessing the Power of Machine Learning for AIS Data-Driven Maritime Research: A Comprehensive Review. Transp. Res. Part E Logist. Transp. Rev. 2024, 183, 103426. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Zhi, J.; Zhang, X.; Wang, J.; Wu, Z. OceanCL-IDS: A Continual Learning-Based Intrusion Detection System for Ocean-Going Ship-Satellite Communication Network. In Proceedings of the 2023 7th International Conference on Transportation Information and Safety (ICTIS), Xi’an, China, 4 August 2023; pp. 1150–1155. [Google Scholar]
- Zhang, Y.; Jin, Q.; Liang, M.; Ma, R.; Liu, R.W. Vessel Behavior Anomaly Detection Using Graph Attention Network. In Neural Information Processing; Luo, B., Cheng, L., Wu, Z.-G., Li, H., Li, C., Eds.; Lecture Notes in Computer Science; Springer Nature Singapore: Singapore, 2024; Volume 14451, pp. 291–304. ISBN 978-981-99-8072-7. [Google Scholar]
- Ha, X.S.; Le, H.T.; Metoui, N.; Duong-Trung, N. DeM-CoD: Novel Access-Control-Based Cash on Delivery Mechanism for Decentralized Marketplace. In Proceedings of the 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China, 29 December–1 January 2020; pp. 71–78. [Google Scholar]
- Sicard, F.; Hotellier, E.; Francq, J. An Industrial Control System Physical Testbed for Naval Defense Cybersecurity Research. In Proceedings of the 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Genoa, Italy, 6–10 June 2022; pp. 413–422. [Google Scholar]
- Elsisi, M.; Yu, J.-T.; Lai, C.-C.; Su, C.-L. A Drone-Assisted Deep Learning-Based IoT System for Monitoring Ship Emissions in Ports Considering Adversarial Attacks. IEEE Trans. Instrum. Meas. 2024, 73, 1–11. [Google Scholar] [CrossRef]
- Janani, K.; Ramamoorthy, S. IoT Security and Privacy Using Deep Learning Model: A Review. In Proceedings of the 2021 International Conference on Intelligent Technologies (CONIT), Hubli, India, 25 June 2021; pp. 1–6. [Google Scholar]
- Ashraf, I.; Park, Y.; Hur, S.; Kim, S.W.; Alroobaea, R.; Zikria, Y.B. A Survey on Cyber Security Threats in IoT-Enabled Maritime Industry. IEEE Trans. Intell. Transp. Syst. 2023, 24, 2677–2690. [Google Scholar] [CrossRef]
- Asalomia, L.B.; Nita, S.L.; Mihailescu, M.I.; Marascu, V.; Samoilescu, G.; Racuciu, C. AI-Enabled Analysis of Electric Signals from Gyrocompass for Enhanced Navigation Management with Cybersecurity Considerations. In Proceedings of the 2023 8th International Conference on Mathematics and Computers in Sciences and Industry (MCSI), Athens, Greece, 14 October 2023; pp. 107–115. [Google Scholar]
- Queiroz, M.M.; Telles, R.; Bonilla, S.H. Blockchain and Supply Chain Management Integration: A Systematic Review of the Literature. Supply Chain Manag. 2020, 25, 241–254. [Google Scholar] [CrossRef]
- Michałowska, K.; Riemer-Sørensen, S.; Sterud, C.; Hjellset, O.M. Anomaly Detection with Unknown Anomalies: Application to Maritime Machinery. IFAC-Pap. 2021, 54, 105–111. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, P.; Wu, B.; Wan, C.; Yang, Z. A Trustable Architecture over Blockchain to Facilitate Maritime Administration for MASS Systems. Reliab. Eng. Syst. Saf. 2022, 219, 108246. [Google Scholar] [CrossRef]
- Yang, T.; Cui, Z.; Alshehri, A.H.; Wang, M.; Gao, K.; Yu, K. Distributed Maritime Transport Communication System With Reliability and Safety Based on Blockchain and Edge Computing. IEEE Trans. Intell. Transp. Syst. 2022, 24, 1–11. [Google Scholar] [CrossRef]
- Antunes, N.; Ferreira, J.C.; Pereira, J.; Rosa, J. Grid-Based Vessel Deviation from Route Identification with Unsupervised Learning. Appl. Sci. 2022, 12, 11112. [Google Scholar] [CrossRef]
- Han, P.; Ellefsen, A.L.; Li, G.; Holmeset, F.T.; Zhang, H. Fault Detection With LSTM-Based Variational Autoencoder for Maritime Components. IEEE Sens. J. 2021, 21, 21903–21912. [Google Scholar] [CrossRef]
- Bobrovnikova, K.; Lysenko, S.; Hurman, I.; Kwiecień, A. Machine Learning Based Techniques for Cyberattacks Detection in the Internet of Things Infrastructure. In Proceedings of the IntelITSIS’2022: 3rd International Workshop on Intelligent Information Technologies and Systems of Information Security, Khmelnytskyi, Ukraine, 23–25 March 2022. [Google Scholar]
- Terzi, S.; Zacharaki, A.; Nizamis, A.; Votis, K.; Ioannidis, D.; Tzovaras, D.; Stamelos, I. Transforming the Supply-Chain Management and Industry Logistics with Blockchain Smart Contracts. In Proceedings of the 23rd Pan-Hellenic Conference on Informatics, ACM, Nicosia, Cyprus, 28 November 2019; pp. 9–14. [Google Scholar]
- Boudehenn, C.; Cexus, J.-C.; Boudraa, A.A. A Data Extraction Method for Anomaly Detection in Naval Systems. In Proceedings of the 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), Dublin, Ireland, 15–19 June 2020; pp. 1–4. [Google Scholar]
- Cocker, E.; Bert, J.A.; Torres, F.; Shreve, M.; Kalb, J.; Lee, J.; Poimboeuf, M.; Fautley, P.; Adams, S.; Lee, J.; et al. Low-Cost, Intelligent Drifter Fleet for Large-Scale, Distributed Ocean Observation. In Proceedings of the OCEANS 2022, Hampton Roads, IEEE, Hampton Roads, VA, USA, 17 October 2022; pp. 1–8. [Google Scholar]
- Singh Popli, M.; Singh, R.P.; Kaur Popli, N.; Mamun, M. A Federated Learning Framework for Enhanced Data Security and Cyber Intrusion Detection in Distributed Network of Underwater Drones. IEEE Access 2025, 13, 12634–12646. [Google Scholar] [CrossRef]
- Xu, X.A.; Lin, Y.; Ye, C. Fault diagnosis of marine machinery via an intelligent data-driven framework. Ocean Eng. 2023, 289, 116302. [Google Scholar] [CrossRef]
- Graser, A.; Weissenfeld, A.; Heistracher, C.; Dragaschnig, M.; Widhalm, P. Federated Learning for Anomaly Detection in Maritime Movement Data. In Proceedings of the 2024 25th IEEE International Conference on Mobile Data Management (MDM), Brussels, Belgium, 24 June 2024; pp. 77–82. [Google Scholar]
- Szarmach, M.; Czarnowski, I. Multi-Label Classification for AIS Data Anomaly Detection Using Wavelet Transform. IEEE Access 2022, 10, 109119–109131. [Google Scholar] [CrossRef]
- Koola, P.M. Cybersecurity: A Deep Dive Into the Abyss. Mar. Technol. Soc. J. 2018, 52, 31–43. [Google Scholar] [CrossRef]
- Shi, Y.; Long, C.; Yang, X.; Deng, M. Abnormal Ship Behavior Detection Based on AIS Data. Appl. Sci. 2022, 12, 4635. [Google Scholar] [CrossRef]
- Badrudin, A.; Sumantri, S.H.; Gultom, R.A.G.; Apriyanto, N.P.; Wijaya, H.R.; Sutedja, I. Ship Trajectory Prediction for Anomaly Detection Using Ais Data and Artificial Intelligence: A Systematic Literature Review. J. Theor. Appl. Inf. Technol. 2023, 101, 50929–50937. [Google Scholar]
- Pool, J.; Beyrami, E.; Gopal, V.; Aazami, A.; Gupchup, J.; Rowland, J.; Li, B.; Kanani, P.; Cutler, R.; Gehrke, J. Lumos: A Library for Diagnosing Metric Regressions in Web-Scale Applications. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM, Virtual Event, 23 August 2020; pp. 2562–2570. [Google Scholar]
- Forti, N.; d’Afflisio, E.; Braca, P.; Millefiori, L.M.; Willett, P.; Carniel, S. Maritime Anomaly Detection in a Real-World Scenario: Ever Given Grounding in the Suez Canal. IEEE Trans. Intell. Transp. Syst. 2022, 23, 13904–13910. [Google Scholar] [CrossRef]
- Jaszewski, M.; Parameswaran, S.; Hallenborg, E.; Bagnall, B. Evaluation of Maritime Object Detection Methods for Full Motion Video Applications Using the PASCAL VOC Challenge Framework. In Proceedings of the SPIE IS&T Electronic Imaging, San Francisco, CA, USA, 4 March 2015; p. 94070Y. [Google Scholar]
- Bedja-Johnson, Z.; Wu, P.; Grande, D.; Anderlini, E. Smart Anomaly Detection for Slocum Underwater Gliders with a Variational Autoencoder with Long Short-Term Memory Networks. Appl. Ocean Res. 2022, 120, 103030. [Google Scholar] [CrossRef]
- Handayani, M.P.; Antariksa, G.; Lee, J. Anomaly Detection in Vessel Sensors Data with Unsupervised Learning Technique. In Proceedings of the 2021 International Conference on Electronics, Information, and Communication (ICEIC), Jeju, Repubic of Korea, 31 January 2021; pp. 1–6. [Google Scholar]
- Brandsæter, A.; Vanem, E.; Glad, I.K. Efficient On-Line Anomaly Detection for Ship Systems in Operation. Expert Syst. Appl. 2019, 121, 418–437. [Google Scholar] [CrossRef]
- McKinnon, C.; Carroll, J.; McDonald, A.; Koukoura, S.; Plumley, C. Investigation of Anomaly Detection Technique for Wind Turbine Pitch Systems. IET Conf. Proc. 2021, 2021, 277–282. [Google Scholar] [CrossRef]
- Jousselme, A.-L.; Pallotta, G. Dissecting Uncertainty-Based Fusion Techniques for Maritime Anomaly Detection. In Proceedings of the 2015 18th International Conference on Information Fusion (Fusion), Washington, DC, USA, 6–9 July 2015; p. 34. [Google Scholar]
- Morariu, A.-R.; Lund, W.; Björkqvist, J. Engine Vibration Anomaly Detection in Vessel Engine Room. IFAC-PapersOnLine 2022, 55, 465–469. [Google Scholar] [CrossRef]
- Sidibé, A.; Shu, G.; Ma, Y.; Wanqi, W. Big Data Framework for Abnormal Vessel Trajectories Detection Using Adaptive Kernel Density Estimation. In Proceedings of the 2nd International Conference on Big Data Research, ACM, Weihai, China, 27 October 2018; pp. 43–46. [Google Scholar]
- Karataş, G.B.; Karagoz, P.; Ayran, O. Trajectory Pattern Extraction and Anomaly Detection for Maritime Vessels. Internet Things 2021, 16, 100436. [Google Scholar] [CrossRef]
- Anneken, M.; Fischer, Y.; Beyerer, J. Evaluation and Comparison of Anomaly Detection Algorithms in Annotated Datasets from the Maritime Domain. In Proceedings of the 2015 SAI Intelligent Systems Conference (IntelliSys), London, UK, 10–11 November 2015; pp. 169–178. [Google Scholar]
- Karatuğ, Ç.; Arslanoğlu, Y.; Guedes Soares, C. Design of a Decision Support System to Achieve Condition-Based Maintenance in Ship Machinery Systems. Ocean Eng. 2023, 281, 114611. [Google Scholar] [CrossRef]
- Zhou, K.; Li, J.; Xiao, Y.; Yang, J.; Cheng, J.; Liu, W.; Luo, W.; Liu, J.; Gao, S. Memorizing Structure-Texture Correspondence for Image Anomaly Detection. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 2335–2349. [Google Scholar] [CrossRef]
- Vadisetty, R.; Polamarasetti, A. Quantum Computing For Cryptographic Security With Artificial Intelligence. In Proceedings of the ICCMA, London, UK, 11–13 November 2024. [Google Scholar] [CrossRef]
- Kavallieratos, G.; Katsikas, S.; Gkioulos, V. Modelling Shipping 4.0: A Reference Architecture for the Cyber-Enabled Ship. In Intelligent Information and Database Systems; Nguyen, N.T., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12034, pp. 202–217. ISBN 978-3-030-42057-4. [Google Scholar]
- Maganaris, C.; Protopapadakis, E.; Doulamis, N. Outlier Detection in Maritime Environments Using AIS Data and Deep Recurrent Architectures. arXiv 2024, arXiv:2406.09966. [Google Scholar]
- Han, X.; Armenakis, C.; Jadidi, M. DBSCAN Optimization for Improving Marine Trajectory Clustering and Anomaly Detection. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B4-2020, 455–461. [Google Scholar] [CrossRef]
- Chang, S.-J.; Yeh, K.-H.; Peng, G.-D.; Chang, S.-M.; Huang, C.-H. From Safety to Security—Pattern and Anomaly Detections in Maritime Trajectories. In Proceedings of the 2015 International Carnahan Conference on Security Technology (ICCST), Taipei, Taiwan, 21–24 September 2015; pp. 415–419. [Google Scholar]
- Jiao, J.-B.; Li, W.-F. Ship Abnormal Behavior Detection Based on KD-Tree and Clustering Algorithm. In Proceedings of the 2023 8th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 21 April 2023; pp. 1315–1318. [Google Scholar]
- Fernández-Barrero, D.; Fontenla-Romero, O.; Lamas-López, F.; Novoa-Paradela, D.; R-Moreno, M.D.; Sanz, D. SOPRENE: Assessment of the Spanish Armada’s Predictive Maintenance Tool for Naval Assets. Appl. Sci. 2021, 11, 7322. [Google Scholar] [CrossRef]
- Brandsater, A.; Vanem, E.; Glad, I.K. Cluster Based Anomaly Detection with Applications in the Maritime Industry. In Proceedings of the 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Shanghai, China, 16–18 August 2017; pp. 328–333. [Google Scholar]
- Martínez, F.; Sànchez, L.E.; Santos-Olmo, A.; Rosado, D.G.; Fernàndez-Medina, E. Maritime cybersecurity: Protecting digital seas. Int. J. Inf. Secur. 2024, 23, 1429–1457. [Google Scholar] [CrossRef]
- Zhou, K.; Xiao, Y.; Yang, J.; Cheng, J.; Liu, W.; Luo, W.; Gu, Z.; Liu, J.; Gao, S. Encoding Structure-Texture Relation with P-Net for Anomaly Detection in Retinal Images. In Computer Vision—ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12365, pp. 360–377. ISBN 978-3-030-58564-8. [Google Scholar]
- Vorkapić, A.; Radonja, R.; Babić, K.; Martinčić-Ipšić, S. Machine Learning Methods in Monitoring Operating Behaviour of Marine Two-Stroke Diesel Engine. Transport 2020, 35, 462–473. [Google Scholar] [CrossRef]
- Kim, J.-S.; Lee, J.-S.; Kim, K.-I. Anomalous Vessel Behavior Detection Based on SVR Seaway Model. Int. J. FUZZY Log. Intell. Syst. 2019, 19, 18–27. [Google Scholar] [CrossRef]
- Zhou, Y.; Wright, J.; Maskell, S. A Generic Anomaly Detection Approach Applied to Mixture-of-Unigrams and Maritime Surveillance Data. In Proceedings of the 2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany, 15–17 October 2019; pp. 1–6. [Google Scholar]
- Monemi, M.; Fallah, M.A. A Novel Scheme for Determination of Vessel Heading Using Airborne Magnetic Wake Scanning. Int. J. Appl. Electromagn. Mech. 2023, 71, 261–271. [Google Scholar] [CrossRef]
- Alvarez, M.; Arguedas, V.F.; Gammieri, V.; Mazzarella, F.; Vespe, M.; Aulicino, G. AIS Event-Based Knowledge Discovery for Maritime Situational Awareness. In Proceedings of the 19th International Conference on Information Fusion, Heidelberg, Germany, 5–8 July 2016; pp. 1874–1880. [Google Scholar]
- Nikula, R.-P.; Ruusunen, M.; Keski-Rahkonen, J.; Saarinen, L.; Fagerholm, F. Probabilistic Condition Monitoring of Azimuth Thrusters Based on Acceleration Measurements. Machines 2021, 9, 39. [Google Scholar] [CrossRef]
- Visky, G.; Rohl, A.; Katsikas, S.; Maennel, O. AIS Data Analysis: Reality in the Sea of Echos. In Proceedings of the 2024 IEEE 49th Conference on Local Computer Networks (LCN), Normandy, France, 8 October 2024; pp. 1–7. [Google Scholar]
- Kumar, D.; Harris, S.; Daniel, L.; Hoare, E.; Pirkani, A.; Gashinova, M.; Cherniakov, M. Repeatable Wave Data for Sub-THz Radar Marine Target Detection Experiments. In Proceedings of the 2023 20th European Radar Conference (EuRAD), Berlin, Germany, 20 September 2023; pp. 148–151. [Google Scholar]
- Li, H.; Li, W.; Wang, S.; Yang, H.; Guan, J.; Zhang, Y. STAD: Ship Trajectory Anomaly Detection in Ocean with Dynamic Pattern Clustering. Ocean Eng. 2024, 313, 119530. [Google Scholar] [CrossRef]
- Magnussen, B.B.; Bläser, N.; Jensen, R.M.; Ylänen, K. Destination Prediction of Oil Tankers Using Graph Abstractions and Recurrent Neural Networks. In Computational Logistics; Mes, M., Lalla-Ruiz, E., Voß, S., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2021; Volume 13004, pp. 51–65. ISBN 978-3-030-87671-5. [Google Scholar]
- Radon, A.N.; Wang, K.; Glasser, U.; Wehn, H.; Westwell-Roper, A. Contextual Verification for False Alarm Reduction in Maritime Anomaly Detection. In Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November 2015; pp. 1123–1133. [Google Scholar]
- Anneken, M.; Jousselme, A.-L.; Robert, S.; Beyerer, J. Synthetic Trajectory Extraction for Maritime Anomaly Detection. In Proceedings of the 2018 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 12–14 December 2018; pp. 1048–1053. [Google Scholar]
- Öster, A. A Human Perception View on Holistic Anomaly Detection Systems for Maritime Engine Rooms. In Proceedings of the International Offshore and Polar Engineering Conference, Rhodes, Greece, 16–21 June 2024; Volume 1, p. 4310. [Google Scholar]
- Maia, R.F.P.; Antunes, C.M. Anomaly Detection in Multivariate Temporal Data for Vessels Abnormal Behaviour Detection. In CAPSI 2019 Proceedings; AISEL: Lisbon, Portugal, 2019. [Google Scholar]
- Rong, H.; Teixeira, A.P.; Soares, C.G. Maritime Traffic Network Extraction and Application Based on AIS Data. In Proceedings of the 2021 6th International Conference on Transportation Information and Safety (ICTIS), Wuhan, China, 22 October 2021; pp. 1244–1252. [Google Scholar]
- Zheng, W.; Zhou, H.; Qiu, Z.; Ke, Z.; Tao, M.; Chen, Z. Sensor Correlation Network Based Anomaly Detection for Thermal Systems on Ships. In Proceedings of the 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS), Liuzhou, China, 20 November 2020; pp. 302–307. [Google Scholar]
- Kim, D.; Antariksa, G.; Handayani, M.P.; Lee, S.; Lee, J. Explainable Anomaly Detection Framework for Maritime Main Engine Sensor Data. Sensors 2021, 21, 5200. [Google Scholar] [CrossRef]
- Felski, A.; Zwolak, K. The Ocean-Going Autonomous Ship—Challenges and Threats. J. Mar. Sci. Eng. 2020, 8, 41. [Google Scholar] [CrossRef]
- Mbulwa, A.I.; Chekima, A.; Dargham, J.A.; Tung, Y.H.; Kitt, W.W. Anomaly Detection Using a Self-Sufficient Ad Hoc Electrical Impedance Tomography Sensor Deployed Within Imaged Space. Int. J. Emerg. Technol. Adv. Eng. 2019, 9, 101–105. [Google Scholar]
- Gao, M.; Shi, G.; Li, S. Online Prediction of Ship Behavior with Automatic Identification System Sensor Data Using Bidirectional Long Short-Term Memory Recurrent Neural Network. Sensors 2018, 18, 4211. [Google Scholar] [CrossRef]
- Cankar, M.; Petrovic, N.; Pita Costa, J.; Cernivec, A.; Antic, J.; Martincic, T.; Stepec, D. Security in DevSecOps: Applying Tools and Machine Learning to Verification and Monitoring Steps. In Proceedings of the Companion of the 2023 ACM/SPEC International Conference on Performance Engineering, ACM, Coimbra, Portugal, 15 April 2023; pp. 201–205. [Google Scholar]
- Zhang, B.; Hirayama, K.; Ren, H.; Wang, D.; Li, H. Ship Anomalous Behavior Detection Using Clustering and Deep Recurrent Neural Network. J. Mar. Sci. Eng. 2023, 11, 763. [Google Scholar] [CrossRef]
- Guo, Z.-X.; Shui, P.-L. Anomaly Based Sea-Surface Small Target Detection Using K-Nearest Neighbor Classification. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4947–4964. [Google Scholar] [CrossRef]
- Progoulakis, I.; Nikitakos, N.; Dalaklis, D.; Yaacob, R. Cyber-Physical Security for Ports Infrastructure. Int. Marit. Transp. Logist. J. 2022, 11, 105. [Google Scholar] [CrossRef]
- Eljabu, L.; Etemad, M.; Matwin, S. Anomaly Detection in Maritime Domain Based on Spatio-Temporal Analysis of AIS Data Using Graph Neural Networks. In Proceedings of the 2021 5th International Conference on Vision, Image and Signal Processing (ICVISP), Kuala Lumpur, Malaysia, 18–20 December 2021; pp. 142–147. [Google Scholar]
- Amro, A.; Oruc, A.; Gkioulos, V.; Katsikas, S. Navigation Data Anomaly Analysis and Detection. Information 2022, 13, 104. [Google Scholar] [CrossRef]
- Tu, E.; Zhang, G.; Rachmawati, L.; Rajabally, E.; Huang, G.-B. Exploiting AIS Data for Intelligent Maritime Navigation: A Comprehensive Survey From Data to Methodology. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1559–1582. [Google Scholar] [CrossRef]
- Venskus, J.; Treigys, P.; Bernatavičienė, J.; Tamulevičius, G.; Medvedev, V. Real-Time Maritime Traffic Anomaly Detection Based on Sensors and History Data Embedding. Sensors 2019, 19, 3782. [Google Scholar] [CrossRef] [PubMed]
- Samonte, M.J.C.; Laurenio, E.N.B.; Lazaro, J.R.M. Enhancing Port and Maritime Cybersecurity Through AI-Enabled Threat Detection and Response. In Proceedings of the 2024 8th International Conference on Smart Grid and Smart Cities (ICSGSC), Shanghai, China, 25–27 October 2024; pp. 412–420. [Google Scholar] [CrossRef]
- Pelissero, N.; Laso, P.M.; Puentes, J. Impact Assessment of Anomaly Propagation in a Naval Water Distribution Cyber-Physical System. In Proceedings of the 2021 IEEE International Conference on Cyber Security and Resilience (CSR), Rhodes, Greece, 26 July 2021; pp. 518–523. [Google Scholar]
- Ribeiro, C.V.; Paes, A.; Oliveira, D.D. AIS-Based Maritime Anomaly Traffic Detection: A Review. Expert Syst. Appl. 2023, 231, 120561. [Google Scholar] [CrossRef]
- Ga̧sienica-Józkowy, J.; Knapik, M.; Cyganek, B. An Ensemble Deep Learning Method with Optimized Weights for Drone-Based Water Rescue and Surveillance. Integr. Comput.-Aided Eng. 2021, 28, 221–235. [Google Scholar] [CrossRef]
- Potamos, G.; Stavrou, E.; Stavrou, S. Enhancing Maritime Cybersecurity through Operational Technology Sensor Data Fusion: A Comprehensive Survey and Analysis. Sensors 2024, 24, 3458. [Google Scholar] [CrossRef]
- Xia, Z.; Gao, S. Analysis of Vessel Anomalous Behavior Based on Bayesian Recurrent Neural Network. In Proceedings of the 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), Chengdu, China, 1 April 2020; pp. 393–397. [Google Scholar]
- Moharir, M.; Adyathimar, K.B.; Shobha, G.; Soni, V. Scapy Scripting to Automate Testing of Networking Middleboxes. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 293–298. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Y.; Pan, Z. A Dual-Polarimetric SAR Ship Detection Dataset and a Memory-Augmented Autoencoder-Based Detection Method. Sensors 2021, 21, 8478. [Google Scholar] [CrossRef]
- Smith, J.; Nouretdinov, I.; Craddock, R.; Offer, C.; Gammerman, A. Conformal Anomaly Detection of Trajectories with a Multi-Class Hierarchy. In Statistical Learning and Data Sciences; Gammerman, A., Vovk, V., Papadopoulos, H., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9047, pp. 281–290. ISBN 978-3-319-17090-9. [Google Scholar]
- Smith, P.F.; Thulasiraman, P.; Oriti, G.; Vygoder, M.; Gudex, J. Anomaly Detection in Shipboard Operational Technology Systems Using Cyber Analytics. In Proceedings of the 2024 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE), Taichung, Taiwan, 6 November 2024; pp. 1–7. [Google Scholar]
- Toloue, K.F.; Jahan, M.V. Anomalous Behavior Detection of Marine Vessels Based on Hidden Markov Model. In Proceedings of the 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), Kerman, Iran, 28 February–2 March 2018; pp. 10–12. [Google Scholar]
- Coleman, J.; Kandah, F.; Huber, B. Behavioral Model Anomaly Detection in Automatic Identification Systems (AIS). In Proceedings of the 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8 January 2020; pp. 0481–0487. [Google Scholar]
- Neves, J.; Maia, R.; Conceicao, V.; Marques, M.M. Behaviour Analysis and Anomaly Detection Algorithms for the Maritime Integrated Surveillance Awareness. In Proceedings of the 2019 IEEE Underwater Technology (UT), Kaohsiung, Taiwan, 16–19 April 2019; pp. 1–5. [Google Scholar]
- Kullberg, A.; Skog, I.; Hendeby, G. Learning Motion Patterns in AIS Data and Detecting Anomalous Vessel Behavior. In Proceedings of the 2021 IEEE 24th International Conference on Information Fusion (FUSION), Sun City, South Africa, 1 November 2021; pp. 1–8. [Google Scholar]
- Liu, B.; de Souza, E.N.; Hilliard, C.; Matwin, S. Ship Movement Anomaly Detection Using Specialized Distance Measures. In Proceedings of the 18th International Conference on Information Fusion, Washington, DC, USA, 6–9 July 2015; pp. 1113–1120. [Google Scholar]
- Kumar, P.; Maharajan, A. Maritime Cybersecurity Leveraging Artificial Intelligence Mechanisms Unveiling Recent Innovations and Projecting Future Trends. KSII Trans. Internet Inf. Syst. 2024, 18, 3010–3039. [Google Scholar] [CrossRef]
- Lalasa, K.L.; Srija, R.J.V.; Kumar, K.P. Maritime Security—Illegal Fishing Detection Using Deep Learning. In Proceedings of the 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS), Chikkaballapur, India, 18 April 2024; pp. 1–5. [Google Scholar]
- Musgrave, P.; Thulasiraman, P. FDIA Detection Methods on a Navy Smart Grid AMI Data Set Using Autoenocoder Neural Networks: A Case Study. In Proceedings of the 2022 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 14–16 December 2022; pp. 876–882. [Google Scholar]
- Klemm, J.; Niemi, A.; Sill Torres, F. Predicting Ship Tracks in Waterways Using Long Short-Term Memory. In Proceedings of the OCEANS 2024—Halifax, IEEE, Halifax, NS, Canada, 23 September 2024; pp. 1–7. [Google Scholar]
- Herrera, M.; Sasidharan, M.; Merino, J.; Parlikad, A.K. Handling Irregularly Sampled IoT Time Series to Inform Infrastructure Asset Management. IFAC-PapersOnLine 2022, 55, 241–245. [Google Scholar] [CrossRef]
- Yang, Y.; He, D.; Vijayakumar, P.; Gupta, B.B.; Xie, Q. An Efficient Identity-Based Aggregate Signcryption Scheme With Blockchain for IoT-Enabled Maritime Transportation System. IEEE Trans. Green Commun. Netw. 2022, 6, 1520–1531. [Google Scholar] [CrossRef]
- Bao, J.; Zheng, X.; Zhang, J.; Ji, X.; Zhang, J. Data-Driven Process Planning for Shipbuilding. Artif. Intell. Eng. Des. Anal. Manuf. 2018, 32, 122–130. [Google Scholar] [CrossRef]
- Kavallieratos, G.; Katsikas, S.; Gkioulos, V. Cyber-Attacks Against the Autonomous Ship. In Computer Security; Katsikas, S.K., Cuppens, F., Cuppens, N., Lambrinoudakis, C., Antón, A., Gritzalis, S., Mylopoulos, J., Kalloniatis, C., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; Volume 11387, pp. 20–36. ISBN 978-3-030-12785-5. [Google Scholar]
- Sedik, A.; Emara, H.M.; Hamad, A.; Shahin, E.M.; A. El-Hag, N.; Khalil, A.; Ibrahim, F.; Elsherbeny, Z.M.; Elreefy, M.; Zahran, O.; et al. Efficient Anomaly Detection from Medical Signals and Images. Int. J. Speech Technol. 2019, 22, 739–767. [Google Scholar] [CrossRef]
- Liang, M.; Weng, L.; Gao, R.; Li, Y.; Du, L. Unsupervised Maritime Anomaly Detection for Intelligent Situational Awareness Using AIS Data. Knowl.-Based Syst. 2024, 284, 111313. [Google Scholar] [CrossRef]
- Durlik, I.; Miller, T.; Kostecka, E.; Tuński, T. Artificial Intelligence in Maritime Transportation: A Comprehensive Review of Safety and Risk Management Applications. Appl. Sci. 2024, 14, 8420. [Google Scholar] [CrossRef]
- Laxhammar, R.; Falkman, G. Inductive Conformal Anomaly Detection for Sequential Detection of Anomalous Sub-Trajectories. Ann. Math. Artif. Intell. 2015, 74, 67–94. [Google Scholar] [CrossRef]
- Zhao, L.; Shi, G. Maritime Anomaly Detection Using Density-Based Clustering and Recurrent Neural Network. J. Navig. 2019, 72, 894–916. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, Y.; Gong, S.; Wang, M. Performance Optimization of Maritime IoT Communication under MIMO–Massive 5G with Uncertain Turbulence. Phys. Commun. 2022, 53, 101713. [Google Scholar] [CrossRef]
- Khalil, A.A.; Rahman, M.A. SHIP: Securing Hashed Timelock Contracts in Payment Channel Networks. In Proceedings of the 2023 IEEE Conference on Communications and Network Security (CNS), Orlando, FL, USA, 2 October 2023; pp. 1–2. [Google Scholar]
- Chen, S.; Huang, Y.; Lu, W. Anomaly Detection and Restoration for AIS Raw Data. Wirel. Commun. Mob. Comput. 2022, 2022, 1–11. [Google Scholar] [CrossRef]
- Forti, N.; Millefiori, L.M.; Braca, P.; Willett, P. Anomaly Detection and Tracking Based on Mean–Reverting Processes with Unknown Parameters. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 8449–8453. [Google Scholar]
- Pu, S.; Lam, J.S.L. Blockchain adoptions in the maritime industry: A conceptual framework. Marit. Policy Manag. 2021, 48, 777–794. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Liu, R.W.; Liu, Y.; Yuan, Z. Data-driven methods for detection of abnormal ship behavior: Progress and trends. Ocean Eng. 2023, 271, 113673. [Google Scholar] [CrossRef]
- Anneken, M.; Fischer, Y.; Beyerer, J. A Multi-Agent Approach to Model and Analyze the Behavior of Vessels in the Maritime Domain. In Proceedings of the 9th International Conference on Agents and Artificial Intelligence, Porto, Portugal, 24–26 February 2017; pp. 200–207. [Google Scholar]
- May Petry, L.; Soares, A.; Bogorny, V.; Brandoli, B.; Matwin, S. Challenges in Vessel Behavior and Anomaly Detection: From Classical Machine Learning to Deep Learning. In Advances in Artificial Intelligence; Goutte, C., Zhu, X., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12109, pp. 401–407. ISBN 978-3-030-47357-0. [Google Scholar]
- Susanto, H.; Wibisono, G. Marine Vessel Telemetry Data Processing Using Machine Learning. In Proceedings of the 2019 6th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Bandung, Indonesia, 18–20 September 2019; pp. 128–135. [Google Scholar]
- Pelissero, N.; Laso, P.M.; Jacq, O.; Puentes, J. Towards Modeling of Naval Systems Interdependencies for Cybersecurity. In Proceedings of the OCEANS 2021, IEEE, San Diego, CA, USA, 20 September 2021; pp. 1–7. [Google Scholar]
- Zissis, D.; Chatzikokolakis, K.; Spiliopoulos, G.; Vodas, M. A Distributed Spatial Method for Modeling Maritime Routes. IEEE Access 2020, 8, 47556–47568. [Google Scholar] [CrossRef]
- Alipek, S.; Mälzer, M.; Beck, S.; Kexel, C.; Moll, J.; Krozer, V.; Kassner, J.; Heinecke, T.; Rose, J.; Berger, M. Potential and Limitations of Anomaly Detection via Tower-Radar Monitoring of Wind Turbine Blades in Regular Operation with Convolutional Networks. E-J. Nondestruct. Test. 2024, 29, 1–11. [Google Scholar] [CrossRef]
- Hoeber, O.; Ul Hasan, M. Supporting Event-Based Geospatial Anomaly Detection with Geovisual Analytics. In Proceedings of the 6th International Conference on Information Visualization Theory and Applications, Berlin, Germany, 11–14 March 2015 ; pp. 17–28. [Google Scholar]
- Huang, Z.; Wan, J.; Huang, J.; Jia, G.; Zhang, W. A Collaborative Anomaly Detection Approach of Marine Vessel Trajectory (Short Paper). In Collaborative Computing: Networking, Applications and Worksharing; Wang, X., Gao, H., Iqbal, M., Min, G., Eds.; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer International Publishing: Cham, Switzerland, 2019; Volume 292, pp. 279–294. ISBN 978-3-030-30145-3. [Google Scholar]
- Feng, M.; Xu, H. MSNET-Blockchain: A New Framework for Securing Mobile Satellite Communication Network. In Proceedings of the 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Boston, MA, USA, 10–13 June 2019; pp. 1–9. [Google Scholar]
- d’Afflisio, E.; Braca, P.; Chisci, L.; Battistelli, G.; Willett, P. Maritime Anomaly Detection of Malicious Data Spoofing and Stealth Deviations from Nominal Route Exploiting Heterogeneous Sources of Information. In Proceedings of the 2021 IEEE 24th International Conference on Information Fusion (FUSION), Sun City, South Africa, 1 November 2021; pp. 1–7. [Google Scholar]
- Zhang, B.; Ren, H.; Wang, P.; Wang, D. Research Progress on Ship Anomaly Detection Based on Big Data. In Proceedings of the 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 16 October 2020; pp. 316–320. [Google Scholar]
- Ferlansyah, N.M.; Suharjito, S. A Systematic Literature Review of Vessel Anomaly Behavior Detection Methods Based on Automatic Identification System (AIS) and Another Sensor Fusion. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 287–292. [Google Scholar] [CrossRef]
- Tyasayumranani, W.; Hwang, T.; Hwang, T.; Youn, I.-H. Anomaly Detection Model of Small-Scaled Ship for Maritime Autonomous Surface Ships’ Operation. J. Int. Marit. Saf. Environ. Aff. Shipp. 2022, 6, 224–235. [Google Scholar] [CrossRef]
- Kalogeraki, E.-M.; Papastergiou, S.; Mouratidis, H.; Polemi, N. A Novel Risk Assessment Methodology for SCADA Maritime Logistics Environments. Appl. Sci. 2018, 8, 1477. [Google Scholar] [CrossRef]
- Pelissero, N.; Laso, P.M.; Puentes, J. Model Graph Generation for Naval Cyber-Physical Systems. In Proceedings of the OCEANS 2021, IEEE, San Diego, CA, USA, 20 September 2021; pp. 1–5. [Google Scholar]
- Thakur, A.S.; Alex, T.L.; Nighojkar, A. Artificial Intelligence in Maritime Anomaly Detection: A Decadal Bibliometric Analysis (2014–2024). J. Inst. Eng. India Ser. C 2025, 106, 665–689. [Google Scholar] [CrossRef]
- Sahoo, S.; Mohanta, R.K.; Pani, P.P.; Mohapatra, S.K.; Chakravarty, S. A Multi-Faceted Approach for Underwater Sonar Rock vs Mine Classification Using Machine Techniques. In Proceedings of the 2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU), Bhubaneswar, India, 1 March 2024; pp. 1–5. [Google Scholar]
- Seong, N.; Kim, J.; Lim, S. Graph-Based Anomaly Detection of Ship Movements Using CCTV Videos. J. Mar. Sci. Eng. 2023, 11, 1956. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Mukhiddinov, M. Data Anomaly Detection for Structural Health Monitoring Based on a Convolutional Neural Network. Sensors 2023, 23, 8525. [Google Scholar] [CrossRef]
- Tienin, B.W.; Cui, G.; Nana, Y.A.T.; Ukwuoma, C.C.; Esidang, R.M.; Senouci, M.R. FedRS-Net: A Federated Learning Approach for Collaborative Multi-Modal Maritime Analytics. In Proceedings of the 2024 27th International Conference on Information Fusion (FUSION), Venice, Italy, 8 July 2024; pp. 1–8. [Google Scholar]
- Liu, R.W.; Liang, M.; Nie, J.; Deng, X.; Xiong, Z.; Kang, J.; Yang, H.; Zhang, Y. Intelligent Data-Driven Vessel Trajectory Prediction in Marine Transportation Cyber-Physical System. In Proceedings of the 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), Melbourne, Australia, 6–8 December 2021; pp. 314–321. [Google Scholar]
- Mehri, S.; Alesheikh, A.A.; Basiri, A. A Context-Aware Approach for Vessels’ Trajectory Prediction. Ocean Eng. 2023, 282, 114916. [Google Scholar] [CrossRef]
- Schneider, J.; Klüner, A.; Zielinski, O. Towards Digital Twins of the Oceans: The Potential of Machine Learning for Monitoring the Impacts of Offshore Wind Farms on Marine Environments. Sensors 2023, 23, 4581. [Google Scholar] [CrossRef]
- Xiong, W.; Guo, Y.; Yang, Q.; Yang, K.; Gao, Y.; Tian, Y. Risk Assessment for Search and Rescue Ships Based on Back Propagation Neural Network. In Proceedings of the 2020 6th International Conference on Big Data and Information Analytics (BigDIA), Shenzhen, China, 4–6 December 2020; pp. 289–294. [Google Scholar]
- Guan, Y.; Xu, H.; Li, C. A Method of Ship Wake Detection in SAR Images Based on Reconstruction Features and Anomaly Detector. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Pasadena, CA, USA, 16 July 2023; pp. 6398–6401. [Google Scholar]
- Shin, H.; Lin, Q.; Son, J. Detecting Anomalies in AOA Data Measured for Indoor Positioning to Improve Accuracy. J. Theor. Appl. Inf. Technol. 2022, 100, 5895–5905. [Google Scholar]
- Abreu, F.H.O.; Soares, A.; Paulovich, F.V.; Matwin, S. Local Anomaly Detection In Maritime Traffic Using Visual Analytics. In Proceedings of the Workshop Proceedings of the EDBT/ICDT 2021 Joint Conference on CEUR-WS.org, Nicosia, Cyprus, 23–26 March 2021. [Google Scholar]
- Singh, S.K.; Fowdur, J.S.; Gawlikowski, J.; Medina, D. Leveraging Graph and Deep Learning Uncertainties to Detect Anomalous Maritime Trajectories. IEEE Trans. Intell. Transp. Syst. 2022, 23, 23488–23502. [Google Scholar] [CrossRef]
- Palm, H.C.; Aurdal, L.; Brattli, A.; Glimsdal, E.; Klausen, R.A.; Løkken, K.H. Supporting Artificial Intelligence with Artificial Images. In Proceedings of the Target and Background Signatures IV, SPIE, Berlin, Germany, 9 October 2018; p. 21. [Google Scholar]
- Wei, Z.; Xie, X.; Zhang, X. Maritime Anomaly Detection Based on a Support Vector Machine. Soft Comput. 2022, 26, 11553–11566. [Google Scholar] [CrossRef]
- Ji, I.H.; Lee, J.H.; Kang, M.J.; Park, W.J.; Jeon, S.H.; Seo, J.T. Artificial Intelligence-Based Anomaly Detection Technology over Encrypted Traffic: A Systematic Literature Review. Sensors 2024, 24, 898. [Google Scholar] [CrossRef]
- Kontopoulos, I.; Spiliopoulos, G.; Zissis, D.; Chatzikokolakis, K.; Artikis, A. Countering Real-Time Stream Poisoning: An Architecture for Detecting Vessel Spoofing in Streams of AIS Data. In Proceedings of the 2018 IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, 16th International Conference on Pervasive Intelligence and Computing, 4th International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Athens, Greece, 12–15 August 2018; pp. 981–986. [Google Scholar]
- Fera, F.; Spandonidis, C. A Fault Diagnosis Approach Utilizing Artificial Intelligence for Maritime Power Systems within an Integrated Digital Twin Framework. Appl. Sci. 2024, 14, 8107. [Google Scholar] [CrossRef]
- Sugathan, D.; Revanth, M.; Kumar, V.P.; Desai, S.; Keshava, L. eSPY Carting Systems: The Real-Time Tracking Mechanism Architecture. In Proceedings of the 2021 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C), Bangalore, India, 10–11 June 2021; pp. 184–190. [Google Scholar]
- Li, K.; Guo, J.; Li, R.; Wang, Y.; Li, Z.; Miu, K.; Chen, H. The Abnormal Detection Method of Ship Trajectory with Adaptive Transformer Model Based on Migration Learning. In Spatial Data and Intelligence; Meng, X., Li, X., Xu, J., Zhang, X., Fang, Y., Zheng, B., Li, Y., Eds.; Lecture Notes in Computer Science; Springer Nature: Cham, Switzerland, 2023; Volume 13887, pp. 204–220. ISBN 978-3-031-32909-8. [Google Scholar]
- Nguyen, D.; Vadaine, R.; Hajduch, G.; Garello, R.; Fablet, R. GeoTrackNet —A Maritime Anomaly Detector Using Probabilistic Neural Network Representation of AIS Tracks and A Contrario Detection. IEEE Trans. Intell. Transp. Syst. 2022, 23, 5655–5667. [Google Scholar] [CrossRef]
- Osekowska, E.; Carlsson, B. Learning Maritime Traffic Rules Using Potential Fields. In Computational Logistics; Corman, F., Voß, S., Negenborn, R.R., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9335, pp. 298–312. ISBN 978-3-319-24263-7. [Google Scholar]
- Anneken, M.; Fischer, Y.; Beyerer, J. Anomaly Detection Using B-Spline Control Points as Feature Space in Annotated Trajectory Data from the Maritime Domain. In Proceedings of the 8th International Conference on Agents and Artificial Intelligence; SCITEPRESS—Science and and Technology Publications: Rome, Italy, 2016; pp. 250–257. [Google Scholar]
- Longo, G.; Orlich, A.; Musante, S.; Merlo, A.; Russo, E. MaCySTe: A Virtual Testbed for Maritime Cybersecurity. SoftwareX 2023, 23, 101426. [Google Scholar] [CrossRef]
- d’Afflisio, E.; Braca, P.; Millefiori, L.M.; Willett, P. Detecting Anomalous Deviations From Standard Maritime Routes Using the Ornstein–Uhlenbeck Process. IEEE Trans. Signal Process. 2018, 66, 6474–6487. [Google Scholar] [CrossRef]
- Yan, Z.; Song, X.; Zhong, H.; Yang, L.; Wang, Y. Ship Classification and Anomaly Detection Based on Spaceborne AIS Data Considering Behavior Characteristics. Sensors 2022, 22, 7713. [Google Scholar] [CrossRef]
- Diaz, R.; Smith, K.; Bertagna, S.; Bucci, V. Digital Transformation, Applications, and Vulnerabilities in Maritime and Shipbuilding Ecosystems. Procedia Comput. Sci. 2023, 217, 1396–1405. [Google Scholar] [CrossRef]
- Ntshangase, L.H.; Bauk, S. Blockchain Applications and Cybersecurity Threats: A Review. In Proceedings of the 2024 28th International Conference on Information Technology (IT), Zabljak, Montenegro, 21 February 2024; pp. 1–4. [Google Scholar]
- Bernabé, P.; Gotlieb, A.; Legeard, B.; Marijan, D.; Sem-Jacobsen, F.O.; Spieker, H. Detecting Intentional AIS Shutdown in Open Sea Maritime Surveillance Using Self-Supervised Deep Learning. IEEE Trans. Intell. Transp. Syst. 2024, 25, 1166–1177. [Google Scholar] [CrossRef]
- Kontopoulos, I.; Varlamis, I.; Tserpes, K. Uncovering Hidden Concepts from AIS Data: A Network Abstraction of Maritime Traffic for Anomaly Detection. In Multiple-Aspect Analysis of Semantic Trajectories; Tserpes, K., Renso, C., Matwin, S., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 11889, pp. 6–20. ISBN 978-3-030-38080-9. [Google Scholar]
- Wei, T.; Wang, T.; Dong, T.; Jing, M.; Chen, S.; Xu, C.; Liu, Y.; Wu, J.; Gao, L. Comparative Analysis of SAR Ship Detection Methods Based on Deep Learning. IET Conf. Proc. 2024, 2023, 3918–3925. [Google Scholar] [CrossRef]
- Ali, Z.; Hussain, T.; Su, C.-L.; Sadiq, M.; Jurcut, A.D.; Tsao, S.-H.; Lin, P.-C.; Terriche, Y.; Elsisi, M. A New Paradigm for Adaptive Cyber-Resilience of DC Shipboard Microgrids Using Hybrid Signal Processing With Deep Learning Method. IEEE Trans. Transp. Electrif. 2025, 11, 4280–4295. [Google Scholar] [CrossRef]
- Venskus, J.; Kurmis, M.; Andziulis, A.; Lukosius, Z.; Voznak, M.; Bykovas, D. Self-Learning Adaptive Algorithm for Maritime Traffic Abnormal Movement Detection Based on Virtual Pheromone Method. In Proceedings of the 2015 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), Chicago, IL, USA, 26–29 July 2015; pp. 1–6. [Google Scholar]
- Vanem, E.; Storvik, G.O. Dynamical Linear Models for Condition Monitoring with Multivariate Sensor Data. Int. J. COMADEM 2018, 21, 7–18. [Google Scholar]
- Shahir, A.Y.; Tayebi, M.A.; Glasser, U.; Charalampous, T.; Zohrevand, Z.; Wehn, H. Mining Vessel Trajectories for Illegal Fishing Detection. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 1917–1927. [Google Scholar]
- Kumar, P.; Gupta, G.P.; Tripathi, R.; Garg, S.; Hassan, M.M. DLTIF: Deep Learning-Driven Cyber Threat Intelligence Modeling and Identification Framework in IoT-Enabled Maritime Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2021, 24, 2472–2481. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, T.; Durlik, I.; Kostecka, E.; Sokołowska, S.; Kozlovska, P.; Zwolak, R. Artificial Intelligence in Maritime Cybersecurity: A Systematic Review of AI-Driven Threat Detection and Risk Mitigation Strategies. Electronics 2025, 14, 1844. https://doi.org/10.3390/electronics14091844
Miller T, Durlik I, Kostecka E, Sokołowska S, Kozlovska P, Zwolak R. Artificial Intelligence in Maritime Cybersecurity: A Systematic Review of AI-Driven Threat Detection and Risk Mitigation Strategies. Electronics. 2025; 14(9):1844. https://doi.org/10.3390/electronics14091844
Chicago/Turabian StyleMiller, Tymoteusz, Irmina Durlik, Ewelina Kostecka, Sylwia Sokołowska, Polina Kozlovska, and Rafał Zwolak. 2025. "Artificial Intelligence in Maritime Cybersecurity: A Systematic Review of AI-Driven Threat Detection and Risk Mitigation Strategies" Electronics 14, no. 9: 1844. https://doi.org/10.3390/electronics14091844
APA StyleMiller, T., Durlik, I., Kostecka, E., Sokołowska, S., Kozlovska, P., & Zwolak, R. (2025). Artificial Intelligence in Maritime Cybersecurity: A Systematic Review of AI-Driven Threat Detection and Risk Mitigation Strategies. Electronics, 14(9), 1844. https://doi.org/10.3390/electronics14091844