A Millimeter-Wave CMOS Down-Conversion Mixer with Transformer-Based Harmonic Suppression
Abstract
:1. Introduction
2. Design Methodology
2.1. Design Considerations
2.2. Transconductance Stage
2.3. Switching Stage with Transformer-Based Harmonic Suppression
2.4. LO Buffer Amplifier
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, J.-H.; Lee, E.-G.; Lee, J.-E.; Son, J.-T.; Kim, J.-H.; Baek, M.-S.; Kim, C.-Y. A 37–40 GHz 6-Bits Switched-Filter Phase Shifter Using 150 nm GaN HEMT. Nanomaterials 2023, 13, 2752. [Google Scholar] [CrossRef] [PubMed]
- Kiani, S.H.; Altaf, A.; Anjum, M.R.; Afridi, S.; Arain, Z.A.; Anwar, S.; Khan, S.; Alibakhshikenari, M.; Lalbakhsh, A.; Khan, M.A.; et al. MIMO Antenna System for Modern 5G Handheld Devices with Healthcare and High Rate Delivery. Sensors 2021, 21, 7415. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.A.; Taher, F.; Alzaidi, M.S.; Hussain, I.; Ghoniem, R.M.; Sree, M.F.A.; Lalbakhsh, A.L. Wideband, High-Gain, and Compact Four-Port MIMO Antenna for Future 5G Devices Operating over Ka-Band Spectrum. Appl. Sci. 2023, 13, 4380. [Google Scholar] [CrossRef]
- Yin, Y.; Ustundag, B.; Kibaroglu, K.; Sayginer, M.; Rebeiz, G.M. Wideband 23.5–29.5-GHz phased arrays for multistandard 5G applications and carrier aggregation. IEEE Trans. Microw. Theory Tech. 2021, 69, 235–247. [Google Scholar] [CrossRef]
- Yoo, I.C.; Cho, D.O.; Byeon, C.W. A Millimeter-wave CMOS Cross-Polarization Leakage Canceller for Dual-Polarized MIMO Systems. IDEC J. Integr. Circuits Syst. 2022, 8, 11–15. [Google Scholar]
- Sadhu, B.; Paidimarri, A.; Lee, W.; Yeck, M.; Ozdag, C.; Tojo, Y. A 24-to-30GHz 256-element dual-polarized 5G phased array with fast beam-switching support for >30,000 beams. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 20–26 February 2022; Volume 65, pp. 436–438. [Google Scholar]
- Jung, J.; Lee, J.; Kang, D.; Kim, J.; Lee, W.; Oh, H.; Park, J.; Kim, K.; Lee, D.; Lee, S.; et al. A 39 GHz 2 × 16-Channel Phased-Array Transceiver IC with Compact, High-Efficiency Doherty Power Amplifiers. In Proceedings of the 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), San Diego, CA, USA, 11–13 June 2023; pp. 273–276. [Google Scholar]
- Li, Z.; Pang, J.; Zhang, Y.; Yamazaki, Y.; Wang, Q.; Luo, P.; Chen, W.; Liao, Y.; Tang, M.; Wang, Y.; et al. A 39-GHz CMOS Bidirectional Doherty Phased-Array Beamformer Using Shared-LUT DPD with Inter-Element Mismatch Compensation Technique for 5G Base Station. IEEE J. Solid-State Circuits 2023, 58, 901–914. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.; Chun, J.; Jeon, L.; Hong, S. A 28-GHz Four-Channel Beamforming Front-End IC with Dual-Vector Variable Gain Phase Shifters for 64-Element Phased Array Antenna Module. IEEE J. Solid-State Circuits 2023, 58, 1142–1159. [Google Scholar] [CrossRef]
- Wang, S.; Liang, T.; Alhamed, A.; Rebeiz, G.M. A 23–46-GHz Fully Planar 8 × 8 Multistandard 5G Phased Array With OFDM 400-MHz 64-QAM Waveforms at 40–44-dBm EIRP. IEEE Trans. Microw. Theory Tech. 2024, 72, 6739–6748. [Google Scholar] [CrossRef]
- Lee, W.; Ozdag, C.; Plouchart, J.-O.; Valdes-Garcia, A.; Sadhu, B. A 24 to 30-GHz Phased Array Transceiver Front End With 2.8 to 3.1-dB RX NF and 22 to 24% TX Peak Efficiency. IEEE J. Solid-State Circuits 2024, 59, 2788–2804. [Google Scholar] [CrossRef]
- Sadhu, B.; Paidimarri, A.; Watanabe, A.O.; Liu, D.; Gu, X.; Baks, C.W.; Tojo, Y.; Fujisaku, Y.; Sousa, I.D.; Yamaguichi, Y.; et al. A Heterogeneously Integrated 256-Element 5G Phased Array: Design, Assembly, Test. IEEE J. Microwaves 2025, 5, 68–83. [Google Scholar] [CrossRef]
- Ball, E.A. Predicting the Performance of a 26 GHz Transconductance Modulated Downconversion Mixer as a Function of LO Drive and DC Bias. Electronics 2022, 11, 2516. [Google Scholar] [CrossRef]
- Byeon, C.W.; Lee, S.H.; Lee, J.H.; Son, J.H. A high-linearity Ka-band CMOS down-conversion mixer. Microw. Opt. Technol. Lett. 2020, 62, 3785–3790. [Google Scholar] [CrossRef]
- Bae, B.; Han, J. 24–40 GHz Gain-Boosted Wideband CMOS Down-Conversion Mixer Employing Body-Effect Control for 5G NR Applications. IEEE Trans. Circuits Syst. II Exp. Briefs 2022, 69, 1034–1038. [Google Scholar] [CrossRef]
- Lee, D.; Lee, M.; Park, B.; Song, E.; Lee, K.; Lee, J.; Han, J.; Kwon, K. 24–40 GHz mmWave Down-Conversion Mixer With Broadband Capacitor-Tuned Coupled Resonators for 5G New Radio Cellular Applications. IEEE Access 2022, 10, 16782–16792. [Google Scholar] [CrossRef]
- Kim, E.; Kim, S.; Kim, G.; Han, J. Dual-Band CMOS Down-Conversion Mixer Adopting Band-Switchable Transformer. IEEE Trans. Circuits Syst. II Exp. Briefs 2023, 70, 3902–3906. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Lan, K.-S. Down-Conversion Mixer Using λ/4-TL-C-based Coupler and BSFB Technique for 28 GHz 5G NR. In Proceedings of the 2023 IEEE/MTT-S International Microwave Symposium (IMS), San Diego, CA, USA, 11–16 June 2023; pp. 1128–1131. [Google Scholar]
- Fu, S.; Zhang, X.; Liu, B.; Shi, C.; Huang, L.; Chen, J.; Zhang, R. A High-Gain and Low-Noise Mixer with Hybrid Gm-Boosting for 5G FR2 Applications. In Proceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023; pp. 1–5. [Google Scholar]
- Chen, Z.; Tian, W.; Huang, S.; Zhang, X.; Zhang, Y.; Li, X.; Lu, M.; Hu, J.; Ouyang, K.; Long, Z. A 19-32.8 GHz Low Power Down-Conversion Mixer with 8.2 dBm IP1dB for 5G Communication. In Proceedings of the 2024 54th European Microwave Conference (EuMC), Paris, France, 24–26 September 2024; pp. 51–54. [Google Scholar]
- Dossanov, A.; Issakov, V. A 1.28mW K-Band Modified Gilbert-Cell Mixer Design in 22nm FDSOI CMOS. In Proceedings of the 2024 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Antonio, TX, USA, 21–24 January 2024; pp. 110–112. [Google Scholar]
- Hu, K.; Ma, K.; Ma, Z.; Wang, K. A Reusable Superheterodyne Dual-Band Down-Conversion Mixer With Hybrid Linearity-Enhanced Technique for 5G Non-Contiguous Multiband NR. IEEE J. Solid-State Circuits 2024, 59, 3392–3405. [Google Scholar] [CrossRef]
- Razavi, B. Design of millimeter-wave CMOS radios: A tutorial. IEEE Trans. Circuits Syst. I 2009, 56, 4–16. [Google Scholar] [CrossRef]
- Byeon, C.W.; Lee, J.H.; Lee, S.H.; Son, J.H. A Ka-band variable-gain amplifier with low OP1dB variation for 5G applications. IEEE Microw. Wireless Compon. Lett. 2019, 29, 722–724. [Google Scholar] [CrossRef]
- Kim, J.-H.; Byeon, C.-W. A 60 GHz Power Amplifier with Neutralization Capacitors and Compensation Inductors. Electronics 2024, 13, 4276. [Google Scholar] [CrossRef]
- Long, J.R. Monolithic transformers for silicon RF IC design. IEEE J. Solid-State Circuits 2000, 35, 1368–1382. [Google Scholar] [CrossRef]
- Kuo, C.; Tsai, Z.; Tsai, J.; Wang, H. A 71–76 GHz CMOS variable gain amplifier using current steering technique. In Proceedings of the 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Atlanta, GA, USA, 15–17 June 2008; pp. 609–612. [Google Scholar]
This Work | [15] | [16] | [17] | [18] | [20] | [21] | [22] | |
---|---|---|---|---|---|---|---|---|
Process | 65 nm CMOS | 65 nm CMOS | 40 nm CMOS | 65 nm CMOS | 90 nm CMOS | 55 nm CMOS | 22 nm CMOS | 55 nm CMOS |
Topology | RF Gm + Switching Core | Gilbert-cell + IF Buffer | RF Gm + Switching Core + IF Buffer | RF Gm + Switching Core + IF Buffer | Gilbert-cell + IF Buffer | Switching Core + IF Buffer | Switching Core | MGTR Gilbert-cell |
Frequency (GHz) | 37–41 | 37–40 | 37–40 | 37–40 | 28 | 19–32.8 | 24–34 | 36–42 |
VDD (V) | 1.0 | 1.0 | 1.1 | 1.0 | 0.5 | 1.6 | 0.8 | 1.2 |
CG (dB) | 5.2–6.4 | 4.8 | −4.1–1.2 | 3.1 | 12.6 | −0.5 | 7.8 | −14.4 |
NF (dB) | <7.3 | 13.5 | 12.4–13 | 11.4 | 10.6 | - | 16 | 16.75 |
LO Power (dBm) | −20 | 5 | −10 | 5 | 0 | 2 | −8 | 9 |
IP1dB (dBm) | −6 | −5.9 | −0.5 | −11 | - | 8.2 | −7 | 9.85 |
IIP3 (dBm) | 3.1 | 0.7 | 4 | −1.95 | 1.5 | - | 4.8 | 20.87 |
LO-RF Isolation (dB) | >46 | - | - | - | 37.1 | 45.3 | >42 | >32.7 |
PDC (mW) | 18 | 10.3 | 28.3 | 6.2 | 4.5 | 15.2 | 1.28 | 26 |
Area (mm2) | 0.51 | 0.4 | 0.654 | 0.3 | 0.529 | 0.63 | 0.243 | 1.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, I.-C.; Byeon, C.-W. A Millimeter-Wave CMOS Down-Conversion Mixer with Transformer-Based Harmonic Suppression. Electronics 2025, 14, 943. https://doi.org/10.3390/electronics14050943
Yoo I-C, Byeon C-W. A Millimeter-Wave CMOS Down-Conversion Mixer with Transformer-Based Harmonic Suppression. Electronics. 2025; 14(5):943. https://doi.org/10.3390/electronics14050943
Chicago/Turabian StyleYoo, In-Cheol, and Chul-Woo Byeon. 2025. "A Millimeter-Wave CMOS Down-Conversion Mixer with Transformer-Based Harmonic Suppression" Electronics 14, no. 5: 943. https://doi.org/10.3390/electronics14050943
APA StyleYoo, I.-C., & Byeon, C.-W. (2025). A Millimeter-Wave CMOS Down-Conversion Mixer with Transformer-Based Harmonic Suppression. Electronics, 14(5), 943. https://doi.org/10.3390/electronics14050943