A Content-Aware Method for Detecting External-Force-Damage Objects on Transmission Lines
Abstract
:1. Introduction
2. Related Work
2.1. Object Detection
2.2. Detection of External-Force Damages on Transmission Lines
2.3. Feature Downsampling
2.4. Feature Upsampling
3. Proposed Method
3.1. Overall Network Structure
3.2. Content-Aware Downsampling Module (CADM)
3.3. Content-Aware Upsampling Module (CAUM)
4. Experiments
4.1. Dataset Collection and Expansion
4.2. Implementation Details and Evaluation Metrics
4.3. Experiments on the Dataset of External-Force Damages on Transmission Lines
4.3.1. Comparison with Popular Object Detector
4.3.2. Ablation Experiments
4.3.3. Visualization Result Presentation
4.4. Experiments on the Public Dataset
4.5. Experiment in Real-World Scenarios
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quimbre, F.; Rueda, I.A.; van Soest, H.; Schmid, J.; Shatz, H.J.; Heath, T.R.; Meidan, M.; Wullner, A.; Deane, P.; Glynn, J.; et al. China’s Global Energy Interconnection: Exploring the Security Implications of a Power Grid Developed and Governed by China; RAND Corporation: Santa Monica, CA, USA, 2023. [Google Scholar]
- Chen, B. Fault Statistics and Analysis of 220-kV and Above Transmission Lines in a Southern Coastal Provincial Power Grid of China. IEEE Open Access J. Power Energy 2020, 7, 122–129. [Google Scholar] [CrossRef]
- Panossian, N.; Elgindy, T. Power System Wildfire Risks and Potential Solutions: A Literature Review & Proposed Metric; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2023. [Google Scholar] [CrossRef]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E.; Andina, D. Deep Learning for Computer Vision: A Brief Review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wang, J.; Shou, W.; Ngo, T.; Sadick, A.-M.; Wang, X. Computer Vision Techniques in Construction: A Critical Review. Arch. Comput. Methods Eng. 2021, 28, 3383–3397. [Google Scholar] [CrossRef]
- Ai, D.; Jiang, G.; Lam, S.-K.; He, P.; Li, C. Computer Vision Framework for Crack Detection of Civil Infrastructure—A Review. Eng. Appl. Artif. Intell. 2023, 117, 105478. [Google Scholar] [CrossRef]
- Jia, H.; Han, Z.; Xu, X.; Wu, P.; Qin, R.; Jin, Y.; Wang, X.; Huang, W. A Background Reasoning Framework for External Force Damage Detection in Distribution Network. In The Proceedings of the 17th Annual Conference of China Electrotechnical Society; Xie, K., Hu, J., Yang, Q., Li, J., Eds.; Springer: Singapore, 2023; pp. 771–778. [Google Scholar]
- Liu, Z.; Wu, G.; He, W.; Fan, F.; Ye, X. Key Target and Defect Detection of High-Voltage Power Transmission Lines with Deep Learning. Int. J. Electr. Power Energy Syst. 2022, 142, 108277. [Google Scholar] [CrossRef]
- Kaur, R.; Singh, S. A Comprehensive Review of Object Detection with Deep Learning. Digit. Signal Process. 2023, 132, 103812. [Google Scholar] [CrossRef]
- Leng, X.; Dai, J.; Gao, Y.; Xu, A.; Jin, G. Overhead Transmission Line Anti-External Force Damage System. IOP Conf. Ser. Earth Environ. Sci. 2022, 1044, 012006. [Google Scholar] [CrossRef]
- Qu, L.; Liu, K.; He, Q.; Tang, J.; Liang, D. External Damage Risk Detection of Transmission Lines Using E-OHEM Enhanced Faster R-CNN. In Proceedings of the Pattern Recognition and Computer Vision; Lai, J.-H., Liu, C.-L., Chen, X., Zhou, J., Tan, T., Zheng, N., Zha, H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 260–271. [Google Scholar]
- Liu, J.; Huang, H.; Zhang, Y.; Lou, J.; He, J. Deep Learning Based External-Force-Damage Detection for Power Transmission Line. J. Phys. Conf. Ser. 2019, 1169, 012032. [Google Scholar] [CrossRef]
- Liu, P.; Song, C.; Li, J.; Yang, S.X.; Chen, X.; Liu, C.; Fu, Q. Detection of Transmission Line against External Force Damage Based on Improved Yolov3. Int. J. Robot. Autom. 2020, 35, 460–468. [Google Scholar] [CrossRef]
- Li, H.; Jiang, F.; Guo, F.; Meng, W. A Real-Time Detection Method of Safety Hazards in Transmission Lines Based on YOLOv5s. In Proceedings of the International Conference on Artificial Intelligence and Intelligent Information Processing (AIIIP 2022), Qingdao, China, 17–29 June 2022; Loskot, P., Ed.; SPIE: Bellingham, WA, USA, 2022; Volume 12456, p. 124561C. [Google Scholar]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Yu, F.; Koltun, V.; Funkhouser, T. Dilated Residual Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)), Honolulu, HI, USA, 21–26 July 2017; pp. 636–644. [Google Scholar]
- Yu, D.; Wang, H.; Chen, P.; Wei, Z. Mixed Pooling for Convolutional Neural Networks. In Proceedings of the Rough Sets and Knowledge Technology: 9th International Conference, RSKT 2014, Shanghai, China, 24–26 October 2014; Proceedings. Springer: Berlin/Heidelberg, Germany, 2023; pp. 364–375. [Google Scholar]
- Saeedan, F.; Weber, N.; Goesele, M.; Roth, S. Detail-Preserving Pooling in Deep Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9108–9116. [Google Scholar]
- Gao, Z.; Wang, L.; Wu, G. LIP: Local Importance-Based Pooling. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3354–3363. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Noh, H.; Hong, S.; Han, B. Learning Deconvolution Network for Semantic Segmentation. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1520–1528. [Google Scholar]
- Wang, J.; Chen, K.; Xu, R.; Liu, Z.; Loy, C.C.; Lin, D. CARAFE: Content-Aware ReAssembly of FEatures. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3007–3016. [Google Scholar]
- Wang, J.; Chen, K.; Xu, R.; Liu, Z.; Loy, C.C.; Lin, D. CARAFE++: Unified Content-Aware ReAssembly of FEatures. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 4674–4687. [Google Scholar] [CrossRef] [PubMed]
- Bruckmaier, M.; Tachtsidis, I.; Phan, P.; Lavie, N. Attention and Capacity Limits in Perception: A Cellular Metabolism Account. J. Neurosci. 2020, 40, 6801–6811. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Newry, UK, 2017; Volume 30. [Google Scholar]
- Wang, C.-Y.; Yeh, I.-H.; Mark Liao, H.-Y. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. In Proceedings of the Computer Vision—ECCV 2024; Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G., Eds.; Springer: Cham, Switzerland, 2025; pp. 1–21. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object Detection via Region-Based Fully Convolutional Networks. In Proceedings of the Advances in Neural Information Processing Systems; Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Newry, UK, 2016; Volume 29. [Google Scholar]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving Into High Quality Object Detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision—ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Kwon, Y.; Michael, K.; Fang, J.; Yifu, Z.; Wong, C.; Montes, D.; et al. Ultralytics/Yolov5: V7. 0-Yolov5 Sota Realtime Instance Segmentation. Zenodo 2022. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Mark Liao, H.-Y.; Wu, Y.-H.; Chen, P.-Y.; Hsieh, J.-W.; Yeh, I.-H. CSPNet: A New Backbone That Can Enhance Learning Capability of CNN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 1571–1580. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Wang, C.-Y.; Liao, H.-Y.M.; Yeh, I.-H. Designing Network Design Strategies through Gradient Path Analysis. arXiv 2022, arXiv:2211.04800. [Google Scholar] [CrossRef]
- Zhao, Y.; Lv, W.; Xu, S.; Wei, J.; Wang, G.; Dang, Q.; Liu, Y.; Chen, J. Detrs Beat Yolos on Real-Time Object Detection. In Proceedin Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 11–15 June 2024. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. Yolov10: Real-Time End-to-End Object Detection. arXiv 2024, arXiv:2405.14458. [Google Scholar] [CrossRef]
- Jocher, G.; Qiu, J.; Chaurasia, A. YOLO11 Release, version 8.3.0; GitHub: San Francisco, CA, USA, 2024.
- Hussain, M. YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection. Machines 2023, 11, 677. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, A.; Girshick, R. Training Region-Based Object Detectors with Online Hard Example Mining. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 761–769. [Google Scholar]
- Siddiqui, Z.A.; Park, U. A Drone Based Transmission Line Components Inspection System with Deep Learning Technique. Energies 2020, 13, 3348. [Google Scholar] [CrossRef]
- Zou, H.; Ye, Z.; Sun, J.; Chen, J.; Yang, Q.; Chai, Y. Research on Detection of Transmission Line Corridor External Force Object Containing Random Feature Targets. Front. Energy Res. 2024, 12, 1295830. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Zou, H.; Yang, J.; Sun, J.; Yang, C.; Luo, Y.; Chen, J. Detection Method of External Damage Hazards in Transmission Line Corridors Based on YOLO-LSDW. Energies 2024, 17, 4483. [Google Scholar] [CrossRef]
- Jocher, G.; Qiu, J.; Chaurasia, A. YOLOv8 Release, version 8.1.0; GitHub: San Francisco, CA, USA, 2023.
- Li, J.; Zheng, H.; Cui, Z.; Huang, Z.; Liang, Y.; Li, P.; Liu, P. Intelligent Detection Method with 3D Ranging for External Force Damage Monitoring of Power Transmission Lines. Appl. Energy 2024, 374, 123983. [Google Scholar] [CrossRef]
- Stergiou, A.; Poppe, R.; Kalliatakis, G. Refining Activation Downsampling with SoftPool. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 10337–10346. [Google Scholar]
- Jaderberg, M.; Simonyan, K.; Zisserman, A. Spatial Transformer Networks. In Proceedings of the Advances in Neural Information Processing Systems; Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.: Newry, UK, 2015; Volume 28. [Google Scholar]
- Graham, B. Fractional Max-Pooling. arXiv 2014, arXiv:1412.6071. [Google Scholar] [CrossRef]
- Zhai, S.; Wu, H.; Kumar, A.; Cheng, Y.; Lu, Y.; Zhang, Z.; Feris, R. S3Pool: Pooling with Stochastic Spatial Sampling. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4003–4011. [Google Scholar]
- Zeiler, M.D.; Fergus, R. Stochastic Pooling for Regularization of Deep Convolutional Neural Networks. arXiv 2013, arXiv:1301.3557. [Google Scholar] [CrossRef]
- Ma, J.; Gu, X. Scene Image Retrieval with Siamese Spatial Attention Pooling. Neurocomputing 2020, 412, 252–261. [Google Scholar] [CrossRef]
- Hesse, R.; Schaub-Meyer, S.; Roth, S. Content-Adaptive Downsampling in Convolutional Neural Networks. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Vancouver, BC, Canada, 17–24 June 2023; pp. 4544–4553. [Google Scholar]
- Mazzini, D. Guided Upsampling Network for Real-Time Semantic Segmentation. arXiv 2018, arXiv:1807.07466. [Google Scholar] [CrossRef]
- Gao, H.; Yuan, H.; Wang, Z.; Ji, S. Pixel Transposed Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 1218–1227. [Google Scholar] [CrossRef]
- Lu, H.; Liu, W.; Fu, H.; Cao, Z. FADE: Fusing the Assets of Decoder and Encoder for Task-Agnostic Upsampling. In Proceedings of the Computer Vision—ECCV 2022; Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T., Eds.; Springer: Cham, Switzerland, 2022; pp. 231–247. [Google Scholar]
- Lu, H.; Liu, W.; Ye, Z.; Fu, H.; Liu, Y.; Cao, Z. SAPA: Similarity-Aware Point Affiliation for Feature Upsampling. In Proceedings of the Advances in Neural Information Processing Systems; Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A., Eds.; Curran Associates, Inc.: Newry, UK, 2022; Volume 35, pp. 20889–20901. [Google Scholar]
- Liu, W.; Lu, H.; Fu, H.; Cao, Z. Learning to Upsample by Learning to Sample. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–3 October 2023; pp. 6004–6014. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the Computer Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–19. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results; University of Oxford: Oxford, UK, 2007. [Google Scholar]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results; University of Oxford: Oxford, UK, 2012. [Google Scholar]
- Fu, C.-Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. Dssd: Deconvolutional Single Shot Detector. arXiv 2017, arXiv:1701.06659. [Google Scholar] [CrossRef]
Dataset | Category | Object Number | Image Number |
---|---|---|---|
Dataset of external-force damages on transmission lines | construction machinery | 2475 | 7035 |
crane | 2211 | ||
tower crane | 2754 | ||
wildfire | 4338 |
Hyperparameter | Value |
---|---|
epochs | 300 |
optimizer | SGD |
weight decay | 5 × 10−4 |
momentum | 0.937 |
batch size | 16 |
initial learning rate | 1 × 10−2 |
finish learning rate | 1 × 10−4 |
learning rate decay | linear |
Dataset | Training Set | Validation Set | Test Set |
---|---|---|---|
Dataset of external-force damages on transmission lines | 4221 | 1407 | 1407 |
Public dataset | 16,551 | 4952 |
Method | Backbone | AP/% | mAP/% | FLOPs/G | FPS | |||
---|---|---|---|---|---|---|---|---|
Construction Machinery | Crane | Tower Crane | Wildfire | |||||
Faster-RCNN [32] | VGG16 | 86.50 | 89.83 | 73.61 | 85.15 | 83.77 | 368.24 | 33.67 |
Faster-RCNN [32] | ResNet-50 | 83.83 | 87.69 | 74.00 | 85.27 | 82.70 | 251.43 | 26.06 |
SSD300 [36] | VGG16 | 71.35 | 81.97 | 74.29 | 85.70 | 78.33 | 116.20 | 80.87 |
YOLOv3 [38] | Darknet-53 | 92.12 | 93.52 | 86.92 | 89.85 | 90.60 | 193.92 | 60.61 |
YOLOv4 [39] | CSP-Darknet53 | 96.26 | 94.43 | 89.56 | 88.34 | 92.14 | 119.95 | 39.64 |
YOLOv5-L [40] | Modified CSP v5 | 96.76 | 95.13 | 89.59 | 90.29 | 92.94 | 109.13 | 45.04 |
YOLOv7 [42] | ELAN | 96.66 | 94.08 | 91.08 | 90.40 | 93.05 | 104.70 | 44.62 |
RT-DETR-L [44] | HGNetv2 | 95.26 | 95.47 | 94.83 | 92.18 | 94.43 | 110.08 | 38.56 |
YOLOv10-L [45] | Enhanced CSPNet | 95.04 | 96.98 | 95.58 | 91.04 | 94.66 | 120.34 | 39.05 |
YOLO11-L [46] | Enhanced CSPNet | 96.33 | 96.39 | 94.98 | 92.56 | 95.06 | 86.90 | 39.26 |
GELAN-C [29] | GELAN | 96.39 | 96.22 | 94.04 | 91.70 | 94.59 | 102.11 | 39.37 |
Ours | GELAN | 96.99 | 97.84 | 96.41 | 94.78 | 96.50 | 116.10 | 37.78 |
GELAN-C | Param./M | AP/% | mAP/% | ||||
---|---|---|---|---|---|---|---|
Construction Machinery | Crane | Tower Crane | Wildfire | ||||
25.44 | 96.39 | 96.22 | 94.04 | 91.70 | 94.59 | ||
+CADM | 2 | 30.03 | 98.15 | 96.51 | 93.82 | 92.59 | 95.26 |
+CADM | 4 | 29.57 | 97.97 | 97.19 | 94.77 | 91.26 | 95.30 |
+CADM | 8 | 29.34 | 98.35 | 97.26 | 94.99 | 91.94 | 95.63 |
+CADM | 16 | 29.23 | 97.83 | 96.71 | 95.68 | 91.48 | 95.43 |
GELAN-C | Param./M | AP/% | mAP/% | ||||
---|---|---|---|---|---|---|---|
Construction Machinery | Crane | Tower Crane | Wildfire | ||||
25.44 | 96.39 | 96.22 | 94.04 | 91.70 | 94.59 | ||
+CAUM | 2 | 26.09 | 98.62 | 96.96 | 94.45 | 91.59 | 95.40 |
+CAUM | 4 | 25.83 | 98.18 | 96.84 | 94.54 | 92.39 | 95.49 |
+CAUM | 8 | 25.70 | 98.78 | 97.29 | 94.35 | 92.33 | 95.69 |
+CAUM | 16 | 25.63 | 98.30 | 97.28 | 94.39 | 92.29 | 95.56 |
Downsampler | Param./M | AP/% | mAP/% | APS/% | APM/% | APL/% | FPS | |||
---|---|---|---|---|---|---|---|---|---|---|
Construction Machinery | Crane | Tower Crane | Wildfire | |||||||
ADown [29] | 25.44 | 96.39 | 96.22 | 94.04 | 91.70 | 94.59 | 50.32 | 70.61 | 79.47 | 39.37 |
S-Conv [17] | 31.40 | 98.34 | 96.32 | 93.55 | 92.44 | 95.16 | 50.58 | 72.49 | 81.03 | 38.75 |
P-Unshuffle [23] | 26.82 | 97.81 | 96.52 | 94.36 | 92.38 | 95.27 | 51.41 | 72.43 | 79.63 | 36.29 |
DPP [20] | 31.90 | 95.83 | 92.50 | 93.76 | 89.32 | 92.85 | 48.35 | 68.69 | 77.51 | 36.82 |
LIP [21] | 30.38 | 97.50 | 96.24 | 93.12 | 90.36 | 94.30 | 50.12 | 69.45 | 78.67 | 33.08 |
CAREFE++ [26] | 31.92 | 96.74 | 95.91 | 93.33 | 92.20 | 94.54 | 50.41 | 70.76 | 79.12 | 38.55 |
CADM (ours) | 29.34 | 98.35 | 97.25 | 94.99 | 91.94 | 95.63 | 58.04 | 74.79 | 81.53 | 37.95 |
Upsampler | Param./M | AP/% | mAP/% | APS/% | APM/% | APL/% | FPS | |||
---|---|---|---|---|---|---|---|---|---|---|
Construction Machinery | Crane | Tower Crane | Wildfire | |||||||
Nearest | 25.44 | 96.39 | 96.22 | 94.04 | 91.70 | 94.59 | 50.32 | 70.61 | 79.47 | 39.37 |
Deconv [24] | 33.83 | 98.71 | 97.14 | 93.59 | 92.36 | 95.45 | 55.68 | 73.57 | 80.45 | 37.03 |
P-Shuffle [23] | 25.57 | 98.70 | 97.61 | 93.40 | 92.02 | 95.43 | 53.62 | 73.57 | 80.71 | 36.23 |
CAREFE++ [26] | 26.13 | 97.26 | 96.61 | 93.73 | 92.05 | 94.91 | 50.07 | 71.25 | 80.65 | 35.85 |
SAPA-B [65] | 25.74 | 97.52 | 96.97 | 93.26 | 91.83 | 94.90 | 52.34 | 74.03 | 80.51 | 34.09 |
DySample [66] | 25.87 | 98.16 | 96.60 | 94.03 | 91.60 | 95.10 | 56.53 | 73.06 | 80.60 | 36.44 |
CAUM (ours) | 25.70 | 98.78 | 97.29 | 94.35 | 92.33 | 95.69 | 59.50 | 74.34 | 81.11 | 38.74 |
YOLOv7-L [42] | CADM | CAUM | Param./M | AP/% | mAP/% | |||
---|---|---|---|---|---|---|---|---|
Construction Machinery | Crane | Tower Crane | Wildfire | |||||
ELAN-PANet | 37.21 | 96.66 | 94.08 | 91.08 | 90.40 | 93.05 | ||
ELAN-PANet | √ | 41.21 | 97.53 | 96.25 | 92.11 | 91.54 | 94.36 | |
ELAN-PANet | √ | 37.25 | 95.26 | 95.47 | 94.83 | 92.18 | 94.43 | |
ELAN-PANet | √ | √ | 41.25 | 97.02 | 96.46 | 94.71 | 94.03 | 95.55 |
YOLOv10-L [45] | CADM | CAUM | Param./M | AP/% | mAP/% | |||
---|---|---|---|---|---|---|---|---|
Construction Machinery | Crane | Tower Crane | Wildfire | |||||
Enhanced CSPNet-PANet | 25.72 | 95.04 | 96.98 | 95.58 | 91.04 | 94.66 | ||
Enhanced CSPNet-PANet | √ | 30.70 | 96.49 | 97.59 | 96.51 | 91.90 | 95.62 | |
Enhanced CSPNet-PANet | √ | 25.91 | 96.53 | 97.71 | 96.50 | 91.53 | 95.57 | |
Enhanced CSPNet-PANet | √ | √ | 30.84 | 96.49 | 98.13 | 96.97 | 93.54 | 96.28 |
CADM | CAUM | Param./M | AP/% | mAP/% | FLOPs/G | FPS | |||
---|---|---|---|---|---|---|---|---|---|
Construction Machinery | Crane | Tower Crane | Wildfire | ||||||
25.44 | 96.39 | 96.22 | 94.04 | 91.70 | 94.59 | 102.11 | 39.37 | ||
√ | 29.34 | 98.35 | 97.25 | 94.99 | 91.94 | 95.63 | 114.70 | 37.95 | |
√ | 25.70 | 98.78 | 97.29 | 94.35 | 92.33 | 95.69 | 104.49 | 38.74 | |
√ | √ | 29.61 | 96.99 | 97.84 | 96.41 | 94.78 | 96.50 | 116.10 | 37.78 |
Method | Backbone | Input Size | Param./M | mAP/% | FPS |
---|---|---|---|---|---|
Faster-RCNN [32] | VGG16 | 1000 × 600 | 137.09 | 73.2 | 28.13 |
Faster-RCNN [17] | Resnet-101 | 1000 × 600 | 41.53 | 76.4 | 18.11 |
R-FCN [33] | Resnet-50 | 1000 × 600 | - | 78.7 | 30.43 |
R-FCN [33] | Resnet-101 | 1000 × 600 | - | 80.5 | 17.35 |
SSD300 [36] | VGG16 | 300 × 300 | 26.28 | 74.3 | 73.74 |
SSD512 [36] | VGG16 | 512 × 512 | - | 76.8 | 50.23 |
DSSD321 [72] | Resnet-101 | 321 × 321 | - | 78.6 | 15.45 |
DSSD513 [72] | Resnet-101 | 513 × 513 | - | 81.5 | 8.62 |
YOLOv3 [38] | Darknet-53 | 416 × 416 | 61.63 | 78.43 | 52.61 |
YOLOv4 [39] | CSP-Darknet53 | 416 × 416 | 64.36 | 85.81 | 37.83 |
YOLOv5-L [40] | Modified CSP v5 | 640 × 640 | 46.56 | 88.20 | 36.61 |
YOLOv7 [42] | ELAN | 640 × 640 | 37.21 | 89.59 | 37.17 |
RT-DETR-L [44] | HGNetv2 | 640 × 640 | 32.02 | 88.64 | 36.12 |
YOLOv10-L [45] | Enhanced CSPNet | 640 × 640 | 25.75 | 89.55 | 37.55 |
YOLO11-L [46] | Enhanced CSPNet | 640 × 640 | 25.32 | 89.80 | 37.62 |
GELAN-C | GELAN | 640 × 640 | 25.45 | 90.28 | 37.87 |
GELAN-C + CADM | GELAN | 640 × 640 | 29.35 | 90.65 | 36.02 |
GELAN-C + CAUM | GELAN | 640 × 640 | 25.71 | 90.58 | 37.51 |
Ours | GELAN | 640 × 640 | 29.62 | 91.20 | 35.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Chen, M.; Wu, B.; Wu, M.; Wang, J.; Wang, J.; Hu, H.; Ye, Y. A Content-Aware Method for Detecting External-Force-Damage Objects on Transmission Lines. Electronics 2025, 14, 715. https://doi.org/10.3390/electronics14040715
Liu M, Chen M, Wu B, Wu M, Wang J, Wang J, Hu H, Ye Y. A Content-Aware Method for Detecting External-Force-Damage Objects on Transmission Lines. Electronics. 2025; 14(4):715. https://doi.org/10.3390/electronics14040715
Chicago/Turabian StyleLiu, Min, Ming Chen, Benhui Wu, Minghu Wu, Juan Wang, Jianda Wang, Hengbo Hu, and Yonggang Ye. 2025. "A Content-Aware Method for Detecting External-Force-Damage Objects on Transmission Lines" Electronics 14, no. 4: 715. https://doi.org/10.3390/electronics14040715
APA StyleLiu, M., Chen, M., Wu, B., Wu, M., Wang, J., Wang, J., Hu, H., & Ye, Y. (2025). A Content-Aware Method for Detecting External-Force-Damage Objects on Transmission Lines. Electronics, 14(4), 715. https://doi.org/10.3390/electronics14040715