On-Chip Yagi Antenna Design at 38 GHz with 0.18 μm CMOS Techniques
Abstract
1. Introduction
2. On-Chip Antenna Design
2.1. Yagi Antenna-on-Chip
2.2. Bonding Line Design
3. Measurement and Discussion
3.1. Reflection Coefficient Measurement
3.2. Radiation Direction Measurement
- (1)
- Bonding wire variations, including length, bending angle, and soldering position.
- (2)
- Substrate-related effects, such as dielectric losses and coupling between the PCB carrier and the CMOS chip.
- (3)
- Measurement setup limitations, including the near-field effects of the probe station.
3.3. Literature Comparison and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shehab, M.J.; Kassem, I.; Kutty, A.A.; Kucukvar, M.; Onat, N.; Khattab, T. 5G Networks Towards Smart and Sustainable Cities: A Review of Recent Developments, Applications and Future Perspectives. IEEE Access 2021, 10, 2987–3006. [Google Scholar] [CrossRef]
- Khanh, N.N.M.; Sasaki, M.; Asada, K. A millimeter-wave resistor-less pulse generator with a new dipole-patch antenna in 65-nm CMOS. Analog Integr. Circuits Signal Process. 2012, 73, 789–799. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.-X.; Liu, X.; Xiao, S. An Integrated On-Chip Implantable Antenna in 0.18-μm CMOS Technology for Biomedical Applications. IEEE Trans. Antennas Propag. 2016, 64, 1167–1172. [Google Scholar] [CrossRef]
- Karim, R.; Iftikhar, A.; Ramzan, R. Performance-Issues-Mitigation-Techniques for On-Chip-Antennas–Recent Developments in RF, MM-Wave, and THz Bands with Future Directions. IEEE Access 2020, 8, 219577–219610. [Google Scholar] [CrossRef]
- Ray, A.; De, A.; Bhattacharyya, T.K. A package-cognizant CMOS on-chip antenna for 2.4 GHz free-space and implantable applications. IEEE Trans. Antennas Propag. 2021, 69, 7355–7363. [Google Scholar] [CrossRef]
- Pietron, D.; Borejko, T.; Pleskacz, W.A. Dual-Band Low-Noise Amplifier for GNSS Applications. Electronics 2024, 13, 4130. [Google Scholar] [CrossRef]
- White, K.A.; Crocker, M.A.; Kim, B.N. High-Speed 1024-Pixel CMOS Electrochemical Imaging Sensor with 40,000 Frames per Second for Dopamine and Hydrogen Peroxide Imaging. Electronics 2025, 14, 3207. [Google Scholar] [CrossRef]
- Ahmad, W.A.; Kucharski, M.; Di Serio, A.; Ng, H.J.; Waldschmidt, C.; Kissinger, D. Planar highly efficient high-gain 165 GHz on-chip antennas for integrated radar sensors. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2429–2433. [Google Scholar] [CrossRef]
- Hedayati, M.K.; Abdipour, A.; Shirazi, R.S.; Ammann, M.J.; John, M.; Cetintepe, C.; Staszewski, R.B. Challenges in on-chip antenna design and integration with RF receiver front-end circuitry in nanoscale CMOS for 5G communication systems. IEEE Access 2019, 7, 43190–43204. [Google Scholar] [CrossRef]
- Oh, I.-Y. A Dual Polarization 3-D Beamforming AiP. Electronics 2022, 11, 3132. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, J.; Hong, A.; Yi, X.; Qin, P.; Zhu, H.; Che, W.; Xue, Q. Enhanced Radiation in a Millimeter-Wave Circularly Polarized On-Chip Bowtie Antenna Using a Low-Cost PCB Package. Electronics 2025, 14, 642. [Google Scholar] [CrossRef]
- Zhang, H.; Shamim, A. Gain enhancement of millimeter-wave on-chip antenna through an additively manufactured functional package. IEEE Trans. Antennas Propag. 2020, 68, 4344–4353. [Google Scholar] [CrossRef]
- Khan, M.S.; Tahir, F.A.; Meredov, A.; Shamim, A.; Cheema, H.M. A W-band EBG-backed double-rhomboid bowtie-slot on-chip antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1046–1050. [Google Scholar] [CrossRef]
- Honari, M.M.; Mousavi, P.; Sarabandi, K. Miniaturized-element frequency selective surface metamaterials: A solution to enhance radiation of RFICs. IEEE Trans. Antennas Propag. 2019, 68, 1962–1972. [Google Scholar] [CrossRef]
- Khiabani, N.; Chiang, C.-W.; Liu, N.-C.; Kuan, Y.-C.; Wu, C.-T.M. An ultrawide Ku-to W-band array antenna package using flip-chipped silicon integrated passive device with multilayer PCB technology. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 861–864. [Google Scholar] [CrossRef]
- Kong, S.; Shum, K.M.; Yang, C.; Gao, L.; Chan, C.H. Wide impedance-bandwidth and gain-bandwidth terahertz on-chip antenna with chip-integrated dielectric resonator. IEEE Trans. Antennas Propag. 2021, 69, 4269–4278. [Google Scholar] [CrossRef]
- Li, C.-H.; Chiu, T.-Y. 340-GHz low-cost and high-gain on-chip higher order mode dielectric resonator antenna for THz applications. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 284–294. [Google Scholar] [CrossRef]
- Gutierrez, F.; Agarwal, S.; Parrish, K.; Rappaport, T.S. On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems. IEEE J. Sel. Areas Commun. 2009, 27, 1367–1378. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Sun, M.; Guo, L. On-chip antennas for 60-GHz radios in silicon technology. IEEE Trans. Electron Devices 2005, 52, 1664–1668. [Google Scholar] [CrossRef]
- Sultan, K.S.; Abdallah, E.A.; El Hennawy, H. A multiple-input-multiple-output on-chip Quasi-Yagi-Uda antenna for multigigabit communications: Preliminary study. Eng. Rep. 2020, 2, e12133. [Google Scholar] [CrossRef]
- Levin, B. Antenna Engineering: Theory and Problems; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Stutzman, W.L.; Thiele, G.A. Antenna Theory and Design; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Chiang, C.-W.; Huang, R.; Liang, C.-J.; Wu, C.-T.M.; Kuan, Y.-C. A 3-D pillar-based electromagnetic interference shield for W-band antenna on silicon using wire bonding technology. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 2238–2241. [Google Scholar] [CrossRef]
- Bogdan, G.; Sobolewski, J.; Bajurko, P.; Yashchyshyn, Y.; Oklej, J.; Ostaszewski, D. A wire-bonded patch antenna for millimeter wave applications. Electronics 2023, 12, 632. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering: Theory and Techniques; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Burasa, P.; Djerafi, T.; Constantin, N.G.; Wu, K. On-chip dual-band rectangular slot antenna for single-chip millimeter-wave identification tag in standard CMOS technology. IEEE Trans. Antennas Propag. 2017, 65, 3858–3868. [Google Scholar] [CrossRef]
- Singh, H.; Mandal, S.; Mandal, S.K.; Karmakar, A. Design of miniaturised meandered loop on-chip antenna with enhanced gain using shorted partially shield layer for communication at 9.45 GHz. IET Microw. Antennas Propag. 2019, 13, 1009–1016. [Google Scholar] [CrossRef]
- Burasa, P.; Djerafi, T.; Wu, K. A 28 GHz and 60 GHz dual-band on-chip antenna for 5G-compatible IoT-served sensors in standard CMOS process. IEEE Trans. Antennas Propag. 2020, 69, 2940–2945. [Google Scholar] [CrossRef]















| Ref. | CMOS (μm) | fc (GHz) | Bandwidth (GHz) | Efficiency | Size (mm2) | Gain (dBi) | Pattern Measurement |
|---|---|---|---|---|---|---|---|
| Proposed | 0.18 | 38 | 36.6–39.8 | 13% | 0.53 × 0.78 | −7.5 | Yes |
| [5] | 0.18 | 2.4 | - | - | 1 × 1 | −25.9 | Yes |
| [9] | 0.028 | 33 | 28.6–36 | 37.3% | 0.66 × 0.85 | −1.8 | Yes |
| [20] | 0.18 | 60 | - | 45% | 0.631 × 0.46 | 0.35 | No |
| [26] | 0.065 | 24 | - | 41% | 2.5 × 2.5 | −1 | Yes |
| [27] | 0.18 | 9.45 | - | - | 2 × 2.1 | −29 | No |
| [28] | 0.065 | 28/60 | - | - | 0.25 × 0.3 | −10/0 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-W.; Chung, M.-A.; Chuang, B.-R. On-Chip Yagi Antenna Design at 38 GHz with 0.18 μm CMOS Techniques. Electronics 2025, 14, 4373. https://doi.org/10.3390/electronics14224373
Lin C-W, Chung M-A, Chuang B-R. On-Chip Yagi Antenna Design at 38 GHz with 0.18 μm CMOS Techniques. Electronics. 2025; 14(22):4373. https://doi.org/10.3390/electronics14224373
Chicago/Turabian StyleLin, Chia-Wei, Ming-An Chung, and Bing-Ruei Chuang. 2025. "On-Chip Yagi Antenna Design at 38 GHz with 0.18 μm CMOS Techniques" Electronics 14, no. 22: 4373. https://doi.org/10.3390/electronics14224373
APA StyleLin, C.-W., Chung, M.-A., & Chuang, B.-R. (2025). On-Chip Yagi Antenna Design at 38 GHz with 0.18 μm CMOS Techniques. Electronics, 14(22), 4373. https://doi.org/10.3390/electronics14224373

