Investigation of Gliding Walled Multilayer Waveguides
Abstract
:1. Introduction
2. Walled Multilayer Waveguide Transmission Line Configuration and Design
2.1. D-Band Gliding Walled Multilayer Straight Waveguide
2.2. W-Band Gliding Walled Multilayer Straight Waveguide
2.3. W-Band Gliding Walled Multilayer Waveguide with Double 90° Bend
3. Simulation and Fabrication Results
3.1. Simulation Results
3.1.1. D-Band Gliding Walled Multilayer Straight Waveguide
3.1.2. W-Band Gliding Walled Multilayer Straight Waveguide
3.1.3. W-Band Gliding Walled Multilayer Waveguide with Double 90° Bend
3.2. Sensitivity and Tolerance Analysis
- (a)
- W-band straight GW-MLW
- (b)
- W-band double-bend GW-MLW
3.3. Fabrication and Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajo-Iglesias, E.; Ferrando-Rocher, M.; Zaman, A.U. Gap waveguide technology for millimeter-wave antenna systems. IEEE Commun. Mag. 2018, 56, 14–20. [Google Scholar] [CrossRef]
- Vosoogh, A.; Sharifi Sorkherizi, M.; Vassilev, V.; Zaman, A.U.; He, Z.S.; Yang, J.; Kishk, A.A.; Zirath, H. Compact Integrated Full-Duplex Gap Waveguide-Based Radio Front End for Multi-Gbit/s Point-to-Point Backhaul Links at E-Band. IEEE Trans. Microw. Theory Tech. 2019, 67, 3783–3797. [Google Scholar] [CrossRef]
- Vosoogh, A.; Kildal, P.S.; Vassilev, V. Wideband and High-Gain Corporate-Fed Gap Waveguide Slot Array Antenna with ETSI Class II Radiation Pattern in V-Band. IEEE Trans. Antennas Propag. 2017, 65, 1823–1831. [Google Scholar] [CrossRef]
- Kildal, P.S.; Alfonso, E.; Valero-Nogueira, A.; Rajo-Iglesias, E. Local metamaterial-based waveguides in gaps between parallel metal plates. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 84–87. [Google Scholar] [CrossRef]
- Sun, D.; Chen, X.; Deng, J.Y.; Guo, L.X.; Cui, W.; Yin, K.; Chen, Z.; Yao, C.; Huang, F. Gap Waveguide with Interdigital-Pin Bed of Nails for High-Frequency Applications. IEEE Trans. Microw. Theory Tech. 2019, 67, 2640–2648. [Google Scholar] [CrossRef]
- Ebrahimpouri, M.; Quevedo-Teruel, O.; Rajo-Iglesias, E. Design guidelines for gap waveguide technology based on glide-symmetric holey structures. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 542–544. [Google Scholar] [CrossRef]
- Ebrahimpouri, M.; Rajo-Iglesias, E.; Sipus, Z.; Quevedo-Teruel, O. Cost-Effective Gap Waveguide Technology Based on Glide-Symmetric Holey EBG Structures. IEEE Trans. Microw. Theory Tech. 2018, 66, 927–934. [Google Scholar] [CrossRef]
- Santiago, D.; Tamayo-Domínguez, A.; Laso, M.A.G.; Lopetegi, T.; Fernández-González, J.M.; Martínez, R.; Arregui, I. Robust Design of 3D-Printed W-Band Bandpass Filters Using Gap Waveguide Technology. J. Infrared Millim. Terahertz Waves 2023, 44, 98–109. [Google Scholar] [CrossRef]
- Wu, Y.; Tomura, T.; Hirokawa, J.; Zhang, M. A Wideband Full-Metal Sidewall-Loaded Magnetoelectric Dipole Array Based on Combined Ridge and Groove Gap Waveguide in the Q Band. IEEE Trans. Antennas Propag. 2023, 71, 6156–6161. [Google Scholar] [CrossRef]
- Haghparast, A.H.; Rezaei, P. High performance H-plane horn antenna using groove gap waveguide technology. AEU—Int. J. Electron. Commun. 2023, 163, 154620. [Google Scholar] [CrossRef]
- Perez-Quintana, D.; Bilitos, C.; Ruiz-Garcia, J.; Ederra, I.; Teniente-Vallinas, J.; Gonzalez-Ovejero, D.; Beruete, M. Fully Metallic Luneburg Metalens Antenna in Gap Waveguide Technology at V-Band. IEEE Trans. Antennas Propag. 2023, 71, 2930–2937. [Google Scholar] [CrossRef]
- Trinh, T.V.; Park, J.; Song, C.M.; Song, S.; Hwang, K.C. applied sciences A 3-D Metal-Printed Dual-Polarized Ridged Waveguide Slot Array Antenna for X-Band Applications. Appl. Sci. 2023, 13, 4996. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, B. A Metallic 3D Printed Modularized Dual-Stopband AMC-Loaded Waveguide Slot Filtering Antenna. Prog. Electromagn. Res. B 2023, 100, 19–38. [Google Scholar] [CrossRef]
- Mahdavi, P.; Hosseini, S.E.; Shojaadini, P. Broadband Three-Section Branch-Line Coupler Realized by Ridge Gap Waveguide Technology from 12 to 20 GHz. IEEE Access 2023, 11, 46903–46914. [Google Scholar] [CrossRef]
- Hu, L.; Cheng, X.; Li, S.; Wang, C.; Yu, J.; Yao, Y. A High Isolation Duplex Antenna for 79 GHz FMCW Radar System. In Proceedings of the 2023 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Beijing, China, 14–16 June 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, N. Multimode Resonator Technique in Antennas: A Review. Electromagn. Sci. 2023, 1, 0010041. [Google Scholar] [CrossRef]
- Escobar, A.C.; Mesa, F.; Quevedo-Teruel, O.; Baena, J.D. Homogenization of Periodic Structures Using the Multimodal Transfer Matrix Method. IEEE Trans. Antennas Propag. 2023, 71, 4976–4989. [Google Scholar] [CrossRef]
- Peng, S.; Pu, Y.; Jiang, Z.; Chen, X.; Wu, Z.; Luo, Y. A Simple Way to Enhance the Isolation of Ridge Gap Waveguide T-Junction, for Application to Millimeter-Wave Feeder Networks. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 975–978. [Google Scholar] [CrossRef]
- Gonzalez-Gallardo, D.; Algaba-Brazalez, A.; Manholm, L.; Johansson, M.; Quevedo-Teruel, O. Hybrid Glide-Symmetric Unit Cell for Leakage Reduction in Millimeter-Wave PCB Interconnections to Waveguide Components. IEEE Trans. Microw. Theory Tech. 2022, 70, 2631–2641. [Google Scholar] [CrossRef]
- Alex-Amor, A.; Valerio, G.; Ghasemifard, F.; Mesa, F.; Padilla, P.; Fernández-González, J.M.; Quevedo-Teruel, O. Wave Propagation in periodic metallic structures with equilateral triangular holes. Appl. Sci. 2020, 10, 1600. [Google Scholar] [CrossRef]
- Alex-Amor, A.; Ghasemifard, F.; Valerio, G.; Ebrahimpouri, M.; Padilla, P.; Gonzalez, J.M.F.; Quevedo-Teruel, O. Glide-Symmetric Metallic Structures with Elliptical Holes for Lens Compression. IEEE Trans. Microw. Theory Tech. 2020, 68, 4236–4248. [Google Scholar] [CrossRef]
- Blednykh, A.; Kaljuzhny, V.; Lalayan, D.K.M.; Lyapin, A.; Milovanov, O. HOM Damping in a TESLA Cavity Model Using a Rectangular Waveguide. Available online: https://flash.desy.de/reports_publications/tesla_reports/tesla_reports_2000/e1448/infoboxContent1685/tesla2000-34.pdf (accessed on 28 January 2024).
- Vosoogh, A.; Zirath, H.; He, Z.S. Novel air-filled waveguide transmission line based on multilayer thin metal plates. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 282–290. [Google Scholar] [CrossRef]
- Tan, W.; He, Y.; Luo, H.; Zhao, G.; Sun, H. Low-Cost Gap Waveguide Technology Using Shallow Grooves and Glide-Symmetric Semicircular-Holes EBG Structures. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 2901–2905. [Google Scholar] [CrossRef]
- D’Auria, M.; Otter, W.J.; Hazell, J.; Gillatt, B.T.W.; Long-Collins, C.; Ridler, N.M.; Lucyszyn, S. 3-D Printed Metal-Pipe Rectangular Waveguides. IEEE Trans. Compon. Packag. Manuf. Technol. 2015, 5, 1339–1349. [Google Scholar] [CrossRef]
- Campion, J.; Glubokov, O.; Gomez, A.; Krivovitca, A.; Shah, U.; Bolander, L.; Li, Y.; Oberhammer, J. An Ultra Low-Loss Silicon-Micromachined Waveguide Filter for D-Band Telecommunication Applications. In Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium-IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 583–586. [Google Scholar] [CrossRef]
- Campion, J.; Li, Y.; Zirath, H.; Oberhammer, J.; Hassona, A.; He, Z.S.; Beuerle, B.; Gomez-Torrent, A.; Shah, U.; Vecchiattini, S.; et al. Toward Industrial Exploitation of THz Frequencies: Integration of SiGe MMICs in Silicon-Micromachined Waveguide Systems. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 624–636. [Google Scholar] [CrossRef]
- Sanchez-Olivares, P.; Ferreras, M.; Garcia-Marin, E.; Polo-Lopez, L.; Tamayo-Dominguez, A.; Corcoles, J.; Fernandez-Gonzalez, J.M.; Masa-Campos, J.L.; Montejo-Garai, J.R.; Rebollar-Machain, J.M.; et al. Manufacturing Guidelines for W-Band Full-Metal Waveguide Devices: Selecting the most appropriate technology. IEEE Antennas Propag. Mag. 2023, 65, 48–62. [Google Scholar] [CrossRef]
- Crepeau, P.J.; McIsaac, P.R. Consequences of Symmetry in Periodic Structures. Proc. IEEE 1964, 52, 33–43. [Google Scholar] [CrossRef]
- Quevedo-Teruel, O.; Valerio, G.; Sipus, Z.; Rajo-Iglesias, E. Periodic structures with higher symmetries. IEEE Microw. Mag. 2020, 21, 36–49. [Google Scholar] [CrossRef]
- Vosoogh, A.; Uz Zaman, A.; Vassilev, V.; Yang, J. Zero-gap waveguide: A parallel plate waveguide with flexible mechanical assembly for mm-wave antenna applications. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 2052–2059. [Google Scholar] [CrossRef]
- Halvaei, B.; Ghalibafan, J.; Rezaee, M. A multi-hole groove gap waveguide directional coupler based on glide-symmetric holey EBG for e-band application. In Proceedings of the 2020 28th Iranian Conference on Electrical Engineering ICEE 2020, Tabriz, Iran, 4–6 August 2020; pp. 5–9. [Google Scholar] [CrossRef]
- Herrán, L.F.; Algaba Brazalez, A.; Rajo-Iglesias, E. Ka-band planar slotted waveguide array based on groove gap waveguide technology with a glide-symmetric holey metasurface. Sci. Rep. 2021, 11, 8697. [Google Scholar] [CrossRef]
- Lee, S.; Bang, J.; Ahn, B. Design Formulas for Compact Low-Reflection Waveguide Bends. J. Korean Soc. Inf. Technol. 2010, 9, 89–94. [Google Scholar]
- Zhang, B.; Zirath, H. Metallic 3-D Printed Rectangular Waveguides for Millimeter-Wave Applications. IEEE Trans. Compon. Packag. Manuf. Technol. 2016, 6, 796–804. [Google Scholar] [CrossRef]
- Shang, X.; Yang, H.; Glynn, D.; Lancaster, M.J. Submillimeter-wave waveguide filters fabricated by SU-8 process and laser micromachining. IET Microw. Antennas Propag. 2017, 11, 2027–2034. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
a | 0.826 | d | 4.35 |
b | 1.651 | ho | 0.3 |
e | 0.1 | hw | 0.2 |
L | 30 | H | 1.2 |
t | 0.1 | W | 16 |
tw | 0.3 | N | 6 |
Parameter | Value | Parameter | Value |
---|---|---|---|
a | 1.27 | d | 4.065 |
b | 2.54 | ho | 0.3 |
e | 0.1 | hw | 0.2 |
L | 50 | H | 1.7 |
t | 0.1 | W | 20 |
tw | 0.3 | N | 8 |
Parameter | Value | Parameter | Value |
---|---|---|---|
a | 1.27 | f | 0.363 |
b | 2.54 | l1 | 23.53 |
e | 0.909 | l2 | 8.159 |
d | 0.569 | W | 30 |
t | 0.2 | La | 55.22 |
H | 1.7 | L | 50 |
Ref. | Frequency (GHz) | Split-Block | Technology | Loss (dB/mm) | Simulated/ Measured Loss |
---|---|---|---|---|---|
This work | 75–110 (gold) | H-plane | - | 0.0018 | Simulated |
110–170 (silver) | H-plane | - | 0.0054 | Simulated | |
75–110 (aluminum) | H-plane (straight) | - | 0.002 | Simulated | |
75–110 (aluminum) | H-plane (bend) | - | 0.002 | Simulated | |
75–110 (aluminum) | H-plane (straight) | MLW (etching) | 0.002 | Measured | |
75–110 (aluminum) | H-plane (bend) | MLW (etching) | 0.003 | Measured | |
[23] | 110–170 (brass) | H-plane | MLW (etching) | 0.02 | Measured |
[25] | 75–110 (copper) | E-plane | 3-D printing | 0.011 | Measured |
[26] | 110–170 (silicon + gold) | H-plane | Micromachining | 0.016 | Measured |
[35] | 110–170 (copper + bronze) | - | 3-D printing | 0.019 | Measured |
[36] | 110–170 (silver + SU8) | H-plane | Micromachining | 0.03 | Measured |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah Syed, M.A.; Yu, J.; Yao, Y.; Shaikh, S. Investigation of Gliding Walled Multilayer Waveguides. Electronics 2024, 13, 599. https://doi.org/10.3390/electronics13030599
Shah Syed MA, Yu J, Yao Y, Shaikh S. Investigation of Gliding Walled Multilayer Waveguides. Electronics. 2024; 13(3):599. https://doi.org/10.3390/electronics13030599
Chicago/Turabian StyleShah Syed, Mohsin Ali, Junsheng Yu, Yuan Yao, and Shanzah Shaikh. 2024. "Investigation of Gliding Walled Multilayer Waveguides" Electronics 13, no. 3: 599. https://doi.org/10.3390/electronics13030599
APA StyleShah Syed, M. A., Yu, J., Yao, Y., & Shaikh, S. (2024). Investigation of Gliding Walled Multilayer Waveguides. Electronics, 13(3), 599. https://doi.org/10.3390/electronics13030599