Optimization of Impact Ionization in Metal–Oxide–Semiconductor Field-Effect Transistors for Improvement of Breakdown Voltage and Specific On-Resistance
Abstract
:1. Introduction
2. Basic Mechanism and Manufacturing Process
2.1. Well Module
2.2. LDD Module
2.3. Source–Drain Module
3. Process Adjustments and Discussion
3.1. Mechanism Analysis and Process Adjustments
3.2. Results and Electrical Test
4. Conclusions and Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BCD | Bipolar-CMOS-DMOS |
BVDS | Breakdown voltage drain to source |
Ron,sp | Specific on-resistance |
LDD | Light-doped drain |
APT | Anti-punch-through |
HCI | Hot-carrier-induced |
Isoff | Subthreshold leakage current |
DIBL | Drain-induced barrier lowering |
RTA | Rapid thermal annealing |
VTL | Trigger voltage |
VDS | Source–drain voltage |
IDS | Source–drain current |
IDOFF | Drain–source leakage current |
SWL | Switching loss |
TOXI | Thickness of oxide |
TDDB | Time-dependent dielectric break |
NBTI | Negative bias temperature instability |
SPICE | Simulation Program with Integrated Circuit Emphasis |
References
- Kassakian, J.G.; Jahns, T.M. Evolving and emerging applications of power electronics in systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 47–58. [Google Scholar] [CrossRef]
- Huang, H.; Chen, X. Optimization of specific on-resistance of balanced symmetric superjunction MOSFETs based on a better approximation of ionization integral. IEEE Trans. Electron Devices 2012, 59, 2742–2747. [Google Scholar] [CrossRef]
- Shi, T.; Wang, R.; Wu, Z.; Sun, Y.; An, J.; Liu, Q. A review of resistive switching devices: Performance improvement, characterization, and applications. Small Struct. 2021, 2, 2000109. [Google Scholar] [CrossRef]
- Zingg, R. On the specific on-resistance of high-voltage and power devices. IEEE Trans. Electron Devices 2004, 51, 492–499. [Google Scholar] [CrossRef]
- Feng, W.S.; Chan, T.Y.; Hu, C. MOSFET drain breakdown voltage. IEEE Electron Device Lett. 1986, 7, 449–450. [Google Scholar] [CrossRef]
- Qian, J.; Shi, L.; Jin, M.; Bhattacharya, M.; Shimbori, A.; Yu, H.; Houshmand, S.; White, M.H.; Agarwal, A.K. Modeling of Charge-to-Breakdown with an Electron Trapping Model for Analysis of Thermal Gate Oxide Failure Mechanism in SiC Power MOSFETs. Materials 2024, 17, 1455. [Google Scholar] [CrossRef]
- Wu, Y.; Li, C.; Zheng, Z.; Wang, L.; Zhao, W.; Zou, Q. A Behavior Model of SiC DMOSFET Considering Thermal-Runaway Failures in Short-Circuit and Avalanche Breakdown Faults. Electronics 2024, 13, 996. [Google Scholar] [CrossRef]
- Grome, C.A.; Ji, W. A Brief Review of Single-Event Burnout Failure Mechanisms and Design Tolerances of Silicon Carbide Power MOSFETs. Electronics 2024, 13, 1414. [Google Scholar] [CrossRef]
- Baliga, B.J. Power mosfets. In Fundamentals of Power Semiconductor Devices; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2019; pp. 283–520. [Google Scholar]
- Palumbo, F.; Wen, C.; Lombardo, S.; Pazos, S.; Aguirre, F.; Eizenberg, M.; Hui, F.; Lanza, M. A review on dielectric breakdown in thin dielectrics: Silicon dioxide, high-k, and layered dielectrics. Adv. Funct. Mater. 2020, 30, 1900657. [Google Scholar] [CrossRef]
- Miranda, E.; Suñé, J. Electron transport through broken down ultra-thin SiO2 layers in MOS devices. Microelectron. Reliab. 2004, 44, 1–23. [Google Scholar] [CrossRef]
- Zhang, S.; Sin, J.; Lai, T.; Ko, P. Numerical modeling of linear doping profiles for high-voltage thin-film SOI devices. IEEE Trans. Electron Devices 1999, 46, 1036–1041. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, Z.; Liu, Y.-F.; Sen, P.C.; Ge, L. A new high efficiency current source driver with bipolar gate voltage. IEEE Trans. Power Electron. 2010, 27, 985–997. [Google Scholar] [CrossRef]
- Rafin, S.M.S.H.; Ahmed, R.; Haque, A.; Hossain, K.; Haque, A.; Mohammed, O.A. Power electronics revolutionized: A comprehensive analysis of emerging wide and ultrawide bandgap devices. Micromachines 2023, 14, 2045. [Google Scholar] [CrossRef]
- Patel, R.; Mohapatra, N.R. Novel Step Field Plate RF LDMOS Transistor for Improved BV DS-R on Tradeoff and RF Performance. IEEE Trans. Electron Devices 2022, 69, 4401–4407. [Google Scholar] [CrossRef]
- Kochoska, S.; Domeij, M.; Sunkari, S.; Justice, J.; Das, H.; Pham, T.T.; Franchi, J.; Maslougkas, S.; Lee, H.J.; Hu, X.Q.; et al. Pulsed forward bias body diode stress of 1700 V SiC MOSFETs with individual mapping of basal plane dislocations. In Materials Science Forum; Trans Tech Publications Ltd.: Bäch, Switzerland, 2022; Volume 1062. [Google Scholar]
- de Paula, W.J.; Tavares, G.H.M.; Soares, G.M.; Almeida, P.S.; Braga, H.A.C. Switching losses prediction methods oriented to power MOSFETs—A review. IET Power Electron. 2020, 13, 2960–2970. [Google Scholar] [CrossRef]
- Choi, H.; Woo, P.C.; Yeom, J.-Y.; Yoon, C. Power MOSFET linearizer of a high-voltage power amplifier for high-frequency pulse-echo instrumentation. Sensors 2017, 17, 764. [Google Scholar] [CrossRef]
- Srivastava, A.; Venkata, H. Quaternary to binary bit conversion CMOS integrated circuit design using multiple-input floating gate MOSFETS. Integration 2003, 36, 87–101. [Google Scholar] [CrossRef]
- Anvarifard, M.K.; Orouji, A.A. Improvement of electrical properties in a novel partially depleted SOI MOSFET with emphasizing on the hysteresis effect. IEEE Trans. Electron Devices 2013, 60, 3310–3317. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, B.; Luo, X.; Li, Z. Low specific on-resistance power MOSFET with a surface improved super-junction layer. Superlattices Microstruct. 2014, 72, 1–10. [Google Scholar] [CrossRef]
- Cheng, J.; Chen, W.; Lin, J.; Li, P.; Yi, B.; Huang, H.; Chen, X.B. Potential of Utilizing High-k Film to Improve the Cost Performance of Trench LDMOS. IEEE Trans. Electron Devices 2019, 66, 3049–3054. [Google Scholar] [CrossRef]
- Doucet, J.; Eggleston, D.; Shaw, J. DC/AC Pure Sine Wave Inverter; PFC Worcester Polytechnic Institute: Worcester, MA, USA, 2007. [Google Scholar]
- Bolton, W. Programmable Logic Controllers; Newnes: Oxford, UK, 2015. [Google Scholar]
- Kouro, S.; Rodriguez, J.; Wu, B.; Bernet, S.; Perez, M. Powering the future of industry: High-power adjustable speed drive topologies. IEEE Ind. Appl. Mag. 2012, 18, 26–39. [Google Scholar] [CrossRef]
- Lopes, J.P.; Hatziargyriou, N.; Mutale, J.; Djapic, P.; Jenkins, N. Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities. Electr. Power Syst. Res. 2007, 77, 1189–1203. [Google Scholar] [CrossRef]
- Pillai, P.; Shin, K.G. Real-time dynamic voltage scaling for low-power embedded operating systems. In Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles, Banff, AB, Canada, 21–24 October 2001. [Google Scholar]
- Chopra, S.; Subramaniam, S. A review on challenges for MOSFET scaling. Int. J. Innov. Sci. 2015, 2, 1055–1057. [Google Scholar]
- Balogh, L. Design and Application Guide for High Speed MOSFET Gate Drive Circuits; Power Supply Design Seminar SEM-1400, Topic; Texas Instruments Incorporated: Dallas, TX, USA, 2001; Volume 2. [Google Scholar]
- Gregory, B.L.; Shafer, B.D. Latch-up in CMOS integrated circuits. IEEE Trans. Nucl. Sci. 1973, 20, 293–299. [Google Scholar] [CrossRef]
- Amor, S.; Kilchytska, V.; Flandre, D.; Galy, P. Trap recovery by in-situ annealing in fully-depleted MOSFET with active silicide resistor. IEEE Electron Device Lett. 2021, 42, 1085–1088. [Google Scholar] [CrossRef]
- Hoyt, J.L.; Nayfeh, H.M.; Eguchi, S.; Aberg, I.; Xia, G.; Drake, T.; Fitzgerald, E.A.; Antoniadis, D.A. Strained silicon MOSFET technology. In Proceedings of the Digest. International Electron Devices Meeting, San Francisco, CA, USA, 8–11 December 2002; IEEE: Piscataway, NJ, USA, 2002. [Google Scholar]
- TCAD. Sentaurus Device User’s Manual; Synopsys: Mountain View, CA, USA, 2016. [Google Scholar]
- Davies, R.; Gentry, F. Control of electric field at the surface of P-N junctions. IEEE Trans. Electron Devices 1964, 11, 313–323. [Google Scholar] [CrossRef]
- Gurugubelli, V.K.; Bhargav, P.N.S. Enhanced Theoretical Lower Limit for the Specific On-Resistance of a Silicon Balanced Superjunction. IEEE Trans. Electron Devices 2024, 71, 3823–3830. [Google Scholar] [CrossRef]
- Lesco, D.J.; Sturman, J.C.; Nieberding, W.C. Rotating Shaft-Mounted Microelectronic Data System; National Aeronautics and Space Administration: Washington, DC, USA, 1970; Volume 5678.
- Li, M.; Zhang, S.; Shyam, P.; Purakh, R.V. An optimized isolated 5V EDMOS in 55 nm LPx platform for use in Power Amplifier applications. In Proceedings of the 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), San Francisco, CA, USA, 22–24 May 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Natori, K.; Sasaki, I.S.A.O.; Masuoka, F.U.J.I. An analysis of the concave MOSFET. IEEE Trans. Electron Devices 1978, 25, 448–456. [Google Scholar] [CrossRef]
- Chou, H.-L.; Su, P.C.; Ng, J.C.W.; Wang, P.L.; Lu, H.T.; Lee, C.J.; Syue, W.J.; Yang, S.Y.; Tseng, Y.C.; Cheng, C.C.; et al. 0.18 µm BCD technology platform with best-in-class 6 V to 70 V power MOSFETs. In Proceedings of the 2012 24th International Symposium on Power Semiconductor Devices and ICs, Bruges, Belgium, 3–7 June 2012; IEEE: Piscataway, NJ, USA, 2012. [Google Scholar]
- Li, X.; Qin, J.; Bernstein, J.B. Compact modeling of MOSFET wearout mechanisms for circuit-reliability simulation. IEEE Trans. Device Mater. Reliab. 2008, 8, 98–121. [Google Scholar] [CrossRef]
WAT Results | |||||||
---|---|---|---|---|---|---|---|
10/0.6 (W/L) | VTL (V) | IDS (mA/um) | IDOFF (pA/um) | BVDS (V) | SWL (mV/dec) | TOXI (40/40) | |
Basline (Lot_1) | NMOS | 0.708 | 0.602 | 0.102 | 10.8 | 107.71 | 113.79 |
PMOS | 0.724 | 0.228 | 0.634 | 9.15 | 104.35 | 127.81 | |
Final (Lot_2) | NMOS | 0.848 | 0.701 | 1.11 | 14.2 | 112.52 | 154.87 |
PMOS | 0.796 | 0.311 | 1.44 | 13.75 | 101.93 | 188.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Song, Y.; Wu, B.; Liu, F.; Deng, Y.; Kang, P.; Huang, X.; Wu, Y.; Gao, D.; Xu, K. Optimization of Impact Ionization in Metal–Oxide–Semiconductor Field-Effect Transistors for Improvement of Breakdown Voltage and Specific On-Resistance. Electronics 2024, 13, 4101. https://doi.org/10.3390/electronics13204101
Chen Y, Song Y, Wu B, Liu F, Deng Y, Kang P, Huang X, Wu Y, Gao D, Xu K. Optimization of Impact Ionization in Metal–Oxide–Semiconductor Field-Effect Transistors for Improvement of Breakdown Voltage and Specific On-Resistance. Electronics. 2024; 13(20):4101. https://doi.org/10.3390/electronics13204101
Chicago/Turabian StyleChen, Yanning, Yixian Song, Bo Wu, Fang Liu, Yongfeng Deng, Pingrui Kang, Xiaoyun Huang, Yongyu Wu, Dawei Gao, and Kai Xu. 2024. "Optimization of Impact Ionization in Metal–Oxide–Semiconductor Field-Effect Transistors for Improvement of Breakdown Voltage and Specific On-Resistance" Electronics 13, no. 20: 4101. https://doi.org/10.3390/electronics13204101
APA StyleChen, Y., Song, Y., Wu, B., Liu, F., Deng, Y., Kang, P., Huang, X., Wu, Y., Gao, D., & Xu, K. (2024). Optimization of Impact Ionization in Metal–Oxide–Semiconductor Field-Effect Transistors for Improvement of Breakdown Voltage and Specific On-Resistance. Electronics, 13(20), 4101. https://doi.org/10.3390/electronics13204101