Heavy Ion Induced Degradation Investigation on 4H-SiC JBS Diode with Different P+ Intervals
Abstract
:1. Introduction
2. Experiment and Simulation Setup
3. Result and Discussion
3.1. Experiment Results
3.2. Simulation Result and Analysis
3.3. Leakage Current Mechanism Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ostling, M.; Ghandi, R.; Zetterling, C.-M. SiC Power Devices-Present Status, Applications and Future Perspective. In Proceedings of the 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs, San Diego, CA, USA, 23–26 May 2011; IEEE: San Diego, CA, USA, 2011; pp. 10–15. [Google Scholar]
- Zhang, Q.; Callanan, R.; Das, M.K.; Ryu, S.H.; Agarwal, A.K.; Palmour, J.W. SiC Power Devices for Microgrids. IEEE Trans. Power Electron. 2010, 25, 2889–2896. [Google Scholar] [CrossRef]
- Lauenstein, J.-M.; Casey, M.C.; LaBel, K.A.; Ikpe, S.; Topper, A.D.; Wilcox, E.P.; Kim, H.; Phan, A.M. Single-Event Effects in Silicon Carbide Power Devices; NASA: Greenbelt, MD, USA, 2015. Available online: https://ntrs.nasa.gov/citations/20150017740 (accessed on 21 March 2022).
- Wang, D.; Hu, R.; Chen, G.; Tang, C.; Ma, Y.; Gong, M.; Yu, Q.; Cao, S.; Li, Y.; Huang, M.; et al. Heavy Ion Radiation and Temperature Effects on SiC Schottky Barrier Diode. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2021, 491, 52–58. [Google Scholar] [CrossRef]
- Kuboyama, S.; Kamezawa, C.; Ikeda, N.; Hirao, T.; Ohyama, H. Anomalous Charge Collection in Silicon Carbide Schottky Barrier Diodes and Resulting Permanent Damage and Single-Event Burnout. IEEE Trans. Nucl. Sci. 2006, 53, 3343–3348. [Google Scholar] [CrossRef]
- Ball, D.R.; Hutson, J.M.; Javanainen, A.; Lauenstein, J.-M.; Galloway, K.F.; Johnson, R.A.; Alles, M.L.; Sternberg, A.L.; Sierawski, B.D.; Witulski, A.F.; et al. Ion-Induced Energy Pulse Mechanism for Single-Event Burnout in High-Voltage SiC Power MOSFETs and Junction Barrier Schottky Diodes. IEEE Trans. Nucl. Sci. 2020, 67, 22–28. [Google Scholar] [CrossRef]
- Martinella, C.; Stark, R.; Ziemann, T.; Alia, R.G.; Kadi, Y.; Grossner, U.; Javanainen, A. Current Transport Mechanism for Heavy-Ion Degraded SiC MOSFETs. IEEE Trans. Nucl. Sci. 2019, 66, 1702–1709. [Google Scholar] [CrossRef]
- Javanainen, A.; Turowski, M.; Galloway, K.F.; Nicklaw, C.; Ferlet-Cavrois, V.; Bosser, A.; Lauenstein, J.-M.; Muschitiello, M.; Pintacuda, F.; Reed, R.A.; et al. Heavy-Ion-Induced Degradation in SiC Schottky Diodes: Incident Angle and Energy Deposition Dependence. IEEE Trans. Nucl. Sci. 2017, 64, 2031–2037. [Google Scholar] [CrossRef]
- Javanainen, A.; Vazquez Muinos, H.; Nordlund, K.; Djurabekova, F.; Galloway, K.F.; Turowski, M.; Schrimpf, R.D. Molecular Dynamics Simulations of Heavy Ion Induced Defects in SiC Schottky Diodes. IEEE Trans. Device Mater. Reliab. 2018, 18, 481–483. [Google Scholar] [CrossRef]
- Kuboyama, S.; Mizuta, E.; Nakada, Y.; Shindou, H.; Michez, A.; Boch, J.; Saigne, F.; Touboul, A. Thermal Runaway in SiC Schottky Barrier Diodes Caused by Heavy Ions. IEEE Trans. Nucl. Sci. 2019, 66, 1688–1693. [Google Scholar] [CrossRef]
- McPherson, J.A.; Kowal, P.J.; Pandey, G.K.; Chow, T.P.; Ji, W.; Woodworth, A.A. Heavy Ion Transport Modeling for Single-Event Burnout in SiC-Based Power Devices. IEEE Trans. Nucl. Sci. 2019, 66, 474–481. [Google Scholar] [CrossRef]
- Javanainen, A.; Galloway, K.F.; Ferlet-Cavrois, V.; Lauenstein, J.-M.; Pintacuda, F.; Schrimpf, R.D.; Reed, R.A.; Virtanen, A. Charge Transport Mechanisms in Heavy-Ion Driven Leakage Current in Silicon Carbide Schottky Power Diodes. IEEE Trans. Device Mater. Reliab. 2016, 16, 208–212. [Google Scholar] [CrossRef]
- Witulski, A.F.; Arslanbekov, R.; Raman, A.; Schrimpf, R.D.; Sternberg, A.L.; Galloway, K.F.; Javanainen, A.; Grider, D.; Lichtenwalner, D.J.; Hull, B. Single-Event Burnout of SiC Junction Barrier Schottky Diode High-Voltage Power Devices. IEEE Trans. Nucl. Sci. 2018, 65, 256–261. [Google Scholar] [CrossRef]
- Johnson, R.A.; Witulski, A.F.; Ball, D.R.; Galloway, K.F.; Sternberg, A.L.; Reed, R.A.; Schrimpf, R.D.; Alles, M.L.; Lauenstein, J.-M.; Javanainen, A.; et al. Unifying Concepts for Ion-Induced Leakage Current Degradation in Silicon Carbide Schottky Power Diodes. IEEE Trans. Nucl. Sci. 2020, 67, 135–139. [Google Scholar] [CrossRef]
- Abbate, C.; Busatto, G.; Cova, P.; Delmonte, N.; Giuliani, F.; Iannuzzo, F.; Sanseverino, A.; Velardi, F. Thermal Damage in SiC Schottky Diodes Induced by SE Heavy Ions. Microelectron. Reliab. 2014, 54, 2200–2206. [Google Scholar] [CrossRef]
- Javanainen, A.; Galloway, K.F.; Nicklaw, C.; Bosser, A.L.; Ferlet-Cavrois, V.; Lauenstein, J.-M.; Pintacuda, F.; Reed, R.A.; Schrimpf, R.D.; Weller, R.A.; et al. Heavy Ion Induced Degradation in SiC Schottky Diodes: Bias and Energy Deposition Dependence. IEEE Trans. Nucl. Sci 2017, 64, 415–420. [Google Scholar] [CrossRef]
- Ziegler, J.F. SRIM-2013. Available online: http://www.srim.org (accessed on 25 March 2023).
- Sentaurus TCAD Tools 2017. Available online: https://www.synopsys.com (accessed on 20 April 2019).
- Lu, J.; Liu, J.; Tian, X.; Chen, H.; Tang, Y.; Bai, Y.; Li, C.; Liu, X. Impact of Varied Buffer Layer Designs on Single-Event Response of 1.2-KV SiC Power MOSFETs. IEEE Trans. Electron Devices 2020, 67, 3698–3704. [Google Scholar] [CrossRef]
- Liao, X.; Liu, Y.; Li, J.; Cheng, J.; Yang, Y. A Possible Single Event Burnout Hardening Technique for SiC Schottky Barrier Diodes. Superlattices Microstruct. 2021, 160, 107087. [Google Scholar] [CrossRef]
- Okuto, Y.; Crowell, C.R. Threshold Energy Effect on Avalanche Breakdown Voltage in Semiconductor Junctions. Solid-State Electron. 1975, 18, 161–168. [Google Scholar] [CrossRef]
- Slotboom, J.W.; de Graaff, H.C. Bandgap Narrowing in Silicon Bipolar Transistors. IEEE Trans. Electron Devices 1977, 24, 1123–1125. [Google Scholar] [CrossRef]
- Matsuura, H. Influence of Excited States of Deep Acceptors on Hole Concentrations in SiC. MSF 2002, 389–393, 679–682. [Google Scholar] [CrossRef]
- Tesfaye, A. SiC Semiconductor Devices Technology, Modeling and Simulation. Ph.D. Thesis, Technische Universität Wien, Vienna, Austria, 2004. [Google Scholar]
- Konstantinov, A.O.; Wahab, Q.; Nordell, N.; Lindefelt, U. Ionization Rates and Critical Fields in 4H Silicon Carbide. Appl. Phys. Lett. 1997, 71, 90–92. [Google Scholar] [CrossRef]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2007; ISBN 978-0-471-14323-9. [Google Scholar]
- Zhou, X.; Jia, Y.; Hu, D.; Wu, Y. A Simulation-Based Comparison Between Si and SiC MOSFETs on Single-Event Burnout Susceptibility. IEEE Trans. Electron Devices 2019, 66, 2551–2556. [Google Scholar] [CrossRef]
- Li, M.-B.; Cao, F.; Hu, H.-F.; Li, X.-J.; Yang, J.-Q.; Wang, Y. High Single-Event Burnout Resistance 4H-SiC Junction Barrier Schottky Diode. IEEE J. Electron Devices Soc. 2021, 9, 591–598. [Google Scholar] [CrossRef]
- Wu, Z.; Bai, Y.; Yang, C.; Lu, J.; Yang, L.; Tang, Y.; Tian, X.; Liu, X. Schottky Barrier Characteristic Analysis on 4H-SiC Schottky Barrier Diodes With Heavy Ion-Induced Degradation. IEEE Trans. Nucl. Sci. 2022, 69, 932–937. [Google Scholar] [CrossRef]
- Yu, C.-H.; Wang, Y.; Li, X.-J.; Liu, C.-M.; Luo, X.; Cao, F. Research of Single-Event Burnout in 4H-SiC JBS Diode by Low Carrier Lifetime Control. IEEE Trans. Electron Devices 2018, 65, 5434–5439. [Google Scholar] [CrossRef]
- Baliga, B.J. Fundamentals of Power Semiconductor Devices; Springer: New York, NY, USA, 2008; ISBN 978-0-387-47313-0. [Google Scholar]
- Abbate, C.; Busatto, G.; Cova, P.; Delmonte, N.; Giuliani, F.; Iannuzzo, F.; Sanseverino, A.; Velardi, F. Analysis of Heavy Ion Irradiation Induced Thermal Damage in SiC Schottky Diodes. IEEE Trans. Nucl. Sci. 2015, 62, 202–209. [Google Scholar] [CrossRef]
- Hatakeyama, T.; Shinohe, T. Reverse Characteristics of a 4H-SiC Schottky Barrier Diode. Mater. Sci. Forum 2002, 389–393, 1169–1172. [Google Scholar] [CrossRef]
- Rose, A. Space-Charge-Limited Currents in Solids. Phys. Rev. 1955, 97, 1538–1544. [Google Scholar] [CrossRef]
n | k (A·cm·V) | k (A·cm·V) | |
---|---|---|---|
DUT1-2 | 8.87 | 3.55 × 10 | 3.02 × 10 |
DUT1-3 | 8.79 | 9.33 × 10 | 3.33 × 10 |
DUT2-2 | 7.80 | 4.68 × 10 | 8.97 × 10 |
DUT2-3 | 7.75 | 6.46 × 10 | 9.34 × 10 |
DUT3-2 | 7.70 | 1.58 × 10 | 1.32 × 10 |
DUT3-2 | 7.70 | 3.98 × 10 | 1.29 × 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Bai, Y.; Yang, C.; Li, C.; Hao, J.; Tian, X.; Wang, A.; Tang, Y.; Lu, J.; Liu, X. Heavy Ion Induced Degradation Investigation on 4H-SiC JBS Diode with Different P+ Intervals. Electronics 2023, 12, 2133. https://doi.org/10.3390/electronics12092133
Wu Z, Bai Y, Yang C, Li C, Hao J, Tian X, Wang A, Tang Y, Lu J, Liu X. Heavy Ion Induced Degradation Investigation on 4H-SiC JBS Diode with Different P+ Intervals. Electronics. 2023; 12(9):2133. https://doi.org/10.3390/electronics12092133
Chicago/Turabian StyleWu, Zhikang, Yun Bai, Chengyue Yang, Chengzhan Li, Jilong Hao, Xiaoli Tian, Antao Wang, Yidan Tang, Jiang Lu, and Xinyu Liu. 2023. "Heavy Ion Induced Degradation Investigation on 4H-SiC JBS Diode with Different P+ Intervals" Electronics 12, no. 9: 2133. https://doi.org/10.3390/electronics12092133