Effect of Trapped Charge Induced by Total Ionizing Dose Radiation on the Top-Gate Carbon Nanotube Field Effect Transistors
Abstract
:1. Introduction
2. Device Structures and Experimental Details
3. Results and Discussion
3.1. Effect of TID Radiation on IDS-VGS Characteristics of Top-Gate CNTFET
3.2. Influence of Trapped Charges in SiO2 Substrate Induced by Irradiation on Top-Gate CNTFET Characteristics
3.3. TID Influence on Hysteresis Characteristics of Top-Gate CNTFET
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lincoln, R.L.; Scarpa, F.; Ting, V.P.; Trask, R.S. Multifunctional composites: A metamaterial perspective. Multifunct. Mater. 2019, 2, 043001. [Google Scholar] [CrossRef]
- Mohammadi Estakhri, N.; Edwards, B.; Engheta, N. Inverse-designed metastructures that solve equations. Science 2019, 363, 1333–1338. [Google Scholar] [CrossRef] [PubMed]
- Lalegani, Z.; Ebrahimi, S.S.; Hamawandi, B.; La Spada, L.; Batili, H.; Toprak, M.S. Targeted dielectric coating of silver nanoparticles with silica to manipulate optical properties for metasurface applications. Mater. Chem. Phys. 2022, 287, 126250. [Google Scholar] [CrossRef]
- Pacheco-Peña, V.; Beruete, M.; Rodríguez-Ulibarri, P.; Engheta, N. On the performance of an ENZ-based sensor using transmission line theory and effective medium approach. New J. Phys. 2019, 21, 043056. [Google Scholar] [CrossRef] [Green Version]
- Akbari, M.; Shahbazzadeh, M.J.; La Spada, L.; Khajehzadeh, A. The Graphene Field Effect Transistor Modeling Based on an Optimized Ambipolar Virtual Source Model for DNA Detection. Appl. Sci. 2021, 11, 8114. [Google Scholar] [CrossRef]
- Greybush, N.J.; Pacheco-Peña, V.; Engheta, N.; Murray, C.B.; Kagan, C.R. Plasmonic Optical and Chiroptical Response of Self-Assembled Au Nanorod Equilateral Trimers. ACS Nano 2019, 13, 1617–1624. [Google Scholar] [CrossRef]
- Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657. [Google Scholar] [CrossRef]
- Franklin, A.D.; Luisier, M.; Han, S.J.; Tulevski, G.; Breslin, C.M.; Gignac, L.; Lundstrom, M.S.; Haensch, W. Sub-10 nm Carbon Nanotube Transistor. Nano Lett. 2012, 12, 758–762. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, P.; Ding, L.; Han, J.; Qiu, S.; Li, Q.; Zhang, Z.; Peng, L.-M. Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits. Nano Lett. 2016, 16, 5120–5128. [Google Scholar] [CrossRef]
- De Volder, M.F.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Ding, L.; Chen, H.; Han, J.; Zhang, Z.; Peng, L.M. Carbon nanotube network film-based ring oscillators with sub 10-ns propagation time and their applications in radio-frequency signal transmission. Nano Res. 2018, 11, 300–310. [Google Scholar] [CrossRef]
- Peng, L.M.; Zhang, Z.; Wang, S. Carbon nanotube electronics: Recent advances. Mater. Today 2014, 17, 433–442. [Google Scholar] [CrossRef]
- Yang, L.; Wang, S.; Zeng, Q.; Zhang, Z.; Pei, T.; Li, Y.; Peng, L.M. Efficient photovoltage multiplication in carbon nanotubes. Nat. Photonics 2011, 5, 672–676. [Google Scholar] [CrossRef]
- Liu, L.; Han, J.; Xu, L.; Zhou, J.; Zhao, C.; Ding, S.; Shi, H.; Xiao, M.; Ding, L.; Ma, Z.; et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856. [Google Scholar] [CrossRef]
- Zhu, M.; Zhou, J.; Sun, P.; Peng, L.M.; Zhang, Z. Analyzing Gamma-Ray Irradiation Effects on Carbon Nanotube Top-Gated Field-Effect Transistors. ACS Appl. Mater. Interfaces 2021, 13, 47756–47763. [Google Scholar] [CrossRef]
- Zhu, M.; Xiao, H.; Yan, G.; Sun, P.; Jiang, J.; Cui, Z.; Zhao, J.; Zhang, Z.; Peng, L.-M. Radiation-Hardened and Repairable Integrated Circuits Based on Carbon Nanotube Transistors with Ion Gel Gates. Nat. Electron. 2020, 3, 622–629. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Deng, J.; Li, M.; Shao, S.; Zhao, J. Printed carbon nanotube thin film transistors based on perhydropolysilazane-derived dielectrics for low power flexible electronics. Carbon 2022, 191, 267–276. [Google Scholar] [CrossRef]
- Cress, C.D.; McMorrow, J.J.; Robinson, J.T.; Friedman, A.L.; Landi, B.J. Radiation Effects in Single-Walled Carbon Nanotube Thin-Film-Transistors. IEEE Trans. Nucl. Sci. 2010, 57, 3040–3045. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, D.; Xiao, L.; Liu, J.; Xiao, X.; Li, G.; Jin, Y.; Jiang, K.; Wang, J.; Fan, S.; et al. Radiation effects and radiation hardness solutions for single-walled carbon nanotube-based thin film transistors and logic devices. Carbon 2016, 108, 363–371. [Google Scholar] [CrossRef]
- Luo, M.; Zhu, M.; Wei, M.; Shao, S.; Robin, M.; Wei, C.; Cui, Z.; Zhao, J.; Zhang, Z. Radiation-Hard and Repairable Complementary Metal-Oxide-Semiconductor Circuits Integrating printed n-type Indium Oxide and p-type Carbon Nanotube Field-Effect Transistors. ACS Appl. Mater. Interfaces 2020, 12, 49963–49970. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, L. Repairable Integrated Circuits for Space. Nat. Electron. 2020, 3, 586–587. [Google Scholar] [CrossRef]
- Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; McIntyre, P.; McEuen, P.; Lundstrom, M.; Dai, H. High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Publ. Group 2002, 1, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Pitner, G.; Zhang, Z.; Lin, Q.; Su, S.K.; Gilardi, C.; Kuo, C.; Kashyap, H.; Weiss, T.; Yu, Z.; Chao, T.A.; et al. Sub-0.5 nm Interfacial Dielectric Enables Superior Electrostatics: 65 mV/dec Top-Gated Carbon Nanotube FETs at 15 nm Gate Length. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; IEEE: NewYork, NY, USA, 2020; pp. 3.5.1–3.5.4. [Google Scholar]
- Qiu, C.; Zhang, Z.; Xiao, M.; Yang, Y.; Zhong, D.; Peng, L.M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yu, M.; Cai, L.; Liu, J.; Wang, J.; Wan, H.; Wang, J.; Wang, C.; Fu, Y. Radiation effects in printed flexible single-walled carbon nanotube thin-film transistors. AIP Adv. 2019, 9, 105121. [Google Scholar] [CrossRef]
- Zhu, M.G.; Zhang, Z.; Peng, L.M. High-Performance and Radiation-Hard Carbon Nanotube Complementary Static Random-Access Memory. Adv. Electron. Mater. 2019, 5, 1900313. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, Z.Q.; Hu, H.F.; Cao, F. Feasibility Study of Semifloating Gate Transistor Gamma-Ray Dosimeter. IEEE Electron Device Lett. 2015, 36, 99–101. [Google Scholar] [CrossRef]
- Petrosjanc, K.O.; Adonin, A.S.; Kharitonov, I.A.; Sicheva, M.V. SOI device parameter investigation and extraction for VLSI radiation hardness modeling with SPICE. In Proceedings of the 1994 IEEE International Conference on Microelectronic Test Structures, San Diego, CA, USA, 22–25 March 1994; pp. 126–129. [Google Scholar]
- Galloway, K.F.; Gaitan, M.; Russell, T.J. A Simple Model for Separating Interface and Oxide Charge Effects in MOS Device Characteristics. IEEE Trans. Nucl. Sci. 1984, 31, 1497–1501. [Google Scholar] [CrossRef]
- Li, B.; Feng, Y.; Ding, K.; Qian, G.; Zhang, X.; Zhang, J. The effect of gamma ray irradiation on the structure of graphite and multi-walled carbon nanotubes. Carbon 2013, 60, 186–192. [Google Scholar] [CrossRef]
- Miao, M.; Hawkins, S.C.; Cai, J.Y.; Gengenbach, T.R.; Knott, R.; Huynh, C.P. Effect of gamma-irradiation on the mechanical properties of carbon nanotube yarns. Carbon 2011, 49, 4940–4947. [Google Scholar] [CrossRef]
- Skakalova, V.; Hulman, M.; Fedorko, P.; Lukáč, P.; Roth, S. Effect of gammairradiation on single-wall carbon nanotube paper. AIP Conf. Proc. 2003, 685, 143–147. [Google Scholar]
- Vitusevich, S.A.; Sydoruk, V.A.; Petrychuk, M.V.; Danilchenko, B.A.; Klein, N.; Offenhäusser, A.; Bosman, G. Transport properties of single-walled carbon nanotube transistors after gamma radiation treatment. J. Appl. Phys. 2010, 107, 063701. [Google Scholar] [CrossRef] [Green Version]
- Leroux, C.; Mitard, J.; Ghibaudo, G.; Garros, X.; Reimbold, G.; Guillaumot, B.; Martin, F. Characterization and modeling of hysteresis phenomena in high K dielectrics. In Proceedings of the IEEE International Electron Devices Meeting, IEDM Technical Digest, San Francisco, CA, USA, 13–15 December 2004; pp. 737–740. [Google Scholar]
- Schroder, D.K. Semiconductor Material and Device Characterization, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Kessler, J.O.; Tompkins, B.E.; Blanc, J. Variable-characteristic p-n-junction devices based on reversible ion drift. Solid-State Electron. 1963, 6, 297–307. [Google Scholar] [CrossRef]
- Snow, E.H.; Grove, A.S.; Deal, B.E.; Sah, C.T. Ion Transport Phenomena in Insulating Films. J. Appl. Phys. 1965, 36, 1664–1673. [Google Scholar] [CrossRef]
- Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y.; Dai, H. Hysteresis Caused by WaterMolecules in Carbon Nanotube Field-Effect Transistors. Nano Lett. 2003, 3, 193–198. [Google Scholar] [CrossRef]
- Patil, P.D.; Ghosh, S.; Wasala, M.; Lei, S.; Vajtai, R.; Ajayan, P.M.; Ghosh, A.; Talapatra, S. Gate-Induced Metal–Insulator Transition in 2D van der Waals Layers of Copper Indium Selenide Based Field-Effect Transistors. ACS Nano 2019, 13, 13413–13420. [Google Scholar] [CrossRef] [PubMed]
- ASTM F996-11; Standard Test Method for Separating an Ionizing Radiation-Induced Mosfet Threshold Voltage Shift into Components Due to Oxide Trapped Holes and Interface States Using the Subthreshold Current-Voltage Characteristics. ASTM International: West Conshohocken, PA, USA, 2011.
TID | Dose Rate | Test Items |
---|---|---|
200 k rad(Si) | 195.476 rad(Si)/s | 1. VDS = −0.1 V, VGS = (0.5 V) − (−2 V), bidirectional scanning 2. VDS = −2 V, VGS = (0.5 V) − (−2 V), bidirectional scanning |
500 k rad(Si) | ||
1 M rad(Si) | ||
2 M rad(Si) | ||
3 M rad(Si) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, H.; Cui, J.; Zheng, Q.; Xu, H.; Gao, N.; Xun, M.; Yu, G.; He, C.; Li, Y.; Guo, Q. Effect of Trapped Charge Induced by Total Ionizing Dose Radiation on the Top-Gate Carbon Nanotube Field Effect Transistors. Electronics 2023, 12, 1000. https://doi.org/10.3390/electronics12041000
Ding H, Cui J, Zheng Q, Xu H, Gao N, Xun M, Yu G, He C, Li Y, Guo Q. Effect of Trapped Charge Induced by Total Ionizing Dose Radiation on the Top-Gate Carbon Nanotube Field Effect Transistors. Electronics. 2023; 12(4):1000. https://doi.org/10.3390/electronics12041000
Chicago/Turabian StyleDing, Hongyu, Jiangwei Cui, Qiwen Zheng, Haitao Xu, Ningfei Gao, Mingzhu Xun, Gang Yu, Chengfa He, Yudong Li, and Qi Guo. 2023. "Effect of Trapped Charge Induced by Total Ionizing Dose Radiation on the Top-Gate Carbon Nanotube Field Effect Transistors" Electronics 12, no. 4: 1000. https://doi.org/10.3390/electronics12041000
APA StyleDing, H., Cui, J., Zheng, Q., Xu, H., Gao, N., Xun, M., Yu, G., He, C., Li, Y., & Guo, Q. (2023). Effect of Trapped Charge Induced by Total Ionizing Dose Radiation on the Top-Gate Carbon Nanotube Field Effect Transistors. Electronics, 12(4), 1000. https://doi.org/10.3390/electronics12041000