Power Efficiency Characterization with Various Gate Oxide Thicknesses in Class DE Amplifiers for HIFU Applications
Abstract
:1. Introduction
2. Experiments and Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanchez, M.; Barrere, V.; Treilleux, I.; Chopin, N.; Melodelima, D. Development of a noninvasive HIFU treatment for breast adenocarcinomas using a toroidal transducer based on preliminary attenuation measurements. Ultrasonics 2021, 115, 106459. [Google Scholar] [CrossRef] [PubMed]
- Yee, C.H.; Chiu, P.K.F.; Teoh, J.Y.C.; Ng, C.F.; Chan, C.K.; Hou, S.M. High-intensity focused ultrasound (HIFU) focal therapy for localized prostate cancer with MRI-US fusion platform. Adv. Urol. 2021, 2021, 7157973. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhu, S.; Zhang, H.; Wang, A.; Sun, G.; Liang, J.; Wang, X. The efficacy and safety of MR-HIFU and US-HIFU in treating uterine fibroids with the volume <300 cm3: A meta-analysis. Int. J. Hyperth. 2021, 38, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, A.; Foca, F.; Oboldi, D.; Diano, D.; Bazzocchi, A.; Fabbri, L.; Mercatali, L.; Vanni, S.; Maltoni, M.; Bianchini, D.; et al. 3-T magnetic resonance-guided high-intensity focused ultrasound (3 T-MR-HIFU) for the treatment of pain from bone metastases of solid tumors. Support. Care Cancer 2022, 30, 5737–5745. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.; Ma, B.; Khuri-Yakub, B.T. Applications of capacitive micromachined ultrasonic transducers: A comprehensive review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 456–457. [Google Scholar] [CrossRef] [PubMed]
- Brenner, K.; Ergun, A.S.; Firouzi, K.; Rasmussen, M.F.; Stedman, Q.; Khuri-Yakub, B. Advances in capacitive micromachined ultrasonic transducers. Micromachines 2019, 10, 152. [Google Scholar] [CrossRef] [Green Version]
- Bozkurt, A.; Farhanieh, O.; Roy, R.B.; Ergun, A.S. Design of a driver IC for an ultrasound catheter ablation system. In Proceedings of the 2014 IEEE International Ultrasonics Symposium, Chicago, IL, USA, 3–6 September 2014; pp. 1536–1539. [Google Scholar]
- Bui, N.T.; Nguyen, T.M.T.; Ataklti, G.Y.; Bui, Q.C.; Dinh, T.T.N.; Phan, D.T.; Park, S.; Choi, J.; Vu, T.T.H.; Oh, J. Design of a High-Power Multilevel Sinusoidal Signal and High-Frequency Excitation Module Based on FPGA for HIFU Systems. Electronics 2021, 10, 1299. [Google Scholar] [CrossRef]
- Aus, G. Current status of HIFU and cryotherapy in prostate cancer—A review. Eur. Urol. 2006, 50, 927–934. [Google Scholar] [CrossRef]
- Cordeiro, E.R.; Cathelineau, X.; Thueroff, S.; Marberger, M.; Crouzet, S.; de la Rosette, J.J. High-intensity focused ultrasound (HIFU) for definitive treatment of prostate cancer. BJU Int. 2012, 110, 1228–1242. [Google Scholar] [CrossRef]
- Panzone, J.; Byler, T.; Bratslavsky, G.; Goldberg, H. Transrectal Ultrasound in Prostate Cancer: Current Utilization, Integration with mpMRI, HIFU and Other Emerging Applications. Cancer Manag. Res. 2022, 14, 1209. [Google Scholar] [CrossRef]
- Bakavicius, A.; Marra, G.; Macek, P.; Robertson, C.; Abreu, A.L.; George, A.K.; Malavaud, B.; Coloby, P.; Rischmann, P.; Moschini, M.; et al. Available evidence on HIFU for focal treatment of prostate cancer: A systematic review. BJU Int. 2022, 48, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Maestroni, U.; Tafuri, A.; Dinale, F.; Campobasso, D.; Antonelli, A.; Ziglioli, F. Oncologic outcome of salvage high-intensity focused ultrasound (HIFU) in radiorecurrent prostate cancer. A systematic review. Acta Bio Med. Atenei Parm. 2021, 92, 2021191. [Google Scholar]
- Dellabella, M.; Branchi, A.; Di Rosa, M.; Pucci, M.; Gasparri, L.; Claudini, R.; Carnevali, F.; Cecchini, S.; Castellani, D. Oncological and functional outcome after partial prostate HIFU ablation with focal-one®: A prospective single-center study. Prostate Cancer Prostatic Dis. 2021, 24, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Dickinson, R. Calculation the effect of ribs on the focus quality of a therapeutic spherical random phased array. Sensors 2021, 21, 1211. [Google Scholar] [CrossRef]
- Jang, J.H.; Rasmussen, M.F.; Bhuyan, A.; Yoon, H.S.; Moini, A.; Chang, C.; Watkins, R.D.; Choe, J.W.; Nikoozadeh, A.; Stephens, D.; et al. Dual-mode integrated circuit for imaging and HIFU with 2-D CMUT arrays. In Proceedings of the 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, Taiwan, 21–24 October 2015. [Google Scholar]
- El-Desouki, M.M.; Hynynen, K. Driving Circuitry for Focused Ultrasound Noninvasive Surgery and Drug Delivery Applications. Sensors 2011, 11, 539–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpenter, T.M.; Cowell, D.M.J.; Clegg, H.R.; McLaughlan, J.R.; Freear, S. High-Power Gallium Nitride HIFU Transmitter with Integrated Real-Time Current and Voltage Measurement. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 270–280. [Google Scholar] [CrossRef]
- Takagi, R.; Yoshinaka, K.; Washio, T.; Koseki, Y. A visualization method for a wide range of rising temperature induced by high-intensity focused ultrasound using a tissue-mimicking phantom. Int. J. Hyperth. 2022, 39, 22–33. [Google Scholar] [CrossRef]
- Merbeler, F.; Wismath, S.; Haubold, M.; Bretthauer, C.; Kupnik, M. Ultra-Low-Voltage Capacitive Micromachined Ultrasonic Transducers with Increased Output Pressure Due to Piston-Structured Plates. Micromachines 2022, 13, 676. [Google Scholar] [CrossRef]
- Poongodan, P.K.; Sakolski, O.; Vanselow, F.; Maurer, L. An 8 Channel Transceiver ASIC to Interface a CMUT Array. In Proceedings of the 19th IEEE International New Circuits and Systems Conference (NEWCAS), Toulon, France, 1–4 June 2021. [Google Scholar]
- Wodnicki, R.; Kang, H.; Li, D.; Stephens, D.N.; Jung, H.; Sun, Y.; Chen, R.; Jiang, L.-M.; Cabrera-Munoz, N.E.; Foiret, J.; et al. Highly Integrated Multiplexing and Buffering Electronics for Large Aperture Ultrasonic Arrays. BME Front. 2022, 2022, 9870386. [Google Scholar] [CrossRef]
- Khan, M.; Agha, S. Class-E amplifier design for efficient CMUT transmission and wide band operation. Analog Integr. Circuits Signal Process. 2022, 110, 139–149. [Google Scholar] [CrossRef]
- Howard, K.; Ramirez, L.; You, B.H.; Song, I.H. Design Analysis of Capacitive Micromachined Ultrasonic Transducers. In Proceedings of the IEEE 17th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Virtual. 14–17 April 2022; pp. 296–300. [Google Scholar]
- Zheng, J.; Bai, B.; Zhang, H. Multi-channel drive system of phased array based on DDS chips. Appl. Acoust. 2021, 182, 108199. [Google Scholar] [CrossRef]
- Maxwell, A.D.; Haworth, K.J.; Holland, C.K.; Hendley, S.A.; Kreider, W.; Bader, K.B. Design and characterization of an ultrasound transducer for combined histotripsy-thrombolytic therapy. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 69, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Capineri, L. A 15 MHz bandwidth, 60 Vpp, low distortion power amplifier for driving high power piezoelectric transducers. Rev. Sci. Instrum. 2014, 85, 104701. [Google Scholar] [CrossRef] [PubMed]
- Christoffersen, C.; Wong, W.; Pichardo, S.; Togtema, G.; Curiel, L. Class-DE Ultrasound Transducer Driver for HIFU Therapy. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Christoffersen, C.; Ngo, T.; Song, R.; Zhou, Y.; Pichardo, S.; Curiel, L. Quasi Class-DE Driving of HIFU Transducer Arrays. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 214–224. [Google Scholar] [PubMed]
- Song, R.; Christoffersen, C.; Pichardo, S.; Curiel, L. An integrated full-bridge Class-DE ultrasound transducer driver for HIFU applications. In Proceedings of the 14th IEEE International New Circuits and Systems Conference, Vancouver, BC, Canada, 26–29 June 2016. [Google Scholar]
- Ngo, T. Optimum Switch Sizing for Class DE Amplifier. Master’s Thesis, Lakehead University, Thunder Bay, ON, Canada, 2018. [Google Scholar]
- Farhanieh, O.; Sahafi, A.; Bardhan Roy, R.; Ergun, A.S.; Bozkurt, A. Integrated HIFU Drive System on a Chip for CMUT-Based Catheter Ablation System. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Yang, O. Efficiency Characteristics of DC-DC Boost Converter Using GaN, Cool MOS, and SiC MOSFET. J. Semicond. Disp. Technol. 2017, 16, 49–54. [Google Scholar]
Gate Oxide Thickness | Pconduction (mW) | PS (mW) | PG (mW) | PL (mW) | Power Efficiency (%) |
---|---|---|---|---|---|
Thick-oxide | 131.2 | 2.56 | 46.52 | 1728.5 | 90.6 |
Mid-oxide | 95.68 | 1.28 | 30.56 | 1794.3 | 93.4 |
Thin-oxide | 96.4 | 1.44 | 23.26 | 1792.3 | 93.7 |
Ref. [28] | - | - | - | 800 | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.-S.; Ngo, T.; Zhou, Y. Power Efficiency Characterization with Various Gate Oxide Thicknesses in Class DE Amplifiers for HIFU Applications. Electronics 2022, 11, 3191. https://doi.org/10.3390/electronics11193191
Choi H-S, Ngo T, Zhou Y. Power Efficiency Characterization with Various Gate Oxide Thicknesses in Class DE Amplifiers for HIFU Applications. Electronics. 2022; 11(19):3191. https://doi.org/10.3390/electronics11193191
Chicago/Turabian StyleChoi, Hyun-Sik, Thinh Ngo, and Yushi Zhou. 2022. "Power Efficiency Characterization with Various Gate Oxide Thicknesses in Class DE Amplifiers for HIFU Applications" Electronics 11, no. 19: 3191. https://doi.org/10.3390/electronics11193191
APA StyleChoi, H.-S., Ngo, T., & Zhou, Y. (2022). Power Efficiency Characterization with Various Gate Oxide Thicknesses in Class DE Amplifiers for HIFU Applications. Electronics, 11(19), 3191. https://doi.org/10.3390/electronics11193191