Power Efficiency Characterization with Various Gate Oxide Thicknesses in Class DE Amplifiers for HIFU Applications
Abstract
1. Introduction
2. Experiments and Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanchez, M.; Barrere, V.; Treilleux, I.; Chopin, N.; Melodelima, D. Development of a noninvasive HIFU treatment for breast adenocarcinomas using a toroidal transducer based on preliminary attenuation measurements. Ultrasonics 2021, 115, 106459. [Google Scholar] [CrossRef] [PubMed]
- Yee, C.H.; Chiu, P.K.F.; Teoh, J.Y.C.; Ng, C.F.; Chan, C.K.; Hou, S.M. High-intensity focused ultrasound (HIFU) focal therapy for localized prostate cancer with MRI-US fusion platform. Adv. Urol. 2021, 2021, 7157973. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhu, S.; Zhang, H.; Wang, A.; Sun, G.; Liang, J.; Wang, X. The efficacy and safety of MR-HIFU and US-HIFU in treating uterine fibroids with the volume <300 cm3: A meta-analysis. Int. J. Hyperth. 2021, 38, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, A.; Foca, F.; Oboldi, D.; Diano, D.; Bazzocchi, A.; Fabbri, L.; Mercatali, L.; Vanni, S.; Maltoni, M.; Bianchini, D.; et al. 3-T magnetic resonance-guided high-intensity focused ultrasound (3 T-MR-HIFU) for the treatment of pain from bone metastases of solid tumors. Support. Care Cancer 2022, 30, 5737–5745. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.; Ma, B.; Khuri-Yakub, B.T. Applications of capacitive micromachined ultrasonic transducers: A comprehensive review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 456–457. [Google Scholar] [CrossRef] [PubMed]
- Brenner, K.; Ergun, A.S.; Firouzi, K.; Rasmussen, M.F.; Stedman, Q.; Khuri-Yakub, B. Advances in capacitive micromachined ultrasonic transducers. Micromachines 2019, 10, 152. [Google Scholar] [CrossRef]
- Bozkurt, A.; Farhanieh, O.; Roy, R.B.; Ergun, A.S. Design of a driver IC for an ultrasound catheter ablation system. In Proceedings of the 2014 IEEE International Ultrasonics Symposium, Chicago, IL, USA, 3–6 September 2014; pp. 1536–1539. [Google Scholar]
- Bui, N.T.; Nguyen, T.M.T.; Ataklti, G.Y.; Bui, Q.C.; Dinh, T.T.N.; Phan, D.T.; Park, S.; Choi, J.; Vu, T.T.H.; Oh, J. Design of a High-Power Multilevel Sinusoidal Signal and High-Frequency Excitation Module Based on FPGA for HIFU Systems. Electronics 2021, 10, 1299. [Google Scholar] [CrossRef]
- Aus, G. Current status of HIFU and cryotherapy in prostate cancer—A review. Eur. Urol. 2006, 50, 927–934. [Google Scholar] [CrossRef]
- Cordeiro, E.R.; Cathelineau, X.; Thueroff, S.; Marberger, M.; Crouzet, S.; de la Rosette, J.J. High-intensity focused ultrasound (HIFU) for definitive treatment of prostate cancer. BJU Int. 2012, 110, 1228–1242. [Google Scholar] [CrossRef]
- Panzone, J.; Byler, T.; Bratslavsky, G.; Goldberg, H. Transrectal Ultrasound in Prostate Cancer: Current Utilization, Integration with mpMRI, HIFU and Other Emerging Applications. Cancer Manag. Res. 2022, 14, 1209. [Google Scholar] [CrossRef]
- Bakavicius, A.; Marra, G.; Macek, P.; Robertson, C.; Abreu, A.L.; George, A.K.; Malavaud, B.; Coloby, P.; Rischmann, P.; Moschini, M.; et al. Available evidence on HIFU for focal treatment of prostate cancer: A systematic review. BJU Int. 2022, 48, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Maestroni, U.; Tafuri, A.; Dinale, F.; Campobasso, D.; Antonelli, A.; Ziglioli, F. Oncologic outcome of salvage high-intensity focused ultrasound (HIFU) in radiorecurrent prostate cancer. A systematic review. Acta Bio Med. Atenei Parm. 2021, 92, 2021191. [Google Scholar]
- Dellabella, M.; Branchi, A.; Di Rosa, M.; Pucci, M.; Gasparri, L.; Claudini, R.; Carnevali, F.; Cecchini, S.; Castellani, D. Oncological and functional outcome after partial prostate HIFU ablation with focal-one®: A prospective single-center study. Prostate Cancer Prostatic Dis. 2021, 24, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Dickinson, R. Calculation the effect of ribs on the focus quality of a therapeutic spherical random phased array. Sensors 2021, 21, 1211. [Google Scholar] [CrossRef]
- Jang, J.H.; Rasmussen, M.F.; Bhuyan, A.; Yoon, H.S.; Moini, A.; Chang, C.; Watkins, R.D.; Choe, J.W.; Nikoozadeh, A.; Stephens, D.; et al. Dual-mode integrated circuit for imaging and HIFU with 2-D CMUT arrays. In Proceedings of the 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, Taiwan, 21–24 October 2015. [Google Scholar]
- El-Desouki, M.M.; Hynynen, K. Driving Circuitry for Focused Ultrasound Noninvasive Surgery and Drug Delivery Applications. Sensors 2011, 11, 539–556. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, T.M.; Cowell, D.M.J.; Clegg, H.R.; McLaughlan, J.R.; Freear, S. High-Power Gallium Nitride HIFU Transmitter with Integrated Real-Time Current and Voltage Measurement. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 270–280. [Google Scholar] [CrossRef]
- Takagi, R.; Yoshinaka, K.; Washio, T.; Koseki, Y. A visualization method for a wide range of rising temperature induced by high-intensity focused ultrasound using a tissue-mimicking phantom. Int. J. Hyperth. 2022, 39, 22–33. [Google Scholar] [CrossRef]
- Merbeler, F.; Wismath, S.; Haubold, M.; Bretthauer, C.; Kupnik, M. Ultra-Low-Voltage Capacitive Micromachined Ultrasonic Transducers with Increased Output Pressure Due to Piston-Structured Plates. Micromachines 2022, 13, 676. [Google Scholar] [CrossRef]
- Poongodan, P.K.; Sakolski, O.; Vanselow, F.; Maurer, L. An 8 Channel Transceiver ASIC to Interface a CMUT Array. In Proceedings of the 19th IEEE International New Circuits and Systems Conference (NEWCAS), Toulon, France, 1–4 June 2021. [Google Scholar]
- Wodnicki, R.; Kang, H.; Li, D.; Stephens, D.N.; Jung, H.; Sun, Y.; Chen, R.; Jiang, L.-M.; Cabrera-Munoz, N.E.; Foiret, J.; et al. Highly Integrated Multiplexing and Buffering Electronics for Large Aperture Ultrasonic Arrays. BME Front. 2022, 2022, 9870386. [Google Scholar] [CrossRef]
- Khan, M.; Agha, S. Class-E amplifier design for efficient CMUT transmission and wide band operation. Analog Integr. Circuits Signal Process. 2022, 110, 139–149. [Google Scholar] [CrossRef]
- Howard, K.; Ramirez, L.; You, B.H.; Song, I.H. Design Analysis of Capacitive Micromachined Ultrasonic Transducers. In Proceedings of the IEEE 17th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Virtual. 14–17 April 2022; pp. 296–300. [Google Scholar]
- Zheng, J.; Bai, B.; Zhang, H. Multi-channel drive system of phased array based on DDS chips. Appl. Acoust. 2021, 182, 108199. [Google Scholar] [CrossRef]
- Maxwell, A.D.; Haworth, K.J.; Holland, C.K.; Hendley, S.A.; Kreider, W.; Bader, K.B. Design and characterization of an ultrasound transducer for combined histotripsy-thrombolytic therapy. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 69, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Capineri, L. A 15 MHz bandwidth, 60 Vpp, low distortion power amplifier for driving high power piezoelectric transducers. Rev. Sci. Instrum. 2014, 85, 104701. [Google Scholar] [CrossRef] [PubMed]
- Christoffersen, C.; Wong, W.; Pichardo, S.; Togtema, G.; Curiel, L. Class-DE Ultrasound Transducer Driver for HIFU Therapy. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Christoffersen, C.; Ngo, T.; Song, R.; Zhou, Y.; Pichardo, S.; Curiel, L. Quasi Class-DE Driving of HIFU Transducer Arrays. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 214–224. [Google Scholar] [PubMed]
- Song, R.; Christoffersen, C.; Pichardo, S.; Curiel, L. An integrated full-bridge Class-DE ultrasound transducer driver for HIFU applications. In Proceedings of the 14th IEEE International New Circuits and Systems Conference, Vancouver, BC, Canada, 26–29 June 2016. [Google Scholar]
- Ngo, T. Optimum Switch Sizing for Class DE Amplifier. Master’s Thesis, Lakehead University, Thunder Bay, ON, Canada, 2018. [Google Scholar]
- Farhanieh, O.; Sahafi, A.; Bardhan Roy, R.; Ergun, A.S.; Bozkurt, A. Integrated HIFU Drive System on a Chip for CMUT-Based Catheter Ablation System. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Yang, O. Efficiency Characteristics of DC-DC Boost Converter Using GaN, Cool MOS, and SiC MOSFET. J. Semicond. Disp. Technol. 2017, 16, 49–54. [Google Scholar]
Gate Oxide Thickness | Pconduction (mW) | PS (mW) | PG (mW) | PL (mW) | Power Efficiency (%) |
---|---|---|---|---|---|
Thick-oxide | 131.2 | 2.56 | 46.52 | 1728.5 | 90.6 |
Mid-oxide | 95.68 | 1.28 | 30.56 | 1794.3 | 93.4 |
Thin-oxide | 96.4 | 1.44 | 23.26 | 1792.3 | 93.7 |
Ref. [28] | - | - | - | 800 | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.-S.; Ngo, T.; Zhou, Y. Power Efficiency Characterization with Various Gate Oxide Thicknesses in Class DE Amplifiers for HIFU Applications. Electronics 2022, 11, 3191. https://doi.org/10.3390/electronics11193191
Choi H-S, Ngo T, Zhou Y. Power Efficiency Characterization with Various Gate Oxide Thicknesses in Class DE Amplifiers for HIFU Applications. Electronics. 2022; 11(19):3191. https://doi.org/10.3390/electronics11193191
Chicago/Turabian StyleChoi, Hyun-Sik, Thinh Ngo, and Yushi Zhou. 2022. "Power Efficiency Characterization with Various Gate Oxide Thicknesses in Class DE Amplifiers for HIFU Applications" Electronics 11, no. 19: 3191. https://doi.org/10.3390/electronics11193191
APA StyleChoi, H.-S., Ngo, T., & Zhou, Y. (2022). Power Efficiency Characterization with Various Gate Oxide Thicknesses in Class DE Amplifiers for HIFU Applications. Electronics, 11(19), 3191. https://doi.org/10.3390/electronics11193191