Integrated Framework to Assess the Extent of the Pandemic Impact on the Size and Structure of the E-Commerce Retail Sales Sector and Forecast Retail Trade E-Commerce
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data
3.2. Method
3.2.1. Integrated Framework
3.2.2. Data Splitting Rules and the Forecasting Technique
Algorithm 1. Sequential steps for excess e-sales/e-share estimation |
INPUT: Call Quandl() to source FRED data (ECOMSA, ECOMPCTSA series) Step 1. Split each series: 74-7-7 rule (Train/Test/Forecast windows) Step 2. Model fiting on ECOMSA and ECOMPCTSA training windows 2a.call functions HoltWInters(),StructTS(), auto.arima(), ets(),tbats(),nnetar() 2b.establish corresponding fitness function 2c. determine best-fit model specifications for ECOMSA and ECOMPCTSA (2 x 6 best-fit models, in-sample setting) 2d. check the residuals of the 2 x 6 best-fit models from step 2c (ACF plots, PACF Plots, the Box-Ljung test); IF (white noise), go to Step 3. use step 2c models to produce out-of-sample forecasts over the test window for ECOMSA and ECOMPCTSA ELSE, repeat steps 2 a–d Step 4. Compute performance metrics (MAE, MAPE, MASE, RMSE, Theil’s U, ACF1) for the 2 x 6 best-fit models Step 5. Identify best out-of-sample predictive model for ECOMSA and ECOMPCTSA (2 x 1 best forecasting model) Step 6. Confirm superior forecasting ability for Step 5 models (call “DM.test”) Step 7. Re-estimate the Step 5 models on extended Train + Test window (i.e., pre-COVID-19 data, or 81 quarterly observations); retune model parameters; check residuals Step 8. Use updated model specifications from Step 7 to produce forecasts for ECOMSA and ECOMPCTSA up to Q3 2021 Step 8. Estimate and print excess e-sales/e-share FINISH |
3.3. Excess (or Abnormal) E-Commerce Retail Sales (Excess E-Sales) and Excess Share of E-Commerce in Total Retail Sales (Excess E-Share)
3.4. Time Series Forecasting Models
3.5. Forecast Error Measures
3.6. Further Robustness Checks: Tests for Superior Forecasting Performance
4. Results
5. Discussion
5.1. E-Commerce Trends and the COVID-19 Impact
5.2. Characteristics of E-Commerce Time Series
5.3. Policy Implications
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
Appendix A.2. Accuracy Measures
References
- Deloitte. Resilient Leadership Responding to COVID-19, Insights. 2020. Available online: https://www2.deloitte.com/global/en/insights/economy/covid-19/heart-of-resilient-leadership-responding-to-covid-19.html (accessed on 26 January 2022).
- Maria, N.; Zaid, A.; Catrin, S.; Ahmed, K.; Ahmed, A.J.; Christos, I.; Maliha, A.; Riaz, A. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar]
- Erokhin, V.; Gao, T. Impacts of COVID-19 on trade and economic aspects of food security: Evidence from 45 developing countries. Int. J. Environ. Res. Public Health 2020, 17, 5775. [Google Scholar] [CrossRef] [PubMed]
- Tudor, C.; Sova, R. Infodemiological study on the impact of the COVID-19 pandemic on increased headache incidences at the world level. Sci. Rep. 2022, 12, 10253. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.; Schwartz, B.; Rosella, L.C. CoQUAD: A COVID-19 question answering dataset system, facilitating research, benchmarking, and practice. BMC Bioinform. 2022, 23, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, G.; Griffiths, M. Digital transformation during a lockdown. Int. J. Inf. Manag. 2020, 55, 102185. [Google Scholar] [CrossRef] [PubMed]
- Nagel, L. The influence of the COVID-19 pandemic on the digital transformation of work. Int. J. Soc. Soc. Pol. 2020, 40, 861–875. [Google Scholar] [CrossRef]
- Priyono, A.; Moin, A.; Oktaviani Putri VNA. Identifying digital transformation paths in the business model of SMEs during the COVID-19 pandemic. J. Open Innov. Technol. Mark. Complex. 2020, 6, 104. [Google Scholar] [CrossRef]
- Döhring, B.; Hristov, A.; Maier, C.; Roeger, W.; Thum-Thysen, A. COVID-19 acceleration in digitalisation, aggregate productivity growth and the functional income distribution. Int. Econ. Econ. Policy 2021, 18, 571–604. [Google Scholar] [CrossRef]
- Ecommerce Europe, 2021, 2021 European E-Commerce Report. Available online: https://ecommerce-europe.eu/wp-content/uploads/2021/09/2021-European-E-commerce-Report-LIGHT-VERSION.pdf (accessed on 26 February 2022).
- UNCTAD. How COVID-19 Triggered the Digital and E-Commerce Turning Point. 2021. Available online: https://unctad.org/news/how-covid-19-triggered-digital-and-e-commerce-turning-point (accessed on 26 January 2022).
- Insider Intelligence. 2022. Available online: https://www.insiderintelligence.com/insights/ecommerce-industry-statistics/ (accessed on 7 February 2022).
- OECD. E-Commerce in the Time of COVID-19. 2020. Available online: https://www.oecd.org/coronavirus/policy-responses/e-commerce-in-the-time-of-covid-19-3a2b78e8/ (accessed on 7 September 2022).
- Tudor, C. The Impact of the COVID-19 Pandemic on the Global Web and Video Conferencing SaaS Market. Electronics 2022, 11, 2633. [Google Scholar] [CrossRef]
- Rapaccini M, Saccani N, Kowalkowski C, Paiola M, Adrodegari F Navigating disruptive crises through service-led growth: The impact of COVID-19 on Italian manufacturing firms. Ind. Mark. Manag. 2020, 88, 225–237. [CrossRef]
- McKinsey. The Next Normal, The Recovery Will Be Digital. 2020. Available online: https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/how%20six%20companies%20are%20using%20technology%20and%20data%20to%20transform%20themselves/the-next-normal-the-recovery-will-be-digital.pdf (accessed on 6 September 2022).
- Vieira, M.; Malaquias, T.; Ketsmur, V.; Ketsmur, V.; Au-Yong-Oliveira, M. Towards a More Sustainable E-commerce in the Post-COVID-19 Recovery of Portuguese Companies. In International Conference on Advanced Research in Technologies, Information, Innovation and Sustainability; Springer: Cham, Switzerland, 2021; pp. 600–613. [Google Scholar]
- Piccinini, D.; Giunchi, C.; Olivieri, M.; Frattini, F.; Di Giovanni, M.; Prodi, G.; Chiarabba, C. COVID-19 lockdown and its latency in Northern Italy: Seismic evidence and socio-economic interpretation. Sci. Rep. 2020, 10, 16487. [Google Scholar] [CrossRef]
- European Commission. Online Sales Continue to Grow Among EU Enterprises. 2021. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20211228-1 (accessed on 26 January 2022).
- UNCTAD. Global E-Commerce Jumps to $26.7 Trillion, COVID-19 Boosts Online Sales. 2021. Available online: https://unctad.org/news/global-e-commerce-jumps-267-trillion-covid-19-boosts-online-sales (accessed on 26 January 2022).
- Forbes. Global E-Commerce Sales To Hit $4.2 Trillion As Online Surge Continues, Adobe Reports. 2021. Available online: https://www.forbes.com/sites/joanverdon/2021/04/27/global-ecommerce-sales-to-hit-42-trillion-as-online-surge-continues-adobe-reports/?sh=268030f350fd (accessed on 26 January 2022).
- Statista. Retail E-Commerce Sales Worldwide from 2014 to 2024. 2022. Available online: https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/ (accessed on 26 January 2022).
- British International Freight Association (BIFA). Global E-Commerce Jumps to $26.7 Trillion. 2021. Available online: https://www.bifa.org/news/articles/2021/may/global-e-commerce-jumps-to-267-trillion (accessed on 26 January 2022).
- Huber, J.; Stuckenschmidt, H. Daily retail demand forecasting using machine learning with emphasis on calendric special days. Int. J. Forecast. 2020, 36, 1420–1438. [Google Scholar] [CrossRef]
- Ramos, P.; Santos, N.; Rebelo, R. Performance of state space and ARIMA models for consumer retail sales forecasting. Robot. Comput.-Integr. Manuf. 2015, 34, 151–163. [Google Scholar] [CrossRef]
- Beheshti-Kashi, S.; Karimi, H.R.; Thoben, K.D.; Lütjen, M.; Teucke, M. A survey on retail sales forecasting and prediction in fashion markets. Syst. Sci. Control. Eng. 2015, 3, 154–161. [Google Scholar] [CrossRef]
- Diron, M. Short-term forecasts of euro area real GDP growth: An assessment of real-time performance based on vintage data. J. Forecast. 2008, 27, 371–390. [Google Scholar] [CrossRef]
- Turner, L.W.; Witt, S.F. Factors influencing demand for international tourism: Tourism demand analysis using structural equation modelling, revisited. Tour. Econ. 2001, 7, 21–38. [Google Scholar] [CrossRef]
- Joseph, A.; Larrain, M. Housing Starts Forecast of Retail Sales through the 2007-2009 Recession. Procedia Comput. Sci. 2012, 12, 271–275. [Google Scholar] [CrossRef][Green Version]
- Deloitte. Retail Sales: Trends in Revenue and Employment. 2018. Available online: https://www2.deloitte.com/us/en/insights/economy/behind-the-numbers/changes-in-retail-sales-economic-impact.html (accessed on 27 January 2022).
- Markhaichuk, M. Impact of online retail on economic development in Russian regions. In Innovation Management, Entrepreneurship and Sustainability (IMES 2018); Vysoká škola ekonomická v Praze: Prague, Czech Republic, 2018; pp. 635–644. [Google Scholar]
- Wyman, O. Is E-Commerce Good For Europe? 2021. Available online: https://www.oliverwyman.com/content/dam/oliver-wyman/v2/publications/2021/apr/is-ecommerce-good-for-europe.pdf (accessed on 7 February 2022).
- Yang, Y.; Fan, C.; Xiong, H. A novel general-purpose hybrid model for time series forecasting. Appl. Intell. 2021, 52, 2212–2223. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Samaddar, S.; Nargundkar, S. Predicting Electronic Commerce Growth: An Integration Of Diffusion and Neural Network Models. J. Electron. Commer. Res. 2008, 9. [Google Scholar]
- Gujarati, D.N. Basic Econometrics, 4th ed.; McGraw-Hill: Singapore, 2003. [Google Scholar]
- Gujarati, D.N.; Porter, D.C.; Gunasekar, S. Basic Econometrics; Tata McGraw-Hill Education: Noida, India, 2012. [Google Scholar]
- Silva, E.G.; Neto, P.S.D.M.; Cavalcanti, G.D. A dynamic predictor selection method based on recent temporal windows for time series forecasting. IEEE Access 2021, 9, 108466–108479. [Google Scholar] [CrossRef]
- Breiman, L. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Stat. Sci. 2001, 16, 199–231. [Google Scholar] [CrossRef]
- Miller, A.C.; Foti, N.J.; Fox, E.B. Breiman’s Two Cultures: You Don’t Have to Choose Sides. Obs. Stud. 2021, 7, 161–169. [Google Scholar] [CrossRef]
- Charpentier, A.; Flachaire, E.; Ly, A. Econometrics and machine learning. Econ. Et Stat. 2018, 505, 147–169. [Google Scholar] [CrossRef]
- Koehrsen, W. Thoughts on the Two Cultures of Statistical Modeling. 2019. Available online: https://towardsdatascience.com/thoughts-on-the-two-cultures-of-statistical-modeling-72d75a9e06c2 (accessed on 1 February 2022).
- Zhang, G.; Patuwo, B.E.; Hu, M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998, 14, 35–62. [Google Scholar] [CrossRef]
- Kamruzzaman, J.; Sarker, R.A. Artificial neural networks: Applications in finance and manufacturing. In Artificial Neural Networks in Finance and Manufacturing; IGI Global: Hershey, PA, USA, 2006; pp. 1–27. [Google Scholar]
- IJ, H. Statistics versus machine learning. Nat. Methods 2018, 15, 233. [Google Scholar]
- Zao, Q. Statistical Modeling: Returning to Its Roots. 2022. Available online: http://www.statslab.cam.ac.uk/~qz280/post/breiman-reprint-2021/ (accessed on 1 February 2022).
- Adhikari, R.; Agrawal, R.K. An introductory study on time series modeling and forecasting. arXiv 2013, arXiv:1302.6613. [Google Scholar]
- Salinas, D.; Flunkert, V.; Gasthaus, J.; Januschowski, T. DeepAR: Probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 2020, 36, 1181–1191. [Google Scholar] [CrossRef]
- Kuvulmaz, J.; Usanmaz, S.; Engin, S.N. Time-series forecasting by means of linear and nonlinear models. In Mexican International Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, German, 2005; pp. 504–513. [Google Scholar]
- Frank, C.; Garg, A.; Sztandera, L.; Raheja, A. Forecasting women’s apparel sales using mathematical modeling. Int. J. Cloth. Sci. Technol. 2013, 15, 107–125. [Google Scholar] [CrossRef]
- Alon, I.; Qi, M.; Sadowski, R.J. Forecasting aggregate retail sales: A comparison of artificial neural networks and traditional methods. J. Retail. Consum. Serv. 2001, 8, 147–156. [Google Scholar]
- Chu, C.W.; Zhang, G.P. A comparative study of linear and nonlinear models for aggregate retail sales forecasting. Int. J. Prod. Econ. 2003, 86, 217–231. [Google Scholar] [CrossRef]
- Au, K.F.; Choi, T.M.; Yu, Y. Fashion retail forecasting by evolutionary neural networks. Int. J. Prod. Econ. 2008, 114, 615–630. [Google Scholar] [CrossRef]
- Sun, Z.-L.; Choi, T.M.; Au, K.-F.; Yu, Y. Sales forecasting using extreme learning machine with applications in fashion retailing. Decis. Support Syst. 2008, 46, 411–419. [Google Scholar] [CrossRef]
- Thomassey, S. Sales forecasts in clothing industry: The key success factor of the supply chain management. Int. J. Prod. Econ. 2010, 128, 470–483. [Google Scholar] [CrossRef]
- Wong, W.K.; Guo, Z.X. A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm. Int. J. Prod. Econ. 2010, 128, 614–624. [Google Scholar] [CrossRef]
- Office for National Statistics. Impact of the Coronavirus (COVID-19) Pandemic on Retail Sales in 2020. 2021. Available online: https://www.ons.gov.uk/economy/grossdomesticproductgdp/articles/impactofthecoronaviruscovid19pandemiconretailsalesin2020/2021-01-28 (accessed on 27 January 2022).
- Sardar, T.; Nadim, S.S.; Rana, S.; Chattopadhyay, J. Assessment of lockdown effect in some states and overall India: A predictive mathematical study on COVID-19 outbreak. Chaos Solitons Fractals 2020, 139, 110078. [Google Scholar] [CrossRef] [PubMed]
- Corporate Finance Institute (CFI), Abnormal Return. Available online: https://corporatefinanceinstitute.com/resources/knowledge/trading-investing/abnormal-return/ (accessed on 10 January 2022).
- European Commission. Excess Mortality—Statistics. 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Excess_mortality_-_statistics&oldid=550516 (accessed on 4 February 2022).
- Holt, C.C. Forecasting seasonals and trends by exponentially weighted moving averages. ONR Res. Memo. 1959, 52, 5–10. [Google Scholar]
- Winters, P.R. Forecasting sales by exponentially weighted moving averages. Manag. Sci. 1960, 6, 324–342. [Google Scholar] [CrossRef]
- Gelper, S.; Fried, R.; Croux, C. Robust forecasting with exponential and Holt–Winters smoothing. J. Forecast. 2010, 29, 285–300. [Google Scholar]
- Chatfield, C.; Yar, M. Holt-Winters forecasting: Some practical issues. J. R. Stat. Soc. Ser. D 1988, 37, 129–140. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012; ISBN 3-900051-07-0. Available online: http://www.R.-project.org/ (accessed on 20 August 2022).
- Hyndman, R.J.; Koehler, A.B.; Snyder, R.D.; Grose, S. A state space framework for automatic forecasting using exponential smoothing methods. Int. J. Forecast. 2002, 18, 439–454. [Google Scholar] [CrossRef]
- Yang, D.; Sharma, V.; Ye, Z.; Lim, L.I.; Zhao, L.; Aryaputera, A.W. Forecasting of global horizontal irradiance by exponential smoothing, using decompositions. Energy 2015, 81, 111–119. [Google Scholar] [CrossRef]
- Perone, G. Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy. Eur. J. Health Econ. 2021, 23, 917–940. [Google Scholar] [CrossRef] [PubMed]
- Hyndman, R.J.; Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 2008, 26, 1–22. [Google Scholar] [CrossRef]
- Hyndman, R.; Athanasopoulos, G.; Bergmeir, C.; Caceres, G.; Chhay, L.; O’Hara-Wild, M.; Petropoulos, F.; Razbash, S.; Wang, E.; Yasmeen, F. Forecast: Forecasting Functions for Time Series and Linear Models. R package version 8.16. 2022. Available online: https://pkg.robjhyndman.com/forecast/ (accessed on 10 August 2022).
- Box, G.; Jenkins, G. Time Series Analysis: Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1970. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control, 5th ed.; John Wiley & Sons: New York, NY, USA, 2015. [Google Scholar]
- Zhang, G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50, 159–175. [Google Scholar] [CrossRef]
- Wang, L.; Zou, H.; Su, J.; Li, L.; Chaudhry, S. An ARIMA-ANN hybrid model for time series forecasting. Syst. Res. Behav. Sci. 2013, 30, 244–259. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, OTexts, Melbourne. 2018. Available online: OTexts.com/fpp2 (accessed on 10 August 2022).
- Silva, E.S.; Hassani, H.; Heravi, S.; Huang, X. Forecasting tourism demand with denoised neural networks. Ann. Tour. Res. 2019, 74, 134–154. [Google Scholar] [CrossRef]
- De Livera, A.M.; Hyndman, R.J.; Snyder, R.D. Forecasting time series with complex seasonal patterns using exponential smoothing. J. Am. Stat. Assoc. 2011, 106, 1513–1527. [Google Scholar] [CrossRef]
- Yu, C.; Xu, C.; Li, Y.; Yao, S.; Bai, Y.; Li, J.; Wang, L.; Wu, W.; Wang, Y. Time series analysis and forecasting of the hand-foot-mouth disease morbidity in China using an advanced exponential smoothing state space TBATS model. Infect. Drug Resist. 2021, 14, 2809. [Google Scholar] [CrossRef]
- Harvey, A.C. Forecasting Analysis of Time Series Models and the Kalman Filter; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Lawson, A.R.; Ghosh, B.; Broderick, B. Prediction of traffic-related nitrogen oxides concentrations using Structural Time-Series models. Atmos. Environ. 2011, 45, 4719–4727. [Google Scholar] [CrossRef]
- Kapombe, C.M.; Colyer, D. A structural time series analysis of US broiler exports. Agric. Econ. 1999, 21, 295–307. [Google Scholar] [CrossRef]
- Pasini, A. Artificial neural networks for small dataset analysis. J. Thorac. Dis. 2015, 7, 953. [Google Scholar]
- Allende, H.; Moraga, C.; Salas, R. Artificial neural networks in time series forecasting: A comparative analysis. Kybernetika 2002, 38, 685–707. [Google Scholar]
- Gupta, T. Deep Learning: Feedforward Neural Network. 2017. Available online: https://towardsdatascience.com/deep-learning-feedforward-neural-network-26a6705dbdc7 (accessed on 1 February 2022).
- Hill, T.; Marquez, L.; O’Connor, M.; Remus, W. Artificial neural network models for forecasting and decision making. Int. J. Forecast. 1994, 10, 5–15. [Google Scholar] [CrossRef]
- Munim, Z.H.; Shakil, M.H.; Alon, I. Next-day bitcoin price forecast. J. Risk Financ. Manag. 2019, 12, 103. [Google Scholar] [CrossRef]
- Tudor, C.; Sova, R. Benchmarking GHG Emissions Forecasting Models for Global Climate Policy. Electronics 2021, 10, 3149. [Google Scholar] [CrossRef]
- Adya, M.; Collopy, F. How effective are neural networks at forecasting and prediction? A review and evaluation. J. Forecast. 1998, 17, 481–495. [Google Scholar] [CrossRef]
- Munim, Z.H. State-space TBATS model for container freight rate forecasting with improved accuracy. Marit. Transp. Res. 2022, 3, 100057. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef]
- Diebold, F.X.; Mariano, R.S. Comparing Predictive Accuracy. J. Bus. Econ. Stat. 1995, 13, 253–263. [Google Scholar]
- Harvey, D.; Leybourne, S.; Newbold, P. Testing the equality of prediction mean squared errors. Int. J. Forecast. 1997, 13, 281–291. [Google Scholar] [CrossRef]
- Hering, A.S.; Genton, M.G. Comparing spatial predictions. Technometrics 2011, 53, 414–425. [Google Scholar] [CrossRef]
- Gilleland, E.; Roux, G. A new approach to testing forecast predictive accuracy. Meteorol. Appl. 2015, 22, 534–543. [Google Scholar] [CrossRef]
- Coroneo, L.; Iacone, F. Comparing predictive accuracy in small samples using fixed-smoothing asymptotics. J. Appl. Econom. 2020, 35, 391–409. [Google Scholar] [CrossRef]
- Diebold, F.X. Comparing predictive accuracy, twenty years later: A personal perspective on the use and abuse of Diebold–Mariano tests. J. Bus. Econ. Stat. 2015, 33, 1. [Google Scholar] [CrossRef]
- Huang, Y.; Chai, Y.; Liu, Y.; Shen, J. Architecture of next-generation e-commerce platform. Tsinghua Sci. Technol. 2018, 24, 18–29. [Google Scholar] [CrossRef]
- COFACE. Has the Global Retail Sector Returned to Normal? 2021. Available online: https://www.coface.com/News-Publications/News/Has-the-global-retail-sector-returned-to-normal (accessed on 27 January 2022).
- Statista. E-Commerce in the United States—Statistics & Facts. 2022. Available online: https://www.statista.com/topics/2443/us-ecommerce/ (accessed on 4 February 2022).
- World Economic Forum. These Are the World’s Biggest E-Commerce Markets. 2021. Available online: https://www.weforum.org/agenda/2021/09/e-commerce-fast-growth-online-sales-china-europe-america/ (accessed on 4 February 2022).
- Aye, G.C.; Balcilar, M.; Gupta, R.; Majumdar, A. Forecasting aggregate retail sales: The case of South Africa. Int. J. Prod. Econ. 2015, 160, 66–79. [Google Scholar] [CrossRef]
- Di, G.; Latorre, V.; Lucidi, S.; Procacci, E. An application of support vector machines to sales forecasting under promotions. 4OR 2016, 14, 309–325. [Google Scholar]
- Zhang, G.P.; Qi, M. Neural network forecasting for seasonal and trend time series. Eur. J. Oper. Res. 2005, 160, 501–514. [Google Scholar] [CrossRef]
- Saarikko, T.; Westergren, U.H.; Blomquist, T. Digital transformation: Five recommendations for the digitally conscious firm. Bus. Horiz. 2020, 63, 825–839. [Google Scholar] [CrossRef]
- Aras, S.; Deveci Kocakoç, İ.; Polat, C. Comparative study on retail sales forecasting between single and combination methods. J. Bus. Econ. Manag. 2017, 18, 803–832. [Google Scholar] [CrossRef]
- Loureiro, A.L.; Miguéis, V.L.; da Silva, L.F. Exploring the use of deep neural networks for sales forecasting in fashion retail. Decis. Support Syst. 2018, 114, 81–93. [Google Scholar] [CrossRef]
- Quaedvlieg, R. Multi-horizon forecast comparison. J. Bus. Econ. Stat. 2021, 39, 40–53. [Google Scholar] [CrossRef]
- Leuthold, R.M. On the use of Theil’s inequality coefficients. Am. J. Agric. Econ. 1975, 57, 344–346. [Google Scholar] [CrossRef]
Path A: Training Set (October 1999 to March 2017) and Test Set (April 2017 to December 2019) | ||||||
Predictive Model | MAE | MAPE | MASE | RMSE | Theil’s U | ACF1 |
NNAR | 4662.79 | 3.19 | 2.74 | 6592.65 | 1.48 | 0.64 |
ETS | 2131.34 | 1.59 | 1.25 | 2548.14 | 0.63 | 0.36 |
ARIMA | 1923.24 | 1.44 | 1.13 | 2353.49 | 0.58 | 0.41 |
STS | 1978.93 | 1.48 | 1.16 | 2421.46 | 0.60 | 0.39 |
HW | 2102.57 | 1.57 | 1.24 | 2526.42 | 0.63 | 0.37 |
TBATS | 1885.01 | 1.41 | 1.11 | 2301.64 | 0.57 | 0.40 |
DM (TBATS/ARIMA) (p-value) | 0.0357 ** | |||||
Path B: Training Set (October 1999 to June 2017) and Test Set (July 2017 to September 2021) | ||||||
Predictive Model | MAE | MAPE | MASE | RMSE | Theil’s U | ACF1 |
NNAR | 32,950.70 | 26.69 | 24.68 | 33,666.45 | 1.74 | 0.50 |
ETS | 15,516.73 | 12.60 | 11.99 | 15,846.25 | 1.47 | 0.41 |
ARIMA | 15,530.94 | 12.11 | 11.56 | 15,860.50 | 1.52 | 0.41 |
STS | 15,540.40 | 12.59 | 11.58 | 15,870.03 | 1.47 | 0.41 |
HW | 15,530.95 | 13.67 | 11.67 | 15,860.51 | 1.48 | 0.41 |
TBATS | 14,702.29 | 11.59 | 11.01 | 15,000.50 | 1.47 | 0.39 |
DM (TBATS/STS) (p-value) | 0.0729 ** |
Path A: Training Set (October 1999 to March 2017) and Test Set (April 2017 to December 2019) | ||||||
Predictive Model | MAE | MAPE | MASE | RMSE | Theil’s U | ACF1 |
NNAR | 0.28 | 2.60 | 2.31 | 0.38 | 1.45 | 0.61 |
ETS | 0.11 | 1.05 | 0.89 | 0.12 | 0.46 | 0.29 |
ARIMA | 0.11 | 1.08 | 0.91 | 0.12 | 0.47 | 0.31 |
STS | 0.10 | 1.01 | 0.85 | 0.12 | 0.45 | 0.28 |
HW | 0.12 | 1.15 | 0.96 | 0.13 | 0.49 | 0.34 |
TBATS | 0.10 | 1.02 | 0.86 | 0.12 | 0.45 | 0.26 |
DM (STS/TBATS) (p-value) | 0.653 | |||||
Path B: Training Set (October 1999 to December 2019) and Test Set (January 2020 to October 2021) | ||||||
Predictive Model | MAE | MAPE | MASE | RMSE | Theil’s U | ACF1 |
NNAR | 1.72 | 13.65 | 14.81 | 2.26 | 1.21 | 0.72 |
ETS | 0.91 | 6.73 | 7.80 | 1.53 | 1.08 | 0.56 |
ARIMA | 0.91 | 6.61 | 7.08 | 1.52 | 1.09 | 0.55 |
STS | 0.87 | 6.34 | 7.61 | 1.52 | 0.87 | 0.55 |
HW | 0.90 | 6.56 | 7.68 | 1.50 | 1.08 | 0.55 |
TBATS | 0.76 | 5.51 | 6.60 | 1.38 | 0.87 | 0.52 |
DM (STS/TBATS) (p-value) | 0.0217 ** |
Real Value (mil. USD) | Estimated Value (mil. USD) | Excess E-Sales (mil. USD) | |
---|---|---|---|
2020 Q1 | 154,575 | 155,453.7 | −878.7 |
2020 Q2 | 203,847 | 159,944.5 | 43,902.5 |
2020 Q3 | 201,385 | 164,464.1 | 36,920.9 |
2020 Q4 | 199,665 | 169,012.3 | 30,652.7 |
2021 Q1 | 215,290 | 173,588.4 | 41,701.6 |
2021 Q2 | 221,951 | 178,192.2 | 43,758.8 |
2021 Q3 | 214,586 | 182,823.2 | 31,762.8 |
Sum | 227,820.6 |
Real Value(%) | Estimated Value (%) | Excess E-Share (%) | |
---|---|---|---|
2020 Q1 | 11.4 | 11.25 | 0.15 |
2020 Q2 | 15.7 | 11.49 | 4.21 |
2020 Q3 | 13.8 | 11.73 | 2.07 |
2020 Q4 | 13.6 | 11.97 | 1.63 |
2021 Q1 | 13.6 | 12.21 | 1.39 |
2021 Q2 | 13.3 | 12.45 | 0.85 |
2021 Q3 | 13.0 | 12.69 | 0.31 |
Sum | 10.61 |
Point Forecast E-Sales (mil. USD) | Point Forecast E-Share (%) | |
---|---|---|
2021 Q4 | 225,330.1 | 13.47 |
2022 Q1 | 233,242.8 | 13.67 |
2022 Q2 | 241,361.6 | 13.87 |
2022 Q3 | 249,690.0 | 14.08 |
2022 Q4 | 258,231.6 | 14.28 |
2023 Q1 | 266,989.9 | 14.49 |
2023 Q2 | 275,968.5 | 14.65 |
2023 Q3 | 285,171.2 | 14.89 |
2023 Q4 | 294,601.5 | 15.09 |
2024 Q1 | 304,263.2 | 15.30 |
2024 Q2 | 314,160.0 | 15.56 |
2024 Q3 | 324,295.7 | 15.71 |
2024 Q4 | 334,674.1 | 15.93 |
2025 Q1 | 345,298.9 | 16.11 |
2025 Q2 | 356,174.2 | 16.32 |
2025 Q3 | 367,303.6 | 16.54 |
2025 Q4 | 378,691.2 | 16.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudor, C. Integrated Framework to Assess the Extent of the Pandemic Impact on the Size and Structure of the E-Commerce Retail Sales Sector and Forecast Retail Trade E-Commerce. Electronics 2022, 11, 3194. https://doi.org/10.3390/electronics11193194
Tudor C. Integrated Framework to Assess the Extent of the Pandemic Impact on the Size and Structure of the E-Commerce Retail Sales Sector and Forecast Retail Trade E-Commerce. Electronics. 2022; 11(19):3194. https://doi.org/10.3390/electronics11193194
Chicago/Turabian StyleTudor, Cristiana. 2022. "Integrated Framework to Assess the Extent of the Pandemic Impact on the Size and Structure of the E-Commerce Retail Sales Sector and Forecast Retail Trade E-Commerce" Electronics 11, no. 19: 3194. https://doi.org/10.3390/electronics11193194
APA StyleTudor, C. (2022). Integrated Framework to Assess the Extent of the Pandemic Impact on the Size and Structure of the E-Commerce Retail Sales Sector and Forecast Retail Trade E-Commerce. Electronics, 11(19), 3194. https://doi.org/10.3390/electronics11193194