Increasing the Directivity of Resonant Cavity Antennas with Nearfield Transformation Meta-Structure Realized with Stereolithograpy
Abstract
:1. Introduction
2. Configuration of RCA and the Nearfield Transformation Meta-Structure
3. Fabrication, Measurements, and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liang, M.; Xin, H. Three-dimensionally printed/additive manufactured antennas. In Handbook of Antenna Technologies; Springer: Singapore, 2016; pp. 661–697. [Google Scholar]
- Liang, M.; Wu, J.; Yu, X.; Xin, H. 3D printing technology for RF and THz antennas. In Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016; pp. 536–537. [Google Scholar]
- Nayeri, P.; Liang, M.; Sabory-Garcı, R.A.; Tuo, M.; Yang, F.; Gehm, M.; Xin, H.; Elsherbeni, A.Z. 3D printed dielectric reflectarrays: Low-cost high-gain antennas at sub-millimeter waves. IEEE Trans. Antennas Propag. 2014, 62, 2000–2008. [Google Scholar] [CrossRef]
- Liang, M.; Ng, W.R.; Chang, K.; Gbele, K.; Gehm, M.E.; Xin, H. A 3-D Luneburg lens antenna fabricated by polymer jetting rapid prototyping. IEEE Trans. Antennas Propag. 2014, 62, 1799–1807. [Google Scholar] [CrossRef]
- Friel, R.J.; Gerling-Gerdin, M.; Nilsson, E.; Andreasson, B.P. 3D Printed Radar Lenses with Anti-Reflective Structures. Designs 2019, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Vardaxoglou, Y.; Whittow, W.; Mittra, R. 3D-printed graded index lens for RF applications. In Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016; pp. 90–91. [Google Scholar]
- Yurduseven, O.; Ye, S.; Fromenteze, T.; Wiley, B.J.; Smith, D.R. 3D Conductive Polymer Printed Metasurface Antenna for Fresnel Focusing. Designs 2019, 3, 46. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Afzal, M.U.; Lalbakhsh, A.; Esselle, K.P. 3-D-printed phase-rectifying transparent superstrate for Resonant-Cavity Antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1400–1404. [Google Scholar] [CrossRef]
- Hayat, T.; Afzal, M.U.; Lalbakhsh, A.; Esselle, K.P. Additively manufactured perforated superstrate to improve directive radiation characteristics of electromagnetic source. IEEE Access 2019, 7, 153445–153452. [Google Scholar] [CrossRef]
- Mitchell, G.; Turowski, D. Additive Manufacturing for Antenna Applications. In Radio Frequency Antenna; IntechOpen: London, UK, 2020; Available online: https://www.intechopen.com/books/advanced-radio-frequency-antennas-for-modern-communication-and-medical-systems/additive-manufacturing-for-antenna-applications (accessed on 31 January 2021).
- Zhang, S.; Njoku, C.C.; Whittow, W.G.; Vardaxoglou, J.C. Novel 3D printed synthetic dielectric substrates. Microw. Opt. Technol. Lett. 2015, 57, 2344–2346. [Google Scholar] [CrossRef] [Green Version]
- Du, G.; Liang, M.; Sabory-Garcia, R.A.; Liu, C.; Xin, H. 3-D printing implementation of an X-band Eaton lens for beam deflection. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1487–1490. [Google Scholar] [CrossRef]
- Massaccesi, A.; Pirinoli, P.; Bertana, V.; Scordo, G.; Marasso, S.L.; Cocuzza, M.; Dassano, G. 3D-printable dielectric transmitarray with enhanced bandwidth at millimeter-waves. IEEE Access 2018, 6, 46407–46418. [Google Scholar] [CrossRef]
- Massaccesi, A.; Dassano, G.; Pirinoli, P. Beam Scanning Capabilities of a 3D-Printed perforated dielectric transmitarray. Electronics 2019, 8, 379. [Google Scholar] [CrossRef] [Green Version]
- Chi, P.L.; Pao, C.H.; Huang, M.H.; Yang, T. High-Gain Patch-Fed 3D-Printing Fresnel Zone Plate Lens Antenna for 60-GHz Communications. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 597–598. [Google Scholar]
- Hoel, K.V.; Kristoffersen, S. Characterization of variable density 3D printed materials for broadband GRIN lenses. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meetinghl, San Diego, CA, USA, 9–14 July 2017; pp. 2643–2644. [Google Scholar]
- Poyanco, J.M.; Pizarro, F.; Rajo-Iglesias, E. 3D-Printing for Transformation Optics in Electromagnetic High-Frequency Lens Applications. Materials 2020, 13, 2700. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Burokur, S.N.; Piau, G.P.; de Lustrac, A. 3D printed broadband transformation optics based all-dielectric microwave lenses. J. Opt. 2016, 18, 044010. [Google Scholar] [CrossRef]
- Monkevich, J.M.; Le Sage, G.P. Design and fabrication of a custom-dielectric Fresnel multi-zone plate lens antenna using additive manufacturing techniques. IEEE Access 2019, 7, 61452–61460. [Google Scholar] [CrossRef]
- Yi, H.; Qu, S.W.; Ng, K.B.; Chan, C.H.; Bai, X. 3-D printed millimeter-wave and terahertz lenses with fixed and frequency scanned beam. IEEE Trans. Antennas Propag. 2015, 64, 442–449. [Google Scholar] [CrossRef]
- Pepino, V.M.; da Mota, A.F.; Martins, A.; Borges, B.H.V. 3-D-printed dielectric metasurfaces for antenna gain improvement in the Ka-band. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2133–2136. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Jiao, Y.C.; Liu, S.B. 3-D-printed comb mushroom-like dielectric lens for stable gain enhancement of printed log-periodic dipole array. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2099–2103. [Google Scholar] [CrossRef]
- Hashmi, R.M.; Esselle, K.P. Resonant cavity antennas. In Wiley Encyclopedia of Electrical and Electronics Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Hashmi, R.M.; Esselle, K.P. A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products. IEEE Trans. Antennas Propag. 2015, 64, 830–835. [Google Scholar] [CrossRef]
- Afzal, M.U.; Esselle, K.P.; Zeb, B.A. Dielectric phase-correcting structures for electromagnetic band gap resonator antennas. IEEE Trans. Antennas Propag. 2015, 63, 3390–3399. [Google Scholar] [CrossRef]
- Hashmi, R.; Baba, A.; Esselle, K. Transverse Permittivity Gradient (TPG) Superstrates or Lens: A Critical Perspective. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 831–832. [Google Scholar]
- Baba, A.A.; Hashmi, R.M.; Esselle, K.P.; Ahmad, Z.; Hesselbarth, J. Millimeter-Wave Broadband Antennas with Low Profile Dielectric Covers. IEEE Access 2019, 7, 186228–186235. [Google Scholar] [CrossRef]
- Baba, A.A.; Hashmi, R.H.; Esselle, K.P.; Weily, A.R. Improving radiation performance of extremely truncated RCAs through near-field analysis. IET Microwaves Antennas Propag. 2018, 12, 1954–1959. [Google Scholar] [CrossRef]
- Baba, A.A.; Hashmi, R.M.; Esselle, K.P.; Weily, A.R.; Matekovits, L. Sidelobe suppression in resonant cavity antennas through near-field analysis. In Proceedings of the 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), Cartagena des Indias, Colombia, 10–14 September 2018; pp. 359–361. [Google Scholar]
References | Dimension (mm × mm) | Height of Structure (mm) | Overall Height from Source (mm) | Peak Directivity (dBi) | Peak Gain (dBi) | Lowest Operating Frequency (GHz) | Aperture Efficiency (%) | 3dB Directivity Bandwidth (%) | Side Lobe Level (dBi) | Weight (gm) | Number of Unit Cells | Fabrication Type |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Proposed | 100 × 100 (4 × 4) | 15 (0.6) | 36.29 (1.45) | 20.15 | 19.3 | 11.5 | 47 | 12.3 | −16.5 | 52 | 196 | Stereolithography |
[4] | 120 × 120 (4 × 4) | 120 (4) | 120 (4) | n/a | 18.5 | 8.2 | 35.21 | 20.39 | −20 | n/a | 7497 | Polymer Jetting |
[8] | 115.2 × 115.2 (4.32 × 4.32) | 21 (0.8) | 43.48 (1.63) | 20.3 | n/a | 10 | 46.4 | 9.4 | −17 | 79.5 | n/a | Fused Deposition Modeling |
[9] | 115.2 × 115.2 (4.26 × 4.26) | 15 (0.5) | 40.78 (1.51) | 21.12 | 19.3 | 10.9 | 37.34 | 6.5 | −17.2 | 139.3 | n/a | Fused Deposition Modeling |
[11] | 50 × 50 | 2.4 | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | Fused Deposition Modeling |
[13] | 156 × 156 (15.6 × 15.6) | 13.5 (1.35) | 291 (2.91) | n/a | 30.7 | 27.5 | 38.6 | n/a | −22.6 | n/a | 2704 | PolyJet Technology |
[25] | 162 × 162 (6 × 6) | 40 (1.48) | 64.57 (2.39) | 21.6 | 21.2 | 10.5 | 29 | 8 | −13 | n/a | 324 | Rexolite 1422 |
[27] | 9.73 | 7.21 (1.44) | 11 (2.2) | 19.8 | 19.25 | 55.2 | n/a | 8.15 | −9 | n/a | n/a | Rogers TMM10i |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, S.; Zahra, H.; Abbasi, M.A.B.; Asadnia, M.; Abbas, S.M. Increasing the Directivity of Resonant Cavity Antennas with Nearfield Transformation Meta-Structure Realized with Stereolithograpy. Electronics 2021, 10, 333. https://doi.org/10.3390/electronics10030333
Shrestha S, Zahra H, Abbasi MAB, Asadnia M, Abbas SM. Increasing the Directivity of Resonant Cavity Antennas with Nearfield Transformation Meta-Structure Realized with Stereolithograpy. Electronics. 2021; 10(3):333. https://doi.org/10.3390/electronics10030333
Chicago/Turabian StyleShrestha, Sujan, Hijab Zahra, Muhammad Ali Babar Abbasi, Mohsen Asadnia, and Syed Muzahir Abbas. 2021. "Increasing the Directivity of Resonant Cavity Antennas with Nearfield Transformation Meta-Structure Realized with Stereolithograpy" Electronics 10, no. 3: 333. https://doi.org/10.3390/electronics10030333
APA StyleShrestha, S., Zahra, H., Abbasi, M. A. B., Asadnia, M., & Abbas, S. M. (2021). Increasing the Directivity of Resonant Cavity Antennas with Nearfield Transformation Meta-Structure Realized with Stereolithograpy. Electronics, 10(3), 333. https://doi.org/10.3390/electronics10030333