A Horn Antenna Covered with a 3D-Printed Metasurface for Gain Enhancement
Abstract
1. Introduction
2. Analysis of Unit Cell
3. Phase Transformation
4. Fabrication and Measurement Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Honari, M.M.; Mirzavand, R.; Aslanzadeh, S.; Saghlatoon, H.; Mousavi, P. Wideband Printed TM 01 to TE 11 Mode Converters. IEEE Access 2019, 7, 35438–35448. [Google Scholar] [CrossRef]
- Alkaraki, S.; Andy, A.S.; Gao, Y.; Tong, K.F.; Ying, Z.; Donnan, R.; Parini, C. Compact and Low-Cost 3-D Printed Antennas Metalized Using Spray-Coating Technology for 5G mm-Wave Communication Systems. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2051–2055. [Google Scholar] [CrossRef]
- Liang, M.; Ng, W.R.; Chang, K.; Gbele, K.; Gehm, M.E.; Xin, H. A 3-D Luneburg lens antenna fabricated by polymer jetting rapid prototyping. IEEE Trans. Antennas Propag. 2014, 62, 1799–1807. [Google Scholar] [CrossRef]
- Chieh, J.C.S.; Dick, B.; Loui, S.; Rockway, J.D. Development of a Ku-band corrugated conical horn using 3-D print technology. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 201–204. [Google Scholar] [CrossRef]
- Du, G.; Liang, M.; Sabory-Garcia, R.A.; Liu, C.; Xin, H. 3-D printing implementation of an X-band Eaton lens for beam deflection. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1487–1490. [Google Scholar] [CrossRef]
- Ghazali, M.I.M.; Karuppuswami, S.; Kaur, A.; Chahal, P. 3-D printed air substrates for the design and fabrication of RF components. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 982–989. [Google Scholar] [CrossRef]
- Laplanche, E.; Feuray, W.; Sence, J.; Perigaud, A.; Tantot, O.; Delhote, N.; Menudier, C.; Arnaud, E.; Thevenot, M.; Monédière, T.; et al. Additive manufacturing of low cost and efficient proof of concepts for microwave passive components. IET Microw. Antennas Propag. 2017, 11, 1997–2004. [Google Scholar] [CrossRef]
- Massaccesi, A.; Pirinoli, P.; Bertana, V.; Scordo, G.; Marasso, S.L.; Cocuzza, M.; Dassano, G. 3D-printable dielectric transmitarray with enhanced bandwidth at millimeter-waves. IEEE Access 2018, 6, 46407–46418. [Google Scholar] [CrossRef]
- Matos, S.A.; Teixeira, J.P.; Costa, J.R.; Fernandes, C.A.; Nachabe, N.; Luxey, C.; Titz, D.; Gianesello, F.; Del Rio, C.; Arboleya, A.; et al. 3D-Printed transmit-array antenna for broadband backhaul 5G links at V band. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 977–981. [Google Scholar] [CrossRef]
- Saghlatoon, H.; Honari, M.M.; Aslanzadeh, S.; Mirzavand, R. Electrically-small Luneburg lens for antenna gain enhancement using new 3D printing filling technique. AEU Int. J. Electron. Commun. 2020, 124, 153352. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, Y.X.; Guo, Q.; Wu, L.; Ng, K.B.; Wong, H.; Zhou, Y.; Huang, K. Dielectric and metallic jointly 3D-printed mmWave hyperbolic lens antenna. IET Microw. Antennas Propag. 2019, 13, 1934–1939. [Google Scholar] [CrossRef]
- Ryan, C.G.M.; Chaharmir, M.; Shaker, J.; Bray, J.; Antar, Y.; Ittipiboon, A. A wideband transmitarray using dual-resonant double square rings. IEEE Trans. Antennas Propag. 2010, 58, 1486–1493. [Google Scholar] [CrossRef]
- Al-Nuaimi, M.K.T.; Hong, W.; Zhang, Y. Design of High-Directivity Compact-Size Conical Horn Lens Antenna. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 467–470. [Google Scholar] [CrossRef]
- Liu, K.; Ge, Y.; Lin, C. A Compact Wideband High-Gain Metasurface-Lens-Corrected Conical Horn Antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 457–461. [Google Scholar] [CrossRef]
- Constantine, A. Balanis: Antenna Theory and Design; John Wileys & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Molaei, A.; Bisulco, A.; Tirado, L.; Zhu, A.; Cachay, D.; Dagheyan, A.G.; Martinez-Lorenzo, J. 3D-Printed e-Band compressive horn antenna for high-sensing-capacity imaging applications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1639–1642. [Google Scholar] [CrossRef]
- Addamo, G.; Peverini, O.A.; Calignano, F.; Manfredi, D.; Paonessa, F.; Virone, G.; Dassano, G. 3D printing of high-performance feed horns from ku-to v-Bands. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2036–2040. [Google Scholar] [CrossRef]
- Zhang, S.; Cadman, D.; Vardaxoglou, J.Y.C. Additively manufactured profiled conical horn antenna with dielectric loading. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2128–2132. [Google Scholar] [CrossRef]
- Carkaci, M.E.; Secmen, M. The prototype of a wideband ku-band conical corrugated horn antenna with 3-D printing technology. Adv. Electromagn. 2019, 8, 39–47. [Google Scholar] [CrossRef]
- Chuma, E.L.; Iano, Y.; Roger, L.L.B.; Scroccaro, M.; Frazatto, F.; Manera, L.T. Performance analysis of x band horn antennas using additive manufacturing method coated with different techniques. J. Microw. Optoelectron. Electromagn. Appl. 2019, 18, 263–269. [Google Scholar] [CrossRef]
- Moradi, A.; Mohajeri, F. Side lobe level reduction and gain enhancement of a pyramidal horn antenna in the presence of metasurfaces. IET Microwaves Antennas Propag. 2017, 12, 295–301. [Google Scholar] [CrossRef]
- Han, J.; Li, L.; Zhang, T.; Xi, R. Control and improvement of antenna gain by using multilayer non-uniform metasurfaces. EPJ Appl. Metamater. 2019, 6, 4. [Google Scholar] [CrossRef]
- Manikandan, R.; Rao, P.; Jawahar, P. Gain enhancement of horn antenna using meta surface lens. Adv. Electromagn. 2018, 7, 27–33. [Google Scholar] [CrossRef]
- Yu, Y.H.; Wu, W.; Zong, Z.Y.; Fang, D.G. Awire-metamaterial-loaded resonant cavity antenna using 3D printing technology. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2119–2122. [Google Scholar] [CrossRef]
- Hayat, T.; Afzal, M.U.; Lalbakhsh, A.; Esselle, K.P. 3D printed phase-rectifying transparent superstrate for resonant-cavity antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1400–1404. [Google Scholar] [CrossRef]
- Baba, A.A.; Hashmi, R.M.; Esselle, K.P.; Weily, A.R. Compact high-gain antenna with simple all-dielectric partially reflecting surface. IEEE Trans. Antennas Propag. 2018, 66, 4343–4348. [Google Scholar] [CrossRef]
References | Dimension (mm × mm × mm) | Peak Gain (dBi) | Operating Frequency Range (GHz) | Aperture Efficiency (%) | Bandwidth (%) | Range of Gain (dBi) | Side Lobe Level (dBi) | Weight (gm) | Fabrication Type |
---|---|---|---|---|---|---|---|---|---|
Proposed | 100 × 100 × 252.5 (4 × 4 × 10.1) | 25 | 10 to 18 | 35 to 75 | 66.67 | 17.8 to 23.4 | −16 to −40 | 345.37 | Multijet 3D printing and copper plating on ABS printed horn |
[2] | 20.34 × 11.26 × 6.54 (1.9 × 1.05 × 0.61) | 12.5 | 28 to 30 | 70 | 8.8 | 8 to 12.5 | −12 | 1.35 | Vero Clear Polyethylene and metal spray |
[4] | 13.04 × 6.34 | 19.6 | 10 to 18 | n/a | 57.14 | 6.23 to 18.98 | n/a | n/a | ABS with aerosol paint |
[8] | 156 × 156 × 13.5 (15.6 × 15.6 × 1.35) | 30.7 | 27.5 to 34 | 38.6 | 21.5 | 29.75 to 30.75 | −22.6 | n/a | Polyjet Technology |
[9] | 156 × 156 × 9.7 (16 × 16 × 1.94) | 30 | 57 to 66 | 42 | 15 | 30.2 to 31.5 | n/a | n/a | Fused Deposition Technique |
[10] | 10.46 | 20.5 | 8 to 12 | 59.26 | 40 | 19 to 21 | −15 | 373 | Nylon 6 filament |
[15] | 11.67 × 7.4 | 21 | 9 to 15 | 46 to 75 | 33.33 | 16 to 20 | −19 to −22 | 200 | PLA and Copper Plating |
[18] | 110 × 90 × 135 (5.5 × 4.5 × 6.75) | 20 | 13 to 18 | n/a | 40 | 20.3 to 21.5 | −14 to −29 | n/a | Metal |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, S.; Baba, A.A.; Abbas, S.M.; Asadnia, M.; Hashmi, R.M. A Horn Antenna Covered with a 3D-Printed Metasurface for Gain Enhancement. Electronics 2021, 10, 119. https://doi.org/10.3390/electronics10020119
Shrestha S, Baba AA, Abbas SM, Asadnia M, Hashmi RM. A Horn Antenna Covered with a 3D-Printed Metasurface for Gain Enhancement. Electronics. 2021; 10(2):119. https://doi.org/10.3390/electronics10020119
Chicago/Turabian StyleShrestha, Sujan, Affan A. Baba, Syed Muzahir Abbas, Mohsen Asadnia, and Raheel M. Hashmi. 2021. "A Horn Antenna Covered with a 3D-Printed Metasurface for Gain Enhancement" Electronics 10, no. 2: 119. https://doi.org/10.3390/electronics10020119
APA StyleShrestha, S., Baba, A. A., Abbas, S. M., Asadnia, M., & Hashmi, R. M. (2021). A Horn Antenna Covered with a 3D-Printed Metasurface for Gain Enhancement. Electronics, 10(2), 119. https://doi.org/10.3390/electronics10020119