A Horn Antenna Covered with a 3D-Printed Metasurface for Gain Enhancement
Abstract
:1. Introduction
2. Analysis of Unit Cell
3. Phase Transformation
4. Fabrication and Measurement Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Honari, M.M.; Mirzavand, R.; Aslanzadeh, S.; Saghlatoon, H.; Mousavi, P. Wideband Printed TM 01 to TE 11 Mode Converters. IEEE Access 2019, 7, 35438–35448. [Google Scholar] [CrossRef]
- Alkaraki, S.; Andy, A.S.; Gao, Y.; Tong, K.F.; Ying, Z.; Donnan, R.; Parini, C. Compact and Low-Cost 3-D Printed Antennas Metalized Using Spray-Coating Technology for 5G mm-Wave Communication Systems. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2051–2055. [Google Scholar] [CrossRef]
- Liang, M.; Ng, W.R.; Chang, K.; Gbele, K.; Gehm, M.E.; Xin, H. A 3-D Luneburg lens antenna fabricated by polymer jetting rapid prototyping. IEEE Trans. Antennas Propag. 2014, 62, 1799–1807. [Google Scholar] [CrossRef]
- Chieh, J.C.S.; Dick, B.; Loui, S.; Rockway, J.D. Development of a Ku-band corrugated conical horn using 3-D print technology. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 201–204. [Google Scholar] [CrossRef]
- Du, G.; Liang, M.; Sabory-Garcia, R.A.; Liu, C.; Xin, H. 3-D printing implementation of an X-band Eaton lens for beam deflection. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1487–1490. [Google Scholar] [CrossRef]
- Ghazali, M.I.M.; Karuppuswami, S.; Kaur, A.; Chahal, P. 3-D printed air substrates for the design and fabrication of RF components. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 982–989. [Google Scholar] [CrossRef]
- Laplanche, E.; Feuray, W.; Sence, J.; Perigaud, A.; Tantot, O.; Delhote, N.; Menudier, C.; Arnaud, E.; Thevenot, M.; Monédière, T.; et al. Additive manufacturing of low cost and efficient proof of concepts for microwave passive components. IET Microw. Antennas Propag. 2017, 11, 1997–2004. [Google Scholar] [CrossRef]
- Massaccesi, A.; Pirinoli, P.; Bertana, V.; Scordo, G.; Marasso, S.L.; Cocuzza, M.; Dassano, G. 3D-printable dielectric transmitarray with enhanced bandwidth at millimeter-waves. IEEE Access 2018, 6, 46407–46418. [Google Scholar] [CrossRef]
- Matos, S.A.; Teixeira, J.P.; Costa, J.R.; Fernandes, C.A.; Nachabe, N.; Luxey, C.; Titz, D.; Gianesello, F.; Del Rio, C.; Arboleya, A.; et al. 3D-Printed transmit-array antenna for broadband backhaul 5G links at V band. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 977–981. [Google Scholar] [CrossRef]
- Saghlatoon, H.; Honari, M.M.; Aslanzadeh, S.; Mirzavand, R. Electrically-small Luneburg lens for antenna gain enhancement using new 3D printing filling technique. AEU Int. J. Electron. Commun. 2020, 124, 153352. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, Y.X.; Guo, Q.; Wu, L.; Ng, K.B.; Wong, H.; Zhou, Y.; Huang, K. Dielectric and metallic jointly 3D-printed mmWave hyperbolic lens antenna. IET Microw. Antennas Propag. 2019, 13, 1934–1939. [Google Scholar] [CrossRef]
- Ryan, C.G.M.; Chaharmir, M.; Shaker, J.; Bray, J.; Antar, Y.; Ittipiboon, A. A wideband transmitarray using dual-resonant double square rings. IEEE Trans. Antennas Propag. 2010, 58, 1486–1493. [Google Scholar] [CrossRef]
- Al-Nuaimi, M.K.T.; Hong, W.; Zhang, Y. Design of High-Directivity Compact-Size Conical Horn Lens Antenna. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 467–470. [Google Scholar] [CrossRef]
- Liu, K.; Ge, Y.; Lin, C. A Compact Wideband High-Gain Metasurface-Lens-Corrected Conical Horn Antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 457–461. [Google Scholar] [CrossRef]
- Constantine, A. Balanis: Antenna Theory and Design; John Wileys & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Molaei, A.; Bisulco, A.; Tirado, L.; Zhu, A.; Cachay, D.; Dagheyan, A.G.; Martinez-Lorenzo, J. 3D-Printed e-Band compressive horn antenna for high-sensing-capacity imaging applications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1639–1642. [Google Scholar] [CrossRef]
- Addamo, G.; Peverini, O.A.; Calignano, F.; Manfredi, D.; Paonessa, F.; Virone, G.; Dassano, G. 3D printing of high-performance feed horns from ku-to v-Bands. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2036–2040. [Google Scholar] [CrossRef]
- Zhang, S.; Cadman, D.; Vardaxoglou, J.Y.C. Additively manufactured profiled conical horn antenna with dielectric loading. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2128–2132. [Google Scholar] [CrossRef] [Green Version]
- Carkaci, M.E.; Secmen, M. The prototype of a wideband ku-band conical corrugated horn antenna with 3-D printing technology. Adv. Electromagn. 2019, 8, 39–47. [Google Scholar] [CrossRef]
- Chuma, E.L.; Iano, Y.; Roger, L.L.B.; Scroccaro, M.; Frazatto, F.; Manera, L.T. Performance analysis of x band horn antennas using additive manufacturing method coated with different techniques. J. Microw. Optoelectron. Electromagn. Appl. 2019, 18, 263–269. [Google Scholar] [CrossRef]
- Moradi, A.; Mohajeri, F. Side lobe level reduction and gain enhancement of a pyramidal horn antenna in the presence of metasurfaces. IET Microwaves Antennas Propag. 2017, 12, 295–301. [Google Scholar] [CrossRef]
- Han, J.; Li, L.; Zhang, T.; Xi, R. Control and improvement of antenna gain by using multilayer non-uniform metasurfaces. EPJ Appl. Metamater. 2019, 6, 4. [Google Scholar] [CrossRef]
- Manikandan, R.; Rao, P.; Jawahar, P. Gain enhancement of horn antenna using meta surface lens. Adv. Electromagn. 2018, 7, 27–33. [Google Scholar] [CrossRef]
- Yu, Y.H.; Wu, W.; Zong, Z.Y.; Fang, D.G. Awire-metamaterial-loaded resonant cavity antenna using 3D printing technology. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2119–2122. [Google Scholar] [CrossRef]
- Hayat, T.; Afzal, M.U.; Lalbakhsh, A.; Esselle, K.P. 3D printed phase-rectifying transparent superstrate for resonant-cavity antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1400–1404. [Google Scholar] [CrossRef]
- Baba, A.A.; Hashmi, R.M.; Esselle, K.P.; Weily, A.R. Compact high-gain antenna with simple all-dielectric partially reflecting surface. IEEE Trans. Antennas Propag. 2018, 66, 4343–4348. [Google Scholar] [CrossRef]
References | Dimension (mm × mm × mm) | Peak Gain (dBi) | Operating Frequency Range (GHz) | Aperture Efficiency (%) | Bandwidth (%) | Range of Gain (dBi) | Side Lobe Level (dBi) | Weight (gm) | Fabrication Type |
---|---|---|---|---|---|---|---|---|---|
Proposed | 100 × 100 × 252.5 (4 × 4 × 10.1) | 25 | 10 to 18 | 35 to 75 | 66.67 | 17.8 to 23.4 | −16 to −40 | 345.37 | Multijet 3D printing and copper plating on ABS printed horn |
[2] | 20.34 × 11.26 × 6.54 (1.9 × 1.05 × 0.61) | 12.5 | 28 to 30 | 70 | 8.8 | 8 to 12.5 | −12 | 1.35 | Vero Clear Polyethylene and metal spray |
[4] | 13.04 × 6.34 | 19.6 | 10 to 18 | n/a | 57.14 | 6.23 to 18.98 | n/a | n/a | ABS with aerosol paint |
[8] | 156 × 156 × 13.5 (15.6 × 15.6 × 1.35) | 30.7 | 27.5 to 34 | 38.6 | 21.5 | 29.75 to 30.75 | −22.6 | n/a | Polyjet Technology |
[9] | 156 × 156 × 9.7 (16 × 16 × 1.94) | 30 | 57 to 66 | 42 | 15 | 30.2 to 31.5 | n/a | n/a | Fused Deposition Technique |
[10] | 10.46 | 20.5 | 8 to 12 | 59.26 | 40 | 19 to 21 | −15 | 373 | Nylon 6 filament |
[15] | 11.67 × 7.4 | 21 | 9 to 15 | 46 to 75 | 33.33 | 16 to 20 | −19 to −22 | 200 | PLA and Copper Plating |
[18] | 110 × 90 × 135 (5.5 × 4.5 × 6.75) | 20 | 13 to 18 | n/a | 40 | 20.3 to 21.5 | −14 to −29 | n/a | Metal |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, S.; Baba, A.A.; Abbas, S.M.; Asadnia, M.; Hashmi, R.M. A Horn Antenna Covered with a 3D-Printed Metasurface for Gain Enhancement. Electronics 2021, 10, 119. https://doi.org/10.3390/electronics10020119
Shrestha S, Baba AA, Abbas SM, Asadnia M, Hashmi RM. A Horn Antenna Covered with a 3D-Printed Metasurface for Gain Enhancement. Electronics. 2021; 10(2):119. https://doi.org/10.3390/electronics10020119
Chicago/Turabian StyleShrestha, Sujan, Affan A. Baba, Syed Muzahir Abbas, Mohsen Asadnia, and Raheel M. Hashmi. 2021. "A Horn Antenna Covered with a 3D-Printed Metasurface for Gain Enhancement" Electronics 10, no. 2: 119. https://doi.org/10.3390/electronics10020119
APA StyleShrestha, S., Baba, A. A., Abbas, S. M., Asadnia, M., & Hashmi, R. M. (2021). A Horn Antenna Covered with a 3D-Printed Metasurface for Gain Enhancement. Electronics, 10(2), 119. https://doi.org/10.3390/electronics10020119