Comparative Study of Optimal Multivariable LQR and MPC Controllers for Unmanned Combat Air Systems in Trajectory Tracking
Abstract
:1. Introduction
1.1. Path Planning
1.2. Guidance, Navigation, and Control
1.2.1. Control
1.2.2. Guidance
2. Problem Definition
2.1. Dynamic Trajectory
2.1.1. Three-Dimensional Space Creation
2.1.2. Obstacles
- 1.
- Danger area: Zone in which the aircraft was not allowed to enter, generated as a cylinder from the sea level altitude to the maximum altitude.
- 2.
- Radar area: Similarly to the danger area, the radar area approximated the scope of an enemy radar. It was defined as a cylinder, with its bottom altitude determined by the minimum altitude at which the UAV could be detected.
- 3.
- Dropping slope: This is not a real obstacle, but instead was employed to ensure a correct descent of the aircraft when it approached the objective, generated as an inverted cone whose vertex was .
- 4.
- Ground elevation: Through mapping based on a digital elevation model (DEM) [53] called the National Elevation Dataset (NED) [54], provided by the United States Geological Survey [55], the mountains of the environment were properly defined. The resolution provided by these data was between 30 and 60 m. First, a planar mesh defined by the latitude and longitude coordinates was created in Keyhole Markup Language (KML) [56]; then, it was converted into GPS exchange format (GPX) [57,58], and the elevation data were introduced.
2.1.3. Mission Specifications
3. Dynamic Trajectory Planning
3.1. Adaptive Cell Decomposition
Algorithm 1 Adaptive cell decomposition (ACD) |
|
3.2. Recursive Rewarding Adaptive Cell Decomposition Algorithm
- 1.
- Distance: Given by the expressions below, where is the Euclidean distance between the chosen subspaces and , and is the straight line between and .
- 2.
- Flight path angle: Where is the flight path angle of the previous branch of the path and is one of the vectors given by . The functions must provide a value between and 1, so that in cases in which , the output will be 1.
- 3.
- Course angle: is the course angle of the previous branch of the path and is one of the vectors given by . As before, when , the output in the code will be 1.
Algorithm 2 Recursive rewarding adaptive cell decomposition (RRACD) |
|
3.3. Trajectory Smoothing
Algorithm 3 Smooth 3D path simple design (S-3D-PSD) |
|
Algorithm 4 Smooth 3D path planning (S-3D-PP) |
|
4. Guidance Law
Algorithm 5 Nonlinear guidance law |
|
5. Control Strategies
5.1. Linear Quadratic Regulator
5.2. Model Predictive Control
6. Results
6.1. Complete Response
6.2. Analysis of the Impact, Time, and Fuel Mass Consumption
7. Conclusions and Future Works
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Wind Parameters and Mathematical Model
Wind Parameters | |||
---|---|---|---|
Parameter | Modulus (m/s) | Direction Angle (°) | Elevation Angle (°) |
15 | 180 | 0 | |
1 | 5 | 1 | |
18 | 195 | 3 | |
12 | 165 | −3 |
Appendix B. Linearized Model of the System
Appendix C. LQR Parameters
Appendix D. MPC Parameters
References
- Valavanis, K.P.; Vachtsevanos, G.J. Future of Unmanned Aviation. In Handbook of Unmanned Aerial Vehicles; Springer: Dordrecht, The Netherlands, 2015; pp. 2993–3009. [Google Scholar] [CrossRef]
- Microdrones. Unmanned Applied Solutions. 2020. Available online: https://www.microdrones.com/en/industry-experts/ (accessed on 14 November 2020).
- Roth, M. AI in Military Drones and UAVs—Current Applications. 2019. Available online: https://emerj.com/ai-sector-overviews/ai-drones-and-uavs-in-the-military-current-applications/ (accessed on 14 November 2020).
- Jerry, M. Current and future UAV military users and applications. Air Space Eur. 1999, 1, 51–58. [Google Scholar] [CrossRef]
- Geo-Matching. Aerial Imagery from UAVs. 2020. Available online: https://geo-matching.com/content/aerial-imagery-from-uavs (accessed on 14 November 2020).
- SenseFly. Why Use Drones For Environmental Monitoring? 2020. Available online: https://www.sensefly.com/industry/drones-environmental-monitoring/ (accessed on 14 November 2020).
- EKU. 5 Ways Drones Are Being Used for Disaster Relief. 2020. Available online: https://safetymanagement.eku.edu/blog/5-ways-drones-are-being-used-for-disaster-relief/ (accessed on 14 November 2020).
- Boeing. F-86 Sabre Jet—Historical Snapshot. 2020. Available online: https://www.boeing.com/history/products/f-86-sabre-jet.page (accessed on 14 November 2020).
- The Editors of Encyclopaedia Britannica. F-86. 2019. Available online: https://www.britannica.com/technology/F-86 (accessed on 14 November 2020).
- X-47B UCAS Unmanned Combat Air System. 2015. Available online: https://www.northropgrumman.com/what-we-do/air/x-47b-ucas/ (accessed on 14 November 2020).
- NavalTechnology. X-47B Unmanned Combat Air System (UCAS). 2016. Available online: https://www.naval-technology.com/projects/x-47b-unmanned-combat-air-system-carrier-ucas/ (accessed on 14 November 2020).
- Luo, C.; McClean, S.I.; Parr, G.; Teacy, L.; De Nardi, R. UAV position estimation and collision avoidance using the extended Kalman filter. IEEE Trans. Veh. Technol. 2013, 62, 2749–2762. [Google Scholar] [CrossRef]
- LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006; pp. 1–826. [Google Scholar] [CrossRef] [Green Version]
- Samaniego, F.; Sanchis, J.; Garcia-Nieto, S.; Simarro, R. Recursive Rewarding Modified Adaptive Cell Decomposition (RR-MACD): A Dynamic Path Planning Algorithm for UAVs. Electronics 2019, 8, 306. [Google Scholar] [CrossRef] [Green Version]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Niu, L.; Zhuo, G. An Improved Real 3D a* Algorithm for Difficult Path Finding Situation. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 3–11 July 2008; pp. 927–930. [Google Scholar]
- Ferguson, D.; Stentz, A. Field D*: An Interpolation-Based Path Planner and Replanner. In Robotics Research: Results of the 12th International Symposium, October 12–15, 2005, San Francisco, CA, USA; Springer: Berlin/Heidelberg, Germany, 2005; Volume 28, pp. 239–253. [Google Scholar] [CrossRef] [Green Version]
- De Filippis, L.; Guglieri, G.; Quagliotti, F. Path Planning Strategies for UAVS in 3D Environments. J. Intell. Robot. Syst. 2012, 65, 247–264. [Google Scholar] [CrossRef]
- Nakajima, K.; Premachandra, C.; Kato, K. 3D environment mapping and self-position estimation by a small flying robot mounted with a movable ultrasonic range sensor. J. Electr. Syst. Inf. Technol. 2017, 4, 289–298. [Google Scholar] [CrossRef]
- Premachandra, C.; Otsuka, M.; Gohara, R.; Ninomiya, T.; Kato, K. A study on development of a hybrid aerial/terrestrial robot system for avoiding ground obstacles by flight. IEEE/CAA J. Autom. Sin. 2019, 6, 327–336. [Google Scholar] [CrossRef]
- Premachandra, C.; Thanh, D.N.H.; Kimura, T.; Kawanaka, H. A study on hovering control of small aerial robot by sensing existing floor features. IEEE/CAA J. Autom. Sin. 2020, 7, 1016–1025. [Google Scholar] [CrossRef]
- Marco, V.; Contreras, R.; Sanchez, R.; Rodriguez, G.; Serrano, D.; Kerr, M.; Fernandez, V.; Haya-Ramos, R.; Peñin, L.F.; Ospina, J.A.; et al. The IXV guidance, navigation and control subsystem: Development, verification and performances. Acta Astronaut. 2016, 124, 53–66. [Google Scholar] [CrossRef]
- Premachandra, C.; Ueda, D.; Kato, K. Speed-Up Automatic Quadcopter Position Detection by Sensing Propeller Rotation. IEEE Sens. J. 2019, 19, 2758–2766. [Google Scholar] [CrossRef]
- Premachandra, C.; Otsuka, M. Development of hybrid aerial/terrestrial robot system and its automation. In Proceedings of the 2017 IEEE International Systems Engineering Symposium (ISSE), Vienna, Austria, 11–13 October 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Pardo, C. Controlador PID. 2020. Available online: https://www.picuino.com/es/arduprog/control-pid.html (accessed on 14 November 2020).
- Fadali, M.S.; Visioli, A. Chapter 9—State Feedback Control. In Digital Control Engineering, 2nd ed.; Fadali, M.S., Visioli, A., Eds.; Academic Press: Boston, MA, USA, 2013; pp. 351–397. [Google Scholar] [CrossRef]
- Mathworks. Lqr. 2020. Available online: https://www.mathworks.com/help/control/ref/lqr.html (accessed on 14 November 2020).
- Hajiyev, C.; Soken, H.; Vural, S. Linear Quadratic Regulator Controller Design. In State Estimation and Control for Low-Cost Unmanned Aerial Vehicles; Springer: Berlin/Heidelberg, Germany, 2015; pp. 171–200. [Google Scholar] [CrossRef]
- Wang, L. Model Predictive Control System Design and Implementation Using MATLAB; Springer: London, UK, 2009; pp. 1–332. [Google Scholar] [CrossRef]
- Grancharova, A.; Johansen, T. Nonlinear Model Predictive Control. In Explicit Nonlinear Model Predictive Control; Grancharova, A., Johansen, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 39–63. [Google Scholar] [CrossRef]
- Zhou, K.; Doyle, J.C. Essentials of Robust Control; Prentice Hall Upper Saddle River: New York, NY, USA, 1998; pp. 1–10. [Google Scholar]
- Gavilán, F.R. Sistemas de Control y Guiado para Vehículos Aéreos No Tripulados, Diseño de Algoritmos y Sistemas Embarcados. Ph.D. Thesis, University of Sevilla, Sevilla, Spain, 2012. [Google Scholar]
- Sujit, P.B.; Saripalli, S.; Sousa, J.B. An evaluation of UAV path following algorithms. In Proceedings of the 2013 European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 3332–3337. [Google Scholar] [CrossRef]
- Espinoza-Fraire, T.; Dzul, A.; Cortés-Martínez, F.; Giernacki, W. Real-time implementation and flight tests using linear and nonlinear controllers for a fixed-wing miniature aerial vehicle (MAV). Int. J. Control Autom. Syst. 2018, 16, 392–396. [Google Scholar] [CrossRef]
- Bulka, E.; Nahon, M. Autonomous fixed-wing aerobatics: From theory to flight. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 6573–6580. [Google Scholar]
- Kamel, M.; Stastny, T.; Alexis, K.; Siegwart, R. Model predictive control for trajectory tracking of unmanned aerial vehicles using robot operating system. In Robot Operating System (ROS); Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–39. [Google Scholar]
- Stastny, T.J.; Dash, A.; Siegwart, R. Nonlinear MPC for fixed-wing UAV trajectory tracking: Implementation and flight experiments. In Proceedings of the Aiaa Guidance, Navigation, and Control Conference, Grapevine, TX, USA, 9–13 January 2017; p. 1512. [Google Scholar]
- Department of Defense of the United States of America. OP 1280. Declassification. 1955. Available online: https://fdocuments.in/document/op-1280-aircraft-bombs.html (accessed on 14 November 2020).
- United States Air Force. Handbook Maintenance Instructions USAF Series F-86F Aircraft. Declassification. 1954. Available online: https://www.avialogs.com/aircraft-n/north-american-aviation/item/55493-t-o-1f-86f-2-handbook-maintenance-instructions-f-86f-aircraft (accessed on 14 November 2020).
- United States Air Force. Flight Manual USAF Series F-86F Aircraft. Declassification. 1960. Available online: https://www.esscoaircraft.com/p-9741-north-american-f-86f-1960-flight-manual.aspx (accessed on 14 November 2020).
- Cook, M. Flight Dynamics Principles, 3rd ed.; Butterworth-Heinemann: Cranfield, UK, 2013; pp. 1–145. [Google Scholar] [CrossRef]
- Napolitano, M. Aircraft Dynamics: From Modeling to Simulation; John Wiley & Sons, Inc.: Morgantown, WV, USA, 2012; pp. 135–267. [Google Scholar]
- Magraner Rullan, J.P.; Carreres Talens, M.; Martí Gómez-Aldaraví, P. Flight Mechanics; Universitat Politècnica de València: Valencia, Spain, 2018; pp. 1–190. [Google Scholar] [CrossRef]
- Roux, É. Turbofan and Turbojet Engines: Database Handbook; Élodie Roux: Blagnac, France, 2007; p. 242. [Google Scholar]
- Ortiz, Á. Design and Simulation of the Guidance and Control System for an F-86 Sabre. Bachelor’s Thesis, Universitat Politècnica de València, Valencian Community, Spain, 2020. Available online: http://hdl.handle.net/10251/153251 (accessed on 14 November 2020).
- Sumair, M.; Aized, T.; Gardezi, S.A.R.; Bhutta, M.M.A.; Rehman, S.M.S.; ur Rehman, S.U. Application of five continuous distributions and evaluation of wind potential at five stations using normal distribution. Energy Explor. Exploit. 2020, 1–3. [Google Scholar] [CrossRef]
- Yuan, K.; Zhang, K.; Zheng, Y.; Li, D.; Wang, Y.; Yang, Z. Irregular distribution of wind power prediction. J. Mod. Power Syst. Clean Energy 2018, 6, 1172–1180. [Google Scholar] [CrossRef] [Green Version]
- Bryc, W. The Normal Distribution, 1st ed.; Springer: New York, NY, USA, 1995; pp. 23–28. [Google Scholar]
- El Dorado Weather. Alaska Mean Wind Speed and Prevailing Direction. 2020. Available online: https://www.eldoradoweather.com/ (accessed on 14 November 2020).
- Weather Spark. The Typical Weather Anywhere on Earth. 2020. Available online: https://weatherspark.com/ (accessed on 14 November 2020).
- SKYbrary. International Standard Atmosphere (ISA). 2017. Available online: https://www.skybrary.aero/index.php/International_Standard_Atmosphere_(ISA) (accessed on 14 November 2020).
- Steve, A. International Standard Atmosphere: How it Affects Flight—Understanding the Basics. 2014. Available online: https://www.universalweather.com/blog/international-standard-atmosphere-how-it-affects-flight-understanding-the-basics/ (accessed on 14 November 2020).
- U.S. Department of the Interior. What Are Digital Elevation Models (DEMs)? 2020. Available online: https://www.usgs.gov/ (accessed on 14 November 2020).
- NRC Services. National Elevation Dataset. 2020. Available online: https://www.usda.gov/ (accessed on 14 November 2020).
- U.S. Department of the Interior. The National Map. 2020. Available online: https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map (accessed on 14 November 2020).
- Arms, C.R.; Fleischhauer, C.; Murray, K. KML, Version 2.2. 2012. Available online: https://www.loc.gov/preservation/digital/formats/fdd/fdd000340.shtml (accessed on 14 November 2020).
- Schneider, A. GPS Visualizer: Do-It-Yourself Mapping. 2019. Available online: https://www.gpsvisualizer.com/ (accessed on 14 November 2020).
- Hazzard, C. What is a GPX File? 2020. Available online: https://hikingguy.com/how-to-hike/what-is-a-gpx-file/ (accessed on 14 November 2020).
- Thompson, W. F-86 Sabre Fighter-Bomber Units Over Korea; Osprey Publishing: Oxford, UK, 1999; pp. 8–73. [Google Scholar]
- History.com Editors. Korean War. 2020. Available online: https://www.history.com/topics/korea/korean-war (accessed on 14 November 2020).
- Samet, H.; Kochut, A. Octree approximation an compression methods. In Proceedings of the 1st International Symposium on 3D Data Processing Visualization and Transmission, Padova, Italy, 19–21 June 2002; pp. 460–469. [Google Scholar] [CrossRef]
- Samaniego, F.; Sanchis, J.; Garcia-Nieto, S.; Simarro, R. Smooth 3D Path Planning by Means of Multiobjective Optimization for Fixed-Wing UAVs. Electronics 2019, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Oshana, R. 4—Overview of Digital Signal Processing Algorithms. In DSP Software Development Techniques for Embedded and Real-Time Systems; Oshana, R., Ed.; Embedded Technology, Newnes: Burlington, MA, USA, 2006; pp. 59–121. [Google Scholar] [CrossRef]
- Anjali, B.; Vivek, A.; Nandagopal, J. Simulation and analysis of integral LQR controller for inner control loop design of a fixed wing micro aerial vehicle (MAV). Procedia Technol. 2016, 25, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1994. [Google Scholar] [CrossRef] [Green Version]
- Maciejowski, J. Predictive Control: With Constraints, 1st ed.; Prentice Hall: London, UK, 2002. [Google Scholar]
- Cuzzola, F.A.; Geromel, J.C.; Morari, M. An Improved Approach for Constrained Robust Model Predictive Control. Automatica 2002, 38, 1183–1189. [Google Scholar] [CrossRef]
- Maeder, U.; Borrelli, F.; Morari, M. Linear Offset-Free Model Predictive Control. Automatica 2009, 45, 2214–2222. [Google Scholar] [CrossRef]
- Mayne, D.; Rawlings, J.; Rao, C.; Scokaert, P. Constrained Model Predictive Control: Stability and Optimality. Automatica 2000, 36, 789–814. [Google Scholar] [CrossRef]
- Mayne, D.Q. Model Predictive Control: Recent Developments and Future Promise. Automatica 2014, 50, 2967–2986. [Google Scholar] [CrossRef]
- Kouvaritakis, B.; Cannon, M. Model Predictive Control. Classical, Robust and Stochastic, 1st ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Blanchini, F.; Miani, S. Set-Theoretic Methods in Control, 1st ed.; Birkhäuser: Boston, MA, USA, 2008. [Google Scholar] [CrossRef]
- Khlebnikov, M.V.; Polyak, B.T.; Kuntsevich, V.M. Optimization of Linear Systems Subject to Bounded Exogenous Disturbances: The Invariant Ellipsoid Technique. Autom. Remote Control 2011, 72, 2227–2275. [Google Scholar] [CrossRef]
- Ortiz, Á. Autonomous Navigation for an F-86 Sabre. 2021. Available online: https://es.mathworks.com/matlabcentral/fileexchange/85168-autonomous-navigation-system-for-an-f-86-sabre (accessed on 14 November 2020).
- Fleeman, E.L. Tactical Missile Design, 2nd ed.; American Institute of Aeronautics and Astronautics: Atlanta, GA, USA, 2006; pp. 21–80. [Google Scholar]
- Blog, T.S.C. Coding Bilinear Interpolation. 2011. Available online: http://supercomputingblog.com/graphics/coding-bilinear-interpolation/ (accessed on 14 November 2020).
- Cutler, C. Ground Effect: Why You Float During Landing. 2020. Available online: https://www.boldmethod.com/learn-to-fly/aerodynamics/what-happens-to-your-plane-in-ground-effect/ (accessed on 14 November 2020).
- Airport Authorities India. What Is an ILS and Its Different Component? 2020. Available online: https://www.aai.aero/en/content/what-ils-and-its-different-component (accessed on 14 November 2020).
- Demirhan, M.; Premachandra, C. Development of an Automated Camera-Based Drone Landing System. IEEE Access 2020, 8, 202111–202121. [Google Scholar] [CrossRef]
- Bouhali, M.; Shamani, F.; Dahmane, Z.E.; Belaidi, A.; Nurmi, J. FPGA applications in unmanned aerial vehicles—A review. In International Symposium on Applied Reconfigurable Computing; Springer: Berlin/Heidelberg, Germany, 2017; pp. 217–228. [Google Scholar]
- Kunzler, J.W.; Ammermon, S.M.; Warnick, K.F. Progress Toward Airborne GPS Spatial Filtering Powered by Recent Advances in FPGA Technology. In Proceedings of the 2020 Intermountain Engineering, Technology and Computing (IETC), Orem, UT, USA, 2–3 October 2020; pp. 1–6. [Google Scholar]
Deviations | ||
---|---|---|
Case | Deviation in the Drop (m) | Deviation in Impact (m) |
Reference | - | 7.7 |
LQR | 14.3 | 4.0 |
MPC | 3.0 | 1.6 |
Time and Fuel Mass | ||
---|---|---|
Case | Simulation Time (s) | Fuel Consumption (kg) |
LQR | 1001.09 | 266.77 |
MPC | 1002.67 | 264.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz, A.; Garcia-Nieto, S.; Simarro, R. Comparative Study of Optimal Multivariable LQR and MPC Controllers for Unmanned Combat Air Systems in Trajectory Tracking. Electronics 2021, 10, 331. https://doi.org/10.3390/electronics10030331
Ortiz A, Garcia-Nieto S, Simarro R. Comparative Study of Optimal Multivariable LQR and MPC Controllers for Unmanned Combat Air Systems in Trajectory Tracking. Electronics. 2021; 10(3):331. https://doi.org/10.3390/electronics10030331
Chicago/Turabian StyleOrtiz, Alvaro, Sergio Garcia-Nieto, and Raul Simarro. 2021. "Comparative Study of Optimal Multivariable LQR and MPC Controllers for Unmanned Combat Air Systems in Trajectory Tracking" Electronics 10, no. 3: 331. https://doi.org/10.3390/electronics10030331
APA StyleOrtiz, A., Garcia-Nieto, S., & Simarro, R. (2021). Comparative Study of Optimal Multivariable LQR and MPC Controllers for Unmanned Combat Air Systems in Trajectory Tracking. Electronics, 10(3), 331. https://doi.org/10.3390/electronics10030331