Dependence of Irradiated High-Power Electromagnetic Waves on the Failure Threshold Time of Semiconductors Using a Closed Waveguide
Abstract
:1. Introduction
2. The WR430 Closed Waveguide Typed Emulator
3. Experimental Setup
4. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Olesen, H.L. Radiation Effects on Electronic Systems, 1st ed.; Springer: New York, NY, USA, 1966. [Google Scholar]
- Taylor, C.D.; Giri, D.V. High-Power Microwave Systems and Effects, 1st ed.; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Lee, K.S.H. EMP Interaction Principles, Techniques, and Reference Data, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- James, B.; John, A.S.; Edl, S. High Power Microwaves, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Wunsch, D.C.; Bell, R.R. Determination of threshold failure levels of semiconductor diodes and transistors due to pulse voltages. IEEE Trans. Nucl. Sci. 1968, 15, 244–259. [Google Scholar] [CrossRef]
- McAdoo, J.H.; Bollen, W.M.; Catoe, W.; Kaul, R. Broad-band electromagnetic radiation damage in GaAs MESFETs. In Proceedings of the Microwave and Millimeter-Wave Monolithic Circuits Symposium 1992, San Diego, CA, USA, 10–13 May 1992; pp. 205–208. [Google Scholar]
- Camp, M.; Garbe, H.; Nitsch, D. Influence of the technology on the destruction effects of semiconductors by impact of EMP and UWB pulses. In Proceedings of the 2002 IEEE International Symposium on Electromagnetic Compatibility, Minneapolis, MN, USA, 19–23 August 2002; pp. 87–92. [Google Scholar]
- Camp, M.; Gerth, H.; Garbe, H.; Haase, H. Predicting the breakdown behavior of microcontrollers under EMP/UWB impact using a statistical analysis. IEEE Trans. Electromagn. Compat. 2004, 46, 368–379. [Google Scholar] [CrossRef]
- Sabath, F.; Giri, D.V.; Rachidi, F.; Kaelin, A. Ultra-Wideband, Short Pulse Electromagnetics 9, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Min, S.H.; Kwon, O.; Sattorov, M. Effects on electronics exposed to high-power microwaves on the basis of a relativistic backward wave oscillator operating on the X-band. J. Electromagn. Waves Appl. 2017, 31, 1875–1901. [Google Scholar] [CrossRef]
- Kesari, V.; Basu, B.N. High Power Microwave Tubes: Basics and Trends, 1st ed.; Morgan & Claypool Publishers: San Rafael, CA, USA, 2018. [Google Scholar]
- Zhen, K.; Shanwei, L.; Yan, Z.Y. Research on damage of intense electromagnetic pulse to radar receiving system. In Proceedings of the 2012 5th Global Symposium on Millimeter-Waves, Harbin, China, 27–30 May 2012; pp. 458–461. [Google Scholar]
- Military Standard. High-Altitude Electromagnetic Pulse (HEMP) Protection for Ground-Based C4I Facilities Performing Critical, Tine-Urgent Missions, Part 1 Fixed Facilities; MIL-STD-188-125-1; Department of Defense: Washington, DC, USA, 2005. [Google Scholar]
- Wilson, C. High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments; CRS Report for Congress, 26 March 2008. 26 March 2008. Available online: https://www.everycrsreport.com/reports/RL32544.html (accessed on 2 August 2021).
- Giri, D.V.; Tesche, F.M. Classification of Intentional Electromagnetic Environments (IEME). IEEE Trans. Electromagn. Compat. 2004, 46, 322–328. [Google Scholar] [CrossRef]
- Kim, I.; Kovitz, J.M.; Rahmat-Samii, Y. Enhancing the Power Capabilities of the Stepped Septum Using an Optimized Smooth Sigmoid Profile. IEEE Trans. Antennas Propag. 2014, 56, 16–42. [Google Scholar] [CrossRef]
- Giri, D.V.; Hoad, R.; Sabath, F. High-Power Electromagnetic Effects on Electronic Systems, 1st ed.; Artech House: Boston, MA, USA, 2020. [Google Scholar]
- Zhang, J.; Zhang, D.; Fan, Y. Progress in narrowband high-power microwave sources. Phys. Plasmas. 2020, 27, 010501. [Google Scholar] [CrossRef]
- Kim, J.I.; Won, J.H.; Park, G.S. Numerical Study of a 10-Vane Strapped Magnetron Oscillator. J. Korean Phys. Soc. 2004, 44, 1229–1233. [Google Scholar]
- Jung, S.S.; Jin, Y.S.; Kim, J.I. Three-Dimensional Particle-in-Cell Simulations of a Strapped Magnetron Oscillator. J. Korean Phys. Soc. 2004, 44, 1250–1255. [Google Scholar]
- Kim, J.I.; Won, J.H.; Ha, H.J. Three-Dimensional Particle-in-Cell Simulation of 10-Vane Strapped Magnetron Oscillator. IEEE Trans. Plasma Sci. 2004, 32, 2099–2104. [Google Scholar] [CrossRef]
- Kim, J.I.; Won, J.H.; Park, G.S. Electron prebunching in microwave magnetron by electric priming using anode shape modification. Appl. Phys. Lett. 2005, 86, 171501. [Google Scholar] [CrossRef]
- Kim, J.I.; Won, J.H.; Park, G.S. Reduction of noise in strapped magnetron by electric priming using anode shape modification. Appl. Phys. Lett. 2006, 88, 221501. [Google Scholar] [CrossRef]
- LoVetri, J.; Wilbers, A.T.M.; Zwamborn, A.P.M. Microwave interaction with a personal computer: Experiment and modelling. In Proceedings of the 13th International Zurich Symposium Technical Exhibition on Electromagnetic Compatibility, Zurich, Switzerland, 16–18 February 1999; pp. 203–206. [Google Scholar]
Input Pulse | Output | |||
---|---|---|---|---|
Qd | Qc | Qb | Qa | |
0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 1 | 0 |
3 | 0 | 0 | 1 | 1 |
4 | 0 | 1 | 0 | 0 |
5 | 0 | 1 | 0 | 1 |
6 | 0 | 1 | 1 | 0 |
7 | 0 | 1 | 1 | 1 |
8 | 1 | 0 | 0 | 0 |
9 | 1 | 0 | 0 | 1 |
Author | Semiconductor under Test | Experimental Method | Measured E-Field | Result |
---|---|---|---|---|
Wunsch, D.C. Ref. [5] | Transistor | Direct contact | Destruction 500 kW/cm2 (390 kV/m) DC pulse~0.1 µs | Relationship between the pulse width and the threshold power |
Mcadoo, J.H. Ref. [6] | MESFET | Direct contact | Destruction 400 W/cm2 (11 kV/m) DC pulse~0.086 µs | Relationship between the DC pulse rise time and the damage voltage |
Lovetri, J. Ref. [24] | PC | Horn antenna | Reset 32.9 mW/cm2 (100 V/m) | The electric field region measurement for reset and power down scenarios |
Camp, M. Ref. [7] | TTL CMOS | Open waveguide | Destruction 5.57 MW/cm2 (1300 kV/m), 0.18 µs | Relationship between the E-field strength and the destruction rate |
Ours | IC SN 7442 | Closed waveguide | Destruction 31 kV/m (3.17 kW/cm2), 4 ms | Relationship between the E-field strength and the destruction time |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, S.-H.; Kim, J.-I.; Sattorov, M.; Kim, S.; Hong, D.; Kim, S.; Hong, B.-H.; Park, C.; Ma, S.; Kim, M.; et al. Dependence of Irradiated High-Power Electromagnetic Waves on the Failure Threshold Time of Semiconductors Using a Closed Waveguide. Electronics 2021, 10, 1884. https://doi.org/10.3390/electronics10161884
Min S-H, Kim J-I, Sattorov M, Kim S, Hong D, Kim S, Hong B-H, Park C, Ma S, Kim M, et al. Dependence of Irradiated High-Power Electromagnetic Waves on the Failure Threshold Time of Semiconductors Using a Closed Waveguide. Electronics. 2021; 10(16):1884. https://doi.org/10.3390/electronics10161884
Chicago/Turabian StyleMin, Sun-Hong, Jung-Il Kim, Matlabjon Sattorov, Seontae Kim, Dongpyo Hong, Seonmyeong Kim, Bong-Hwan Hong, Chawon Park, Sukhwal Ma, Minho Kim, and et al. 2021. "Dependence of Irradiated High-Power Electromagnetic Waves on the Failure Threshold Time of Semiconductors Using a Closed Waveguide" Electronics 10, no. 16: 1884. https://doi.org/10.3390/electronics10161884
APA StyleMin, S.-H., Kim, J.-I., Sattorov, M., Kim, S., Hong, D., Kim, S., Hong, B.-H., Park, C., Ma, S., Kim, M., Lee, K.-C., Lee, Y.-J., Kwon, H.-B., Yoo, Y.-J., Park, S.-Y., & Park, G.-S. (2021). Dependence of Irradiated High-Power Electromagnetic Waves on the Failure Threshold Time of Semiconductors Using a Closed Waveguide. Electronics, 10(16), 1884. https://doi.org/10.3390/electronics10161884