Design Strategies and Architectures for Ultra-Low-Voltage Delta-Sigma ADCs
Abstract
:1. Introduction
2. Non-Idealities in ULV Modulators
2.1. Gain Error
2.2. Dead-Zones
2.3. Quantization Noise
2.4. Low-Frequency Noise and Offset
3. Modulator Architecture
3.1. Integrators
3.2. ADC and DAC
3.3. Clock-Boosting Circuit
3.4. Inverter-Based Amplifier
3.5. Device Sizing
4. Simulation Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alioto, M. Enabling the Internet of Things: From Integrated Circuits to Integrated Systems; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Dao, V.-D. An experimental exploration of generating electricity from nature-inspired hierarchical evaporator: The role of electrode materials. Sci. Total Environ. 2021, 759, 143490. [Google Scholar] [CrossRef]
- Dao, V.D.; Vu, N.H.; Dang, H.L.; Yun, S. Recent advances and challenges for water evaporation-induced electricity toward applications. Nano Energy 2021, 85, 105979. [Google Scholar] [CrossRef]
- Odkar, A.J.; You, J.M.; Kim, N.H.; Gu, Y.; Kumar, R.; Mohan, A.V.; Kurniawan, J.; Imani, S.; Nakagawa, T.; Parish, B.; et al. Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat. Energy Environ. Sci. 2017, 10, 1581–1589. [Google Scholar]
- Yeknami, A.F.; Wang, X.; Jeerapan, I.; Imani, S.; Nikoofard, A.; Wang, J.; Mercier, P.P. A 0.3-V CMOS Biofuel-Cell-Powered Wireless Glucose/Lactate Biosensing System. IEEE J. Solid Circuits 2018, 53, 3126–3139. [Google Scholar] [CrossRef]
- Shih, Y.C.; Otis, B.P. An Inductorless DC–DC Converter for Energy Harvesting With a 1.2-μW Bandgap-Referenced Output Controller. IEEE Trans. Circuits Syst. II Express Briefs 2011, 58, 832–836. [Google Scholar] [CrossRef]
- Yeknami, A.F. A 300-mV ΔΣ Modulator Using a Gain-Enhanced, Inverter-Based Amplifier for Medical Implant Devices. J. Low Power Electron. Appl. 2016, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Michel, F.; Steyaert, M.S.J. A 250 mV 7.5 W 61 dB SNDR SC ΔΣ Modulator Using Near-Threshold-Voltage-Biased Inverter Amplifiers in 130 nm CMOS. IEEE J. Solid Circuits 2012, 47, 709–721. [Google Scholar] [CrossRef]
- Catania, A.; Benvenuti, L.; Ria, A.; Manfredini, G.; Piotto, M.; Bruschi, P. A 2 nW 0.25 V 140 dB-FOM Inverter-Based First Order ΔΣ Modulator. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 1514–1518. [Google Scholar] [CrossRef]
- Kulej, T.; Khateb, F.; Kumngern, M. 0.3-V Nanopower Biopotential Low-Pass Filter. IEEE Access 2020, 8, 119586–119593. [Google Scholar] [CrossRef]
- Nishi, M.; Matsumoto, K.; Kuroki, N.; Numa, M.; Sebe, H.; Matsuzuka, R.; Maida, O.; Kanemoto, D.; Hirose, T. A 34-mV Startup Ring Oscillator Using Stacked Body Bias Inverters for Extremely Low-Voltage Thermoelectric Energy Harvesting. In Proceedings of the 2020 18th IEEE International New Circuits and Systems Conference (NEWCAS), Montréal, QC, Canada, 16–19 June 2020; pp. 38–41. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, C.H.; Chae, Y.; Temes, G.C. Incremental Delta-Sigma ADCs: A Tutorial Review. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4161–4173. [Google Scholar] [CrossRef]
- Rodovalho, L.H.; Aiello, O.; Rodrigues, C.R. Ultra-Low-Voltage Inverter-Based Operational Transconductance Amplifiers with Voltage Gain Enhancement by Improved Composite Transistors. Electronics 2020, 9, 1410. [Google Scholar] [CrossRef]
- Yang, F.; Mok, P.K.T. 5.11 A 65nm inverter-based low-dropout regulator with rail-to-rail regulation and over −20dB PSR at 0.2V lowest supply voltage. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 106–107. [Google Scholar] [CrossRef]
- Aiello, O.; Crovetti, P.; Alioto, M. Fully Synthesizable Low-Area Analogue-to-Digital Converters With Minimal Design Effort Based on the Dyadic Digital Pulse Modulation. IEEE Access 2020, 8, 70890–70899. [Google Scholar] [CrossRef]
- Hou, Y.; Qu, J.; Tian, Z.; Atef, M.; Yousef, K.; Lian, Y.; Wang, G. A 61-nW Level-Crossing ADC With Adaptive Sampling for Biomedical Applications. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 56–60. [Google Scholar] [CrossRef]
- Esmailiyan, A.; Schembari, F.; Staszewski, R.B. A 0.36-V 5-MS/s Time-Mode Flash ADC With Dickson-Charge-Pump-Based Comparators in 28-nm CMOS. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1789–1802. [Google Scholar] [CrossRef]
- Park, J.; Hwang, Y.; Jeong, D. A 0.5-V Fully Synthesizable SAR ADC for On-Chip Distributed Waveform Monitors. IEEE Access 2019, 7, 63686–63697. [Google Scholar] [CrossRef]
- Petrie, A.; Kinnison, W.; Song, Y.; Chiang, S.W.; Layton, K. A 0.2-V 10-bit 5-kHz SAR ADC with Dynamic Bulk Biasing and Ultra-Low-Supply-Voltage Comparator. In Proceedings of the 2020 IEEE Custom Integrated Circuits Conference (CICC), Boston, MA, USA, 22–25 March 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Ma, S.; Liu, L.; Fang, T.; Liu, J.; Wu, N. A Discrete-Time Audio ΔΣ Modulator Using Dynamic Amplifier With Speed Enhancement and Flicker Noise Reduction Techniques. IEEE J. Solid-State Circ. 2020, 55, 333–343. [Google Scholar] [CrossRef]
- Park, J.; Hwang, Y.; Jeong, D. A 0.4-to-1 V Voltage Scalable ΔΣ ADC With Two-Step Hybrid Integrator for IoT Sensor Applications in 65-nm LP CMOS. IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 1417–1421. [Google Scholar] [CrossRef]
- Somappa, L.; Baghini, M.S. A 300-mV Auto Shutdown Comparator-Based Continuous Time ΔΣ Modulator. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 1920–1924. [Google Scholar] [CrossRef]
- Kulej, T.; Khateb, F.; Ferreira, L.H.C. A 0.3-V 37-nW 53-dB SNDR Asynchronous Delta–Sigma Modulator in 0.18-μm CMOS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 316–325. [Google Scholar] [CrossRef]
- Ferreira, L.H.C.; Sonkusale, S.R. A 0.25-V 28-nW 58-dB Dynamic Range Asynchronous Delta Sigma Modulator in 130-nm Digital CMOS Process. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2015, 23, 926–934. [Google Scholar] [CrossRef]
- Chen, M.-C.; Perez, A.P.; Kothapalli, S.-R.; Cathelin, P.; Cathelin, A.; Gambhir, S.S.; Murmann, B. A Pixel Pitch-Matched Ultrasound Receiver for 3-D Photoacoustic Imaging With Integrated Delta-Sigma Beamformer in 28-nm UTBB FD-SOI. IEEE J. Solid Circuits 2017, 52, 2843–2856. [Google Scholar] [CrossRef] [PubMed]
- De Aguirre, P.C.C.; Bonizzoni, E.; Maloberti, F.; Susin, A.A. A 170.7-dB FoM-DR 0.45/0.6-V Inverter-Based Continuous-Time Sigma–Delta Modulator. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 1384–1388. [Google Scholar] [CrossRef]
- Manfredini, G.; Catania, A.; Benvenuti, L.; Cicalini, M.; Piotto, M.; Bruschi, P. Ultra-Low-Voltage Inverter-Based Amplifier with Novel Common-Mode Stabilization Loop. Electronics 2020, 9, 1019. [Google Scholar] [CrossRef]
- Bruschi, P.; Catania, A.; Cesta, S.D.; Piotto, M. A Two-Stage Switched-Capacitor Integrator for High Gain Inverter-Like Architectures. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 210–214. [Google Scholar] [CrossRef]
- Benvenuti, L.; Catania, A.; Cicalini, M.; Ria, A.; Piotto, M.; Bruschi, P. A 0.3 V 15 nW 69 dB SNDR Inverter-Based ΔΣ Modulator in 0.18 μm CMOS. In Proceedings of the 2019 15th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), Lausanne, Switzerland, 15–18 July 2019; pp. 121–124. [Google Scholar] [CrossRef]
- Murmann, B.; Nikaeen, P.; Connelly, D.J.; Dutton, R.W. Impact of Scaling on Analog Performance and Associated Modeling Needs. IEEE Trans. Electron Devices 2006, 53, 2160–2167. [Google Scholar] [CrossRef]
- Kulej, T.; Khateb, F. A 0.3-V 98-dB Rail-to-Rail OTA in 0.18μ m CMOS. IEEE Access 2020, 8, 27459–27467. [Google Scholar] [CrossRef]
- Riad, J.; Estrada-López, J.J.; Padilla-Cantoya, I.; Sánchez-Sinencio, E. Power-Scaling Output-Compensated Three-Stage OTAs for Wide Load Range Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 2180–2192. [Google Scholar] [CrossRef]
- Baltolu, A.; Begueret, J.B.; Dallet, D.; Baltolu, A.; Chalet, F. A design-oriented approach for modeling integrators non-idealities in discrete-time sigma-delta modulators. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Suarez, G.; Jimenez, M.; Fernandez, F.O. Behavioral Modeling Methods for Switched-Capacitor ΔΣ Modulators. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54, 1236–1244. [Google Scholar] [CrossRef]
- Rıo, R.D.; Medeiro, F.; Pérez-Verdú, B.; Rosa, J.M.; Rodrıguez-Vázquez, A. CMOS Cascade Sigma-Delta Modulators for Sensors and Telecom: Error Analysis and Practical Design; Springer International Publishing: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Brigati, S.; Francesconi, F.; Malcovati, P.; Tonietto, D.; Baschirotto, A.; Maloberti, F. Modeling sigma-delta modulator non-idealities in SIMULINK(R). In Proceedings of the 1999 IEEE International Symposium on Circuits and Systems (ISCAS), Orlando, FL, USA, 30 May–2 June 1999; Volume 2, pp. 384–387. [Google Scholar] [CrossRef]
- Luo, H.; Han, Y.; Cheung, R.C.C.; Liu, X.; Cao, T. A 0.8-V 230-W 98-dB DR Inverter-Based ΔΣ Modulator for Audio Applications. IEEE J. Solid-State Circuits 2013, 48, 2430–2441. [Google Scholar] [CrossRef]
- Fleischer, P.E.; Ganesan, A.; Laker, K.R. Parasitic compensated switched capacitor circuits. Electron. Lett. 1981, 17, 929–931. [Google Scholar] [CrossRef]
- Schreier, R.; Temes, G.C. Understanding Delta-Sigma Data Converters; IEEE Press: Piscataway, NJ, USA, 2005; Volume 74. [Google Scholar]
- Binkley, D.M. Tradeoffs and Optimization in Analog Circuit Design; John Wiley & Sons: Chichester, UK, 2008. [Google Scholar]
- Catania, A.; Ria, A.; Cesta, S.D.; Piotto, M.; Bruschi, P. Analysis and Simulation of Chopper Stabilization Techniques Applied to Delta-Sigma Converters. In Proceedings of the 2018 15th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Prague, Czech Republic, 2–5 July 2018; pp. 253–256. [Google Scholar] [CrossRef]
- Wu, R.; Makinwa, K.A.A.; Huijsing, J.H. A Chopper Current-Feedback Instrumentation Amplifier With a 1 mHz 1/f Noise Corner and an AC-Coupled Ripple Reduction Loop. IEEE J. Solid-State Circuits 2009, 44, 3232–3243. [Google Scholar] [CrossRef] [Green Version]
- Haug, K.; Maloberti, F.; Temes, G.C. Switched-capacitor integrators with low finite-gain sensitivity. Electron. Lett. 1985, 21, 1156–1157. [Google Scholar] [CrossRef]
- Nauta, B. A CMOS transconductance-C filter technique for very high frequencies. IEEE J. Solid-State Circuits 1992, 27, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Vieru, R.G.; Ghinea, R. Inverter-based ultra low voltage differential amplifiers. In Proceedings of the CAS 2011 Proceedings (2011 International Semiconductor Conference), Sinaia, Romania, 17–19 October 2011; pp. 343–346. [Google Scholar] [CrossRef]
- Lv, L.; Zhou, X.; Qiao, Z.; Li, Q. Inverter-Based Subthreshold Amplifier Techniques and Their Application in 0.3-V ΔΣ -Modulators. IEEE J. Solid-State Circuits 2019, 54, 1436–1445. [Google Scholar] [CrossRef]
- Szczęsny, S.; Kropidłowski, M.; Naumowicz, M. 0.50-V Ultra-Low-Power ΔΣ Modulator for Sub-nA Signal Sensing in Amperometry. IEEE Sens. J. 2020, 20, 5733–5740. [Google Scholar] [CrossRef]
Device | Lp [nm] | Wp [μm] | Ln [nm] | Wn [μm] |
---|---|---|---|---|
Amplifier Inverters: | ||||
• Inv1,2 | 180 | 12.5 | 180 | 12.5 |
• Inv3,4 | 180 | 1.25 | 180 | 1.25 |
• Inv5,6 | 180 | 6.25 | 180 | 6.25 |
• Inv7,8,9 | 180 | 0.5 | 180 | 0.5 |
Reference Inverter Inv0 | 180 | 2.5 | 180 | 2.5 |
DAC Inverters | 180 | 12.5 | 180 | 12.5 |
Comparator Inverters | 180 | 12.5 | 180 | 12.5 |
Comparator Pass Transistors | 180 | 1.25 | 180 | 1.25 |
Pass Gates | 180 | 1.92 | 180 | 0.96 |
CS [fF] | CT, CH, CF [pF] | CS2A [fF] | CS2B [fF] | CF2 [pF] |
---|---|---|---|---|
200 | 4.25 | 47 | 493 | 1 |
TT | SS | FF | FNSP | SNFP | |
---|---|---|---|---|---|
fS [kHz] | 164 | 41 | 655 | 82 | 82 |
SNR [dB] | 76.7 | 83.9 | 76.6 | 72.1 | 77.4 |
SNDR [dB] | 73.1 | 63.2 | 64.6 | 68.4 | 59.2 |
SFDR [dB] | 77.5 | 64.0 | 65.4 | 73.2 | 59.3 |
BW [Hz] | 640 | 160 | 2560 | 320 | 320 |
PD [nW] | 200 | 36 | 1100 | 210 | 192 |
FoM [dB] | 168.1 | 159.8 | 158.2 | 160.3 | 151.4 |
Device | This Work | [8] | [26] | [46] | [5] | [21] | [47] | |
---|---|---|---|---|---|---|---|---|
Technology [nm] | 180 | 130 | 180 | 130 | 65 | 65 LP | 65 | |
VDD [V] | 0.3 | 0.25 | 0.45 | 0.3 | 0.3 | 0.4 | 0.5 | |
Architecture | DT 2 | DT 3 | CT 3 | DT 4 | CT 4 | DT 2 | DT 3 | ICO 1 |
fs [MHz] | 0.164 | 1.4 | 10 | 2.56 | 6.4 | 0.256 | 0.75 | 10 |
Bw [kHz] | 0.64 | 10 | 50 | 20 | 50 | 3 | 7.5 | 10 |
PD [W] | 0.2005 | 7.5 | 28.72 | 79.3 | 26.3 | 0.181 | 12.7 | 0.276 |
SNR [dB] | 76.7 | 64 | 71.24 | 74.6 | 68.7 | 64 | 64 | 58.2 |
SNDR [dB] | 73.1 | 61 | 70.64 | 74.1 | 68.5 | 60 | 60.5 | 55.1 |
SFDR [dB] | 77.5 | 70 | 82.43 | 83.4 | 82.6 | - | - | - |
Area [mm2] | 0.03 * | 0.34 | 0.36 | 0.74 | 0.014 | 0.195 | 0.38 | 0.015 |
FoM [dB] | 168.1 | 152.3 | 170.7 | 158 | 161.3 | 162.2 | 148.21 | 160.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benvenuti, L.; Catania, A.; Manfredini, G.; Ria, A.; Piotto, M.; Bruschi, P. Design Strategies and Architectures for Ultra-Low-Voltage Delta-Sigma ADCs. Electronics 2021, 10, 1156. https://doi.org/10.3390/electronics10101156
Benvenuti L, Catania A, Manfredini G, Ria A, Piotto M, Bruschi P. Design Strategies and Architectures for Ultra-Low-Voltage Delta-Sigma ADCs. Electronics. 2021; 10(10):1156. https://doi.org/10.3390/electronics10101156
Chicago/Turabian StyleBenvenuti, Lorenzo, Alessandro Catania, Giuseppe Manfredini, Andrea Ria, Massimo Piotto, and Paolo Bruschi. 2021. "Design Strategies and Architectures for Ultra-Low-Voltage Delta-Sigma ADCs" Electronics 10, no. 10: 1156. https://doi.org/10.3390/electronics10101156
APA StyleBenvenuti, L., Catania, A., Manfredini, G., Ria, A., Piotto, M., & Bruschi, P. (2021). Design Strategies and Architectures for Ultra-Low-Voltage Delta-Sigma ADCs. Electronics, 10(10), 1156. https://doi.org/10.3390/electronics10101156