TSCH Multiple Slotframe Scheduling for Ensuring Timeliness in TS-SWIPT-Enabled IoT Networks
Abstract
1. Introduction
2. Related Works
3. System Model
3.1. System Architecture
3.2. TSCH Slotframe Structure
3.3. 6P Cell Allocation Procedure
4. Design of TMSS
Algorithm 1. Cell-overlapping prevention (COP) algorithm. |
1: INPUT , , , // Input the slotframe list and channel list |
2: INITIALIZE to 0, to 0, to 0, to 0, to FALSE // Initialize variables |
3: /* ======================== Step 1. LCM slotframe creation ========================== */ |
4: ← // Calculate the length of LCM slotframe |
5: FOR each slotframe, , // is the number of slotframes within the slotframe list |
6: ← |
7: FOR each repetition, , |
8: FOR each cell, , // is the number of cells within the th slotframe |
9: ← 1 |
10: ENDFOR |
11: ENDFOR |
12: ENDFOR |
13: /* ======================== Step 2. Empty timeslot discovery ======================= */ |
14: ← // Calculate the number of partitions in LCM slotframe |
15: FOR each partition, , |
16: ← |
17: ← |
18: ENDFOR |
19: FOR each timeslot, , // Search timeslot of empty cells in |
20: IF == 0 |
21: ← |
22: ENDIF |
23: ← |
24: ENDFOR |
25: /* ======================== Step 3. Candidate cell list creation ====================== */ |
26: IF ≥ |
27: FOR each empty cell, , |
28: ← |
29: ENDFOR |
30: FOR each empty cell, , |
31: ← |
32: ENDFOR |
33: ← TRUE |
34: ELSEIF |
35: ← |
36: ← |
37: ← FALSE |
38: ENDIF |
39: RETURN , , |
5. Performance Evaluation
5.1. Simulation Setting
5.2. Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tran-Dang, H.; Krommenacker, N.; Charpentier, P.; Kim, D.-S. Toward the Internet of Things for Physical Internet: Perspectives and Challenges. IEEE Internet Things J. 2020, 7, 4711–4736. [Google Scholar] [CrossRef]
- González-Zamar, M.-D.; Abad-Segura, E.; Vázquez-Cano, E.; López-Meneses, E. IoT Technology Applications-Based Smart Cities: Research Analysis. Electronics 2020, 9, 1246. [Google Scholar] [CrossRef]
- Mehmood, F.; Ullah, I.; Ahmad, S.; Kim, D.-H. A Novel Approach towards the Design and Implementation of Virtual Network Based on Controller in Future IoT Applications. Electronics 2020, 9, 604. [Google Scholar] [CrossRef]
- Ang, K.L.M.; Seng, J.K.P. Application specific Internet of Things (ASIoTs): Taxonomy, applications, use case and future directions. IEEE Access 2019, 7, 56577–56590. [Google Scholar] [CrossRef]
- Lee, S.K.; Bae, M.; Kim, H. Future of IoT networks: A survey. Appl. Sci. 2017, 7, 1072. [Google Scholar] [CrossRef]
- Samuel, A.; Sipes, C. Making Internet of Things Real. IEEE Internet Things Mag. 2019, 2, 10–12. [Google Scholar] [CrossRef]
- Wen, Z.; Yang, R.; Garraghan, P.; Lin, T.; Xu, J.; Rovatsos, M. Fog orchestration for internet of things services. IEEE Internet Comput. 2017, 21, 16–24. [Google Scholar] [CrossRef]
- Mishu, M.K.; Rokonuzzaman, M.; Pasupuleti, J.; Shakeri, M.; Rahman, K.S.; Hamid, F.A.; Tiong, S.K.; Amin, N. Prospective Efficient Ambient Energy Harvesting Sources for IoT-Equipped Sensor Applications. Electronics 2020, 9, 1345. [Google Scholar] [CrossRef]
- Khan, P.W.; Abbas, K.; Shaiba, H.; Muthanna, A.; Abuarqoub, A.; Khayyat, M. Energy Efficient Computation Offloading Mechanism in Multi-Server Mobile Edge Computing—An Integer Linear Optimization Approach. Electronics 2020, 9, 1010. [Google Scholar] [CrossRef]
- Abd-Elmagid, M.A.; Kishk, M.A.; Dhillon, H.S. Joint energy and SINR coverage in spatially clustered RF-powered IoT network. IEEE Trans. Green Commun. Netw. 2018, 3, 132–146. [Google Scholar] [CrossRef]
- Sabovic, A.; Delgado, C.; Subotic, D.; Jooris, B.; De Poorter, E.; Famaey, J. Energy-Aware Sensing on Battery-Less LoRaWAN Devices with Energy Harvesting. Electronics 2020, 9, 904. [Google Scholar] [CrossRef]
- Al-Kadhim, H.M.; Al-Raweshidy, H.S. Energy efficient and reliable transport of data in cloud-based IoT. IEEE Access 2019, 7, 64641–64650. [Google Scholar] [CrossRef]
- Perera, T.D.P.; Jayakody, D.N.K.; Sharma, S.K.; Chatzinotas, S.; Li, J. Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges. IEEE Commun. Surv. Tutor. 2017, 20, 264–302. [Google Scholar] [CrossRef]
- Pan, N.; Rajabi, M.; Claessens, S.; Schreurs, D.; Pollin, S. Transmission Strategy for Simultaneous Wireless Information and Power Transfer with a Non-Linear Rectifier Model. Electronics 2020, 9, 1082. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Y.; Guo, S.; Yang, Y.; Ji, L. Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer. Sensors 2017, 17, 1906. [Google Scholar] [CrossRef]
- Lu, G.; Lei, C.; Ye, Y.; Shi, L.; Wang, T. Energy Efficiency Optimization for AF Relaying with TS-SWIPT. Energies 2019, 12, 993. [Google Scholar] [CrossRef]
- Jiang, R.; Xiong, K.; Fan, P.; Zhang, Y.; Zhong, Z. Power minimization in SWIPT networks with coexisting power-splitting and time-switching users under nonlinear EH model. IEEE Internet Things 2019, 6, 8853–8869. [Google Scholar] [CrossRef]
- Pan, G.; Lei, H.; Yuan, Y.; Ding, Z. Performance analysis and optimization for SWIPT wireless sensor networks. IEEE Trans. Commun. 2017, 65, 2291–2302. [Google Scholar] [CrossRef]
- Na, H.; Lee, C. A full-duplex SWIPT system with self-energy recycling to minimize energy consumption. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 253. [Google Scholar] [CrossRef]
- Sreelakshmy, K.R.; Jacob, L. Simultaneous wireless information and power transfer in heterogeneous cellular networks with underlay D2D communication. Wirel. Netw. 2020, 26, 3315–3330. [Google Scholar] [CrossRef]
- Le, T.N.; Pegatoquet, A.; Berder, O.; Sentieys, O. Energy-Efficient Power Manager and MAC Protocol for Multi-Hop Wireless Sensor Networks Powered by Periodic Energy Harvesting Sources. IEEE Sens. J. 2015, 15, 7208–7220. [Google Scholar] [CrossRef]
- Do, N.T.; da Costa, D.B.; Duong, T.Q.; Bao, V.N.Q.; An, B. Exploiting direct links in multiuser multirelay SWIPT cooperative networks with opportunistic scheduling. IEEE Trans. Wirel. Commun. 2017, 16, 5410–5427. [Google Scholar] [CrossRef]
- Tang, J.; So, D.K.; Shojaeifard, A.; Wong, K.K. Energy efficiency optimization with simultaneous wireless information and power transfer in MIMO broadcast channels. IEEE Internet Things 2018, 5, 2605–2619. [Google Scholar] [CrossRef]
- Amirinasab Nasab, M.; Shamshirband, S.; Chronopoulos, A.T.; Mosavi, A.; Nabipour, N. Energy-Efficient Method for Wireless Sensor Networks Low-Power Radio Operation in Internet of Things. Electronics 2020, 9, 320. [Google Scholar] [CrossRef]
- Lee, S.; Azfar Yaqub, M.; Kim, D. Neighbor Aware Protocols for IoT Devices in Smart Cities—Overview, Challenges and Solutions. Electronics 2020, 9, 902. [Google Scholar] [CrossRef]
- Huang, J.; Xing, C.C.; Wang, C. Simultaneous wireless information and power transfer: Technologies, applications, and research challenges. IEEE Commun. Mag. 2017, 55, 26–32. [Google Scholar] [CrossRef]
- Do, T.P.; Song, I.; Kim, Y.H. Simultaneous wireless transfer of power and information in a decode-and-forward two-way relaying network. IEEE Trans. Wirel. Commun. 2017, 16, 1579–1592. [Google Scholar] [CrossRef]
- Naderi, M.Y.; Nintanavongsa, P.; Chowdhury, K.R. RF-MAC: A Medium Access Control Protocol for Re-Chargeable Sensor Networks Powered by Wireless Energy Harvesting. IEEE Trans. Wirel. Commun. 2014, 13, 3926–3937. [Google Scholar] [CrossRef]
- Kim, T.; Park, J.; Kim, J.; Noh, J.; Cho, S. REACH: An efficient MAC protocol for RF energy harvesting in wireless sensor network. Wirel. Commun. Mob. Comput. 2017, 6438726. [Google Scholar] [CrossRef]
- Ha, T.; Kim, J.; Chung, J.M. HE-MAC: Harvest-Then-Transmit Based Modified EDCF MAC Protocol for Wireless Powered Sensor Networks. IEEE Trans. Wirel. Commun. 2017, 17, 3–16. [Google Scholar] [CrossRef]
- Kim, E.-J.; Youm, S.; Kang, C.-H. Power-Controlled Topology Optimization and Channel Assignment for Hybrid MAC in Wireless Sensor Networks. IEICE Trans. Commun. 2011, 94, 2461–2472. [Google Scholar] [CrossRef]
- Ju, H.H.; Zhang, R. Throughput Maximization in Wireless Powered Communication Networks. IEEE Trans. Wirel. Commun. 2014, 13, 418–428. [Google Scholar] [CrossRef]
- Choi, H.-H.; Shin, W. Slotted ALOHA for Wireless Powered Communication Networks. IEEE Access. 2018, 6, 53342–53355. [Google Scholar] [CrossRef]
- Cho, S.; Lee, K.; Kang, B.; Joe, I. A hybrid MAC protocol for optimal channel allocation in large-scale wireless powered communication networks. EURASIP J. Wirel. Comm. 2018, 2018, 9. [Google Scholar] [CrossRef]
- IEEE Std. 802.15.4-2015 (Revision of IEEE Std. 802.15.4-2011). IEEE Standard for Low-Rate Wireless Networks; IEEE Standards Association: Piscataway, NJ, USA, 2016. [Google Scholar]
- Wang, Q.; Vilajosana, X.; Watteyne, T. 6top Protocol (6P). Available online: https://tools.ietf.org/html/rfc8480 (accessed on 22 September 2020).
- Hermeto, R.T.; Gallais, A.; Theoleyre, F. Scheduling for IEEE802. 15.4-TSCH and slow channel hopping MAC in low power industrial wireless networks: A survey. Comput. Commun. 2017, 114, 84–105. [Google Scholar] [CrossRef]
- Palattella, M.R.; Watteyne, T.; Wang, Q.; Muraoka, K.; Accettura, N.; Dujovne, D.; Grieco, L.A.; Engel, T. On-the-Fly Bandwidth Reservation for 6TiSCH Wireless Industrial Networks. IEEE Sens. J. 2015, 16, 550–560. [Google Scholar] [CrossRef]
- Vilajosana, X.; Pister, K.; Watteyne, T. Minimal IPv6 over the TSCH Mode of IEEE 802.15. 4e (6TiSCH) Configuration. Available online: https://tools.ietf.org/html/rfc8180 (accessed on 22 September 2020).
- Li, G.; Geng, E.; Ye, Z.; Xu, Y.; Lin, J.; Pang, Y. Indoor Positioning Algorithm Based on the Improved RSSI Distance Model. Sensors 2018, 18, 2820. [Google Scholar] [CrossRef]
- Vilajosana, X.; Wang, Q.; Chraim, F.; Watteyne, T.; Chang, T.; Pister, K.S. A realistic energy consumption model for TSCH networks. IEEE Sens. J. 2013, 14, 482–489. [Google Scholar] [CrossRef]
- He, S.M.; Xie, K.; Chen, W.W.; Zhang, D.F.; Wen, J.G. Energy-aware Routing for SWIPT in Multi-hop Energy-constrained Wireless Network. IEEE Access 2018, 6, 17996–18008. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
PHY/MAC | IEEE 802.15.4 | TP | 0.5 s–3 s |
Number of sensor devices per group | 2–20 | 1 m–4 m | |
Data rate | 250 kbps | 5 | |
Packet size | 125 bytes | 24.11 mW | |
Ack size | 25 bytes | 19.26 mW | |
TsTxOffset | 2120 μs | 4.67 mW | |
TsRxAckDelay | 800 μs | 100 mW | |
Timeslot length | 10 ms | 2.7 | |
Slotframe length | 0.5 s–3 s | 0.65 |
TMSS | Legacy TSCH | HE-MAC | ||||||||
0.5 s | 1 s | 1.5 s | 0.5 s | 1 s | 1.5 s | 0.5 s | 1 s | 1.5 s | ||
Short TP Scenario | 2 | 1.99 | 2.00 | 2.00 | 0.55 | 1.00 | 1.50 | 1.86 | 2.00 | 2.00 |
4 | 3.53 | 4.00 | 4.00 | 0.92 | 1.97 | 3.00 | 2.20 | 3.93 | 4.00 | |
6 | 4.02 | 5.80 | 6.00 | 1.04 | 2.81 | 4.44 | 1.70 | 4.82 | 5.86 | |
8 | 4.26 | 6.84 | 7.84 | 1.02 | 3.23 | 5.43 | 0.87 | 4.14 | 7.15 | |
10 | 4.15 | 7.33 | 9.18 | 1.06 | 3.31 | 6.12 | 0.71 | 2.91 | 7.07 | |
12 | 4.26 | 7.71 | 9.96 | 1.08 | 3.53 | 6.33 | 0.54 | 2.80 | 6.01 | |
14 | 4.34 | 7.78 | 10.38 | 1.10 | 3.38 | 6.59 | 0.40 | 1.91 | 4.98 | |
16 | 4.52 | 7.68 | 10.48 | 1.12 | 3.40 | 6.61 | 0.31 | 1.48 | 4.02 | |
18 | 4.22 | 7.91 | 10.81 | 1.07 | 3.52 | 6.16 | 0.31 | 1.31 | 3.55 | |
20 | 4.30 | 7.90 | 10.65 | 1.08 | 3.43 | 6.39 | 0.23 | 1.10 | 2.72 | |
TMSS | Legacy TSCH | HE-MAC | ||||||||
2 s | 2.5 s | 3 s | 2 s | 2.5 s | 3 s | 2 s | 2.5 s | 3 s | ||
Long TP Scenario | 2 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
4 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | |
6 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 5.99 | 6.00 | 6.00 | |
8 | 8.00 | 8.00 | 8.00 | 8.00 | 7.98 | 7.94 | 7.91 | 8.00 | 8.00 | |
10 | 9.85 | 9.97 | 10.00 | 9.85 | 9.64 | 9.78 | 9.32 | 9.97 | 10.00 | |
12 | 11.39 | 11.76 | 11.96 | 11.39 | 11.36 | 11.04 | 9.62 | 11.67 | 11.94 | |
14 | 12.36 | 13.24 | 13.70 | 12.36 | 11.44 | 11.34 | 9.18 | 12.56 | 13.73 | |
16 | 12.58 | 14.24 | 15.27 | 12.58 | 12.88 | 11.98 | 7.65 | 11.63 | 14.92 | |
18 | 12.94 | 14.69 | 15.71 | 12.94 | 12.66 | 12.36 | 6.52 | 10.38 | 15.14 | |
20 | 13.38 | 14.51 | 16.78 | 13.38 | 12.80 | 12.64 | 5.61 | 9.26 | 13.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Kwon, J.-H.; Kim, E.-J. TSCH Multiple Slotframe Scheduling for Ensuring Timeliness in TS-SWIPT-Enabled IoT Networks. Electronics 2021, 10, 48. https://doi.org/10.3390/electronics10010048
Kim D, Kwon J-H, Kim E-J. TSCH Multiple Slotframe Scheduling for Ensuring Timeliness in TS-SWIPT-Enabled IoT Networks. Electronics. 2021; 10(1):48. https://doi.org/10.3390/electronics10010048
Chicago/Turabian StyleKim, Dongwan, Jung-Hyok Kwon, and Eui-Jik Kim. 2021. "TSCH Multiple Slotframe Scheduling for Ensuring Timeliness in TS-SWIPT-Enabled IoT Networks" Electronics 10, no. 1: 48. https://doi.org/10.3390/electronics10010048
APA StyleKim, D., Kwon, J.-H., & Kim, E.-J. (2021). TSCH Multiple Slotframe Scheduling for Ensuring Timeliness in TS-SWIPT-Enabled IoT Networks. Electronics, 10(1), 48. https://doi.org/10.3390/electronics10010048