Synthesis of Lipid Nanoparticles Incorporated with Ferula assa-foetida L. Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
2.2.1. Preparation of Plant Extract from Ferula assa-foetida L.
2.2.2. Analysis of Active Substances Isolated from Ferula assa-foetida L.
2.2.3. Optimization of the Synthesis of SLN-Type Lipid Nanoparticles
Lipid Screening
Selection of the Synthesis Method
- high-speed homogenization;
- high-pressure homogenization (HPH) at elevated temperatures.
Synthesis of SLN-Type Lipid Nanoparticles Using High-Speed Homogenization
Synthesis of SLN-Type Lipid Nanoparticles Using HPH
2.2.4. Physicochemical Characteristics of the Obtained SLNs
Average Particle Size and Polydispersity Index
Zeta Potential (ZP)
X-ray Diffraction (XRD)
Differential Scanning Calorimetry (DSC)
2.2.5. Quantitative Determination of Ferulic Acid Present in the Ethanol Extract from Ferula assa-foetida L. and in Solid Lipid Nanoparticles Incorporated with This Extract
- Preparation of standard solutions for the calibration curve. The first step of the work was to prepare a methanolic stock solution of ferulic acid at a concentration of 0.260 mg/cm3. Ferulic acid standard solutions of 0.013, 0.026, 0.065, and 0.130 mg/cm3 were then prepared from the stock solution by successive dilutions.
- Preparation of ethanol extract from Ferula assa-foetida L. and SLN incorporated with the above-mentioned extract for chromatographic analysis. The Ferula assa-foetida L. extract obtained according to the procedure described in Section 2.2.1 was diluted 100 times with methanol. The resulting solution was filtered through a syringe PTFE filter with a pore diameter of 0.45 μm and 1.5 cm3 was transferred to a glass vial for HPLC analysis. At the same time, SLN samples incorporated with Ferula assa-foetida L. extract were subjected to the extraction process, which was carried out as follows: 1.0 g of sample was poured into 1.0 g of methanol, then the process was carried out for 2 h, with the first 0.5 h including treatment of the sample in the ultrasonic bath. Then the sample was transferred to a magnetic stirrer and stirred for 1 h and again treated in the ultrasonic bath for 0.5 h.
- Chromatographic analysis. Chromatographic analysis was performed according to the conditions given in Table 4. Each of the tested samples was subjected to two measurements, and the arithmetic mean was calculated from the obtained results.
3. Results and Discussion
3.1. GC-MS Analysis of Ethanol Extract from Ferula assa-foetida L.
3.2. Optimization of the Synthesis of Solid Lipid Nanoparticles
- the method for their preparation (high-speed homogenization; high-pressure hot (HPH) homogenization);
- the pressure used in the HPH-based method (300 bar and 500 bar);
- the amount of lipid used (4.0 wt.%, 6.0 wt.%, and 8.0 wt.%);
- the amount of surfactant used (0.5 wt.%, 1.5 wt.%, and 3.0 wt.%);
- the amount of Ferula assa-foetida L. extract added (1.0 wt.%, 2.0 wt.%, and 3.0 wt.%).
3.3. Characterization of the Lipid Matrix in Synthesized SLN-Type Lipid Nanoparticles
3.4. Quantitative Determination of Ferulic Acid Present in the Ethanol Extract from Ferula assa-foetida L. and in Solid Lipid Nanoparticles Incorporated with This Extract
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, A. Historia Pięknej Kobiety (History of a Beautiful Woman); Wydawnictwo Literackie: Warszawa, Poland, 1991. [Google Scholar]
- Golińska, D. Kanony Kobiecej Urody. Od Starożytnego Egiptu po XXI Wiek (Canons of Female Beauty. From Ancient Egypt to the 21st Century); Wydawnictwo Buchmann: Warszawa, Poland, 2014. [Google Scholar]
- Posz, E. Znaczenie roślin kosmetycznych w utrzymaniu higieny w kulturach starożytnych. In Czystość i Brud. Higiena w Starożytności (Cleanliness and Dirt. Hygiene in Antiquity), 1st ed.; Korpalska, W., Ślusarczyk, W., Eds.; Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika: Toruń, Poland, 2013; pp. 279–294. [Google Scholar]
- Łuczak, K. Silphium z Cyrene. Skarb antycznej medycyny (Silphium of Cyrene. A treasure of ancient medicine). Kwart. Hist. Kult. Mater. 2015, 63, 3–14. [Google Scholar]
- Kotłowska, A. Silfion—Dawne bogactwo Cyrenejki (Silfion—The former wealth of Cyrenaica). Meander 2003, 58, 409–416. [Google Scholar]
- Hlasiwetz, H.; Barth, L. Mittheilungen aus dem chemischen Laboratorium in Innsbruck I, Ueber einige Harze [Zersetzungsproducte derselben durch schmelzendes Kali]. Justus Liebigs Ann. Chem. 1866, 138, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Dutt, S. General synthesis of α-unsaturated acids from malonic acid. QJ Chem. Soc. 1925, 1, 297–301. [Google Scholar]
- Stuper-Szablewska, K.; Przybylska, A.; Kurasiak-Popowska, D.; Perkowski, J. Ferulic acid: Properties, determination, and application in cosmetic industry. Przem. Chem. 2017, 96, 2070–2076. [Google Scholar] [CrossRef]
- Park, H.-J.; Cho, J.-H.; Hong, S.-H.; Kim, D.-H.; Jung, H.-Y.; Kang, I.-K.; Cho, Y.-J. Whitening and anti-wrinkle activities of ferulic acid isolated from Tetragonia tetragonioides in B16F10 melanoma and CCD-986sk fibroblast cells. J. Nat. Med. 2018, 72, 127–135. [Google Scholar] [CrossRef]
- Nile, S.H.; Ko, E.Y.; Kim, D.H.; Keum, Y.S. Screening of ferulic acid-related compounds as inhibitors of xanthine oxidase and cyclooxygenase-2 with anti-inflammatory activity. Rev. Bras. Farmacogn. 2016, 26, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Londoño, C.A.; Rojas, J.; Yarce, C.J.; Salamanca, C.H. Design of Prototype Formulations for In Vitro Dermal Delivery of the Natural Antioxidant Ferulic Acid Based on Ethosomal Colloidal Systems. Cosmetics 2019, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.-H.; Lin, J.-Y.; Gupta, R.D.; Tournas, J.A.; Burch, J.A.; Selim, M.A.; Monteiro-Riviere, N.A.; Grichnik, J.M.; Zielinski, J.; Pinnell, S.R. Ferulic Acid Stabilizes a Solution of Vitamins C and E and Doubles its Photoprotection of Skin. J. Investig. Dermatol. 2005, 125, 826–832. [Google Scholar] [CrossRef] [Green Version]
- Farzaneh, S.K.; Es-Haghi, A.; Tabrizi, M.H.; Shabestarian, H. The loaded Ferula assa-foetida seed essential oil in Solid lipid nanoparticles (FSEO-SLN) as the strong apoptosis inducer agents in human NTERA-2 embryocarcinoma cells. Mater. Technol. 2022, 37, 1120–1128. [Google Scholar] [CrossRef]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Farooq, S.; Mir, S.A.; Shah, M.A.; Manickavasagan, A. Extraction techniques (Chapter 2). In Plant Extracts: Applications in the Food Industry; Mir, S.A., Shah, M.A., Manickavasagan, A., Eds.; Academic Press: London, UK, 2022; pp. 23–37. [Google Scholar] [CrossRef]
- Paliwal, R.; Paliwal, S.R.; Kenwat, R.; Kurmi, B.D.; Sahu, M.K. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin. Ther. Pat. 2020, 30, 179–194. [Google Scholar] [CrossRef]
- Khater, D.; Nsairat, H.; Odeh, F.; Saleh, M.; Jaber, A.; Alshaer, W.; Al Bawab, A.; Mubarak, M.S. Design, Preparation, and Characterization of Effective Dermal and Transdermal Lipid Nanoparticles: A Review. Cosmetics 2021, 8, 39. [Google Scholar] [CrossRef]
- Borges, A.; de Freitas, V.; Mateus, N.; Fernandes, I.; Oliveira, J. Solid Lipid Nanoparticles as Carriers of Natural Phenolic Compounds. Antioxidants 2020, 9, 998. [Google Scholar] [CrossRef]
- Musielak, E.; Feliczak-Guzik, A.; Nowak, I. Synthesis and Potential Applications of Lipid Nanoparticles in Medicine. Materials 2022, 15, 682. [Google Scholar] [CrossRef]
- Musielak, E.; Feliczak-Guzik, A.; Nowak, I. Optimization of the Conditions of Solid Lipid Nanoparticles (SLN) Synthesis. Molecules 2022, 27, 2202. [Google Scholar] [CrossRef] [PubMed]
- Gasco, M.R. Method for Producing Solid Lipid Microspheres Having a Narrow Size Distribution. U.S. Patent US5250236A, 5 October 1993. [Google Scholar]
- Souto, E.B.; Almeida, A.J.; Müller, R.H. Lipid Nanoparticles (SLN®, NLC®) for Cutaneous Drug Delivery: Structure, Protection and Skin Effects. J. Biomed. Nanotech. 2007, 3, 317–331. [Google Scholar] [CrossRef]
- Lucks, S.; Muller, R. Arzneistoffträger aus Festen Lipidteilchen (Feste Lipidnanosphären (sln)). German Patent EP0605497B2, 18 September 1991. [Google Scholar]
- Kalaycioglu, G.D.; Aydogan, N. Preparation and investigation of solid lipid nanoparticles for drug delivery. Colloids Surf. A 2016, 510, 77–86. [Google Scholar] [CrossRef]
- Souto, E.B.; Doktorovova, S.; Gonzalez-Mira, E.; Egea, M.A.; Garcia, M.L. Feasibility of lipid nanoparticles for ocular delivery of anti-inflammatory drugs. Curr. Eye Res. 2010, 35, 537–552. [Google Scholar] [CrossRef]
- Khairnar, S.V.; Pagare, P.; Thakre, A.; Nambiar, A.R.; Junnuthula, V.; Abraham, M.C.; Kolimi, P.; Nyavanandi, D.; Dyawanapelly, S. Review on the Scale-Up Methods for the Preparation of Solid Lipid Nanoparticles. Pharmaceutics 2022, 14, 1886. [Google Scholar] [CrossRef]
- Dumont, C.; Bourgeois, S.; Fessi, H.; Dugas, P.-Y.; Jannin, V. In-vitro evaluation of solid lipid nanoparticles: Ability to encapsulate, release and ensure effective protection of peptides in the gastrointestinal tract. Int. J. Pharm. 2019, 565, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.M.; Das, S.; Chow, P.S.; Macbeath, C. Encapsulation of Ferulic Acid in Lipid Nanoparticles as Antioxidant for Skin: Mechanistic Understanding through Experiment and Molecular Simulation. ACS Appl. Nano Mater. 2020, 3, 5351–5361. [Google Scholar] [CrossRef]
- Chaudhary, A.; Jaswal, V.S.; Choudhary, S.; Sonika, U.; Sharma, A.; Beniwal, V.; Tuli, H.S.; Sharma, S. Ferulic Acid: A Promising Therapeutic Phytochemical and Recent Patents Advances. Recent Pat. Inflamm. Allergy Drug Discov. 2019, 13, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic Acid: Therapeutic Potential Through Its Antioxidant Property. J. Clin. Biochem. Nutr. 2007, 40, 92–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Do-khani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Jores, K.; Mehnert, W.; Drechsler, M.; Bunjes, H.; Johann, C.; Mäder, K. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J. Control. Release 2004, 95, 217–227. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS, and zeta potential—What they are and what they are not? J. Control. Release 2016, 10, 337–351. [Google Scholar] [CrossRef]
- Azagury, A.; Baptista, C.; Milovanovic, K.; Shin, H.; Morello, P., III; Perez-Rogers, J.; Goldenshtein, V.; Nguyen, T.; Markel, A.; Rege, S.; et al. Biocoating—A Critical Step Governing the Oral Delivery of Poly-meric Nanoparticles. Small 2022, 18, 2107559. [Google Scholar] [CrossRef]
- Doktorovova, S.; Souto, E.B. Nanostructured lipid carrier-based hydrogel formulations for drug delivery: A comprehensive review. Expert Opin. Drug Deliv. 2009, 6, 165–176. [Google Scholar] [CrossRef]
- Wissing, S.A.; Müller, R.H. Solid lipid nanoparticles as carriers for sunscreens: In vitro release and in vivo skin penetration. J. Control. Release 2002, 81, 225–233. [Google Scholar] [CrossRef]
- Durán, N.; Teixeira, Z.; Marcato, P.D. Topical Application of Nanostructures: Solid Lipid, Polymeric and Metallic Nanoparticles. In Nanocosmetics and Nanomedicines: New Approaches for Skin Care, 1st ed.; Beck, R., Guterres, S., Pohlmann, A., Eds.; Springer: Berlin, Germany, 2011; pp. 69–100. [Google Scholar]
- Bunjes, H.; Unruh, T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering, Adv. Drug Deliv. Rev. 2007, 59, 379–402. [Google Scholar] [CrossRef] [PubMed]
- Rodenak-Kladniew, B.; Islan, G.A.; de Bravo, M.G.; Durán, N.; Castro, G.R. Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as a potent tool in cancer therapy. Colloids Surf. B 2017, 154, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Lu, Z.; Li, D.; Hu, J. Preparation and characterization of citral-loaded solid lipid nanoparticles. Food Chem. 2018, 248, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Xie, C.; Huang, K.; Zhu, C. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials 2003, 24, 1781–1785. [Google Scholar] [CrossRef]
- Omwoyo, W.N.; Ogutu, B.; Oloo, F.; Swai, H.; Kalombo, L.; Melariri, P.; Mahanga, G.M.; Gathirwa, J.W. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles. Int. J. Nanomed. 2014, 9, 3865–3874. [Google Scholar] [CrossRef]
Injector | |||
---|---|---|---|
Injector Temperature: | 220 °C | ||
Column | |||
Temperature program: | Rate [°C/min] | Temperature [°C] | Time [min] |
0 | 80 | 1 | |
10 | 220 | 28 | |
Total time | 29 |
Trade Name | Chemical Composition | Melting Point [°C] |
---|---|---|
Witepsol®H15 | A mixture of triacylglycerols of saturated fatty acids with the addition of mono- and diacylglycerols | 31–38 |
Softisan®601 | Glycerol stearate | 40–45 |
Imwitor®900K | Glycerol monostearate, Type II | 54–64 |
Dynasan®116 | Glycerol tripalmitate | 61–65 |
Dynasan®118 | Glycerol tristearate | 70–73 |
Compritol®888 ATO | Glycerol behenate (mixture of mono-, di-, and tri-) | 70 |
Precirol®ATO 5 | Glycerol Distearate, Type I EP | 55–66 |
Materials | Composition |
---|---|
SLN1 | 6.0 wt.% Witepsol®H15, 1.5 wt.% Miranol Ultra, without extract |
SLN2 | 6.0 wt.% Witepsol®H15, 0.5 wt.% Miranol Ultra, 2.0 wt.% extract from Ferula assa-foetida L. |
SLN4 | 6.0 wt.% Witepsol®H15, 1.5 wt.% Miranol Ultra, 2.0 wt.% extract from Ferula assa-foetida L. |
SLN6 | 6.0 wt.% Witepsol®H15, 3.0 wt.% Miranol Ultra, 2.0 wt.% extract from Ferula assa-foetida L. |
SLN9 | 6.0 wt.% Witepsol®H15, 1.5 wt.% Miranol Ultra, 1.0 wt.% extract from Ferula assa-foetida L. |
SLN12 | 6.0 wt.% Witepsol®H15, 1.5 wt.% Miranol Ultra, 3.0 wt.% extract from Ferula assa-foetida L. |
SLN13 | 4.0 wt.% Witepsol®H15, 0.5 wt.% Miranol Ultra, 1.0 wt.% extract from Ferula assa-foetida L. |
SLN14 | 4.0 wt.% Witepsol®H15, 1.5 wt.% Miranol Ultra, 2.0 wt.% extract from Ferula assa-foetida L. |
SLN15 | 8.0 wt.% Witepsol®H15, 1.5 wt.% Miranol Ultra, 2.0 wt.% extract from Ferula assa-foetida L. |
Column | Microsorb-MV 100 C8 250 × 4.6 mm (5 μm) |
Mobile phase | Methanol/1% CH3COOH (70/30 v/v) |
The flow rate of the mobile phase [cm3/min] | 1 |
The volume of samples dispensed [μL] | 5 |
Detector | UV-Vis |
Analytical wavelength [nm] | 319 |
Total analysis time [min] | 20 |
Sample Name | Day | ZP [mV] ± SD | PDI [-] ± SD | Z-Ave [nm] ± SD |
---|---|---|---|---|
HPH, 500 bar, 4.0 wt.% Witepsol®H15, 0.5 wt.% Miranol Ultra | ||||
SLN without extract | 0 | −45.63 ± 0.78 | 0.12 ± 0.01 | 162 ± 1.8 |
7 | −29.36 ± 0.35 | 0.18 ± 0.01 | 160 ± 2.9 | |
28 | −42.60 ± 0.46 | 0.18 ± 0.01 | 164 ± 0.7 | |
SLN13 1.0 wt.% Ferula assa-foetida L. extract | 0 | −38.63 ± 0.51 | 0.16 ± 0.00 | 147 ± 1.3 |
7 | −30.80 ± 0.65 | 0.15 ± 0.00 | 147 ± 2.1 | |
28 | −37.82 ± 0.46 | 0.18 ± 0.00 | 150 ± 0.9 | |
HPH, 500 bar, 4.0 wt.% Witepsol®H15, 1.5 wt.% Miranol Ultra | ||||
SLN without extract | 0 | −43.03 ± 0.98 | 0.20 ± 0.02 | 170 ± 1.2 |
7 | −46.67 ± 1.37 | 0.21 ± 0.01 | 177 ± 0.7 | |
28 | −42.93 ± 0.61 | 0.21 ± 0.01 | 171 ± 2.2 | |
SLN14 2.0 wt.% Ferula assa-foetida L. extract | 0 | −39.93 ± 0.06 | 0.18 ± 0.01 | 159 ± 0.6 |
7 | −40.57 ± 0.51 | 0.19 ± 0.01 | 161 ± 0.2 | |
28 | −49.07 ± 4.20 | 0.30 ± 0.02 | 189 ± 4.5 | |
HPH, 500 bar, 6.0 wt.% Witepsol®H15, 0.5 wt.% Miranol Ultra | ||||
SLN without extract | 0 | −31.53 ± 0.58 | 0.22 ± 0.01 | 196 ± 2.0 |
7 | −34.20 ± 1.65 | 0.21 ± 0.02 | 173 ± 0.5 | |
28 | −34.00 ± 0.90 | 0.20 ± 0.01 | 173 ± 1.8 | |
SLN2 2.0 wt.% Ferula assa-foetida L. extract | 0 | −25.30 ± 0.98 | 0.27 ± 0.01 | 205 ± 2.8 |
7 | −38.73 ± 1.90 | 0.26 ± 0.00 | 205 ± 2.0 | |
28 | −42.30 ± 0.60 | 0.24 ± 0.01 | 204 ± 2.8 | |
HPH, 500 bar, 6.0 wt.% Witepsol®H15, 1.5 wt.% Miranol Ultra | ||||
SLN1 without extract | 0 | −45.63 ± 0.78 | 0.17 ± 0.01 | 163 ± 1.8 |
7 | −29.36 ± 0.35 | 0.18 ± 0.01 | 160 ± 2.9 | |
28 | −42.60 ± 0.88 | 0.18 ± 0.01 | 164 ± 0.8 | |
3 months | −41.97 ± 0.47 | 0.16 ± 0.01 | 163 ± 1.1 | |
SLN4 2.0 wt.% Ferula assa-foetida L. extract | 0 | −38.63 ± 0.51 | 0.16 ± 0.01 | 148 ± 1.3 |
7 | −30.80 ± 0.65 | 0.15± 0.00 | 147 ± 2.1 | |
28 | −37.58 ± 0.73 | 0.17 ± 0.01 | 151 ± 0.9 | |
3 months | −35.70 ± 0.95 | 0.15 ± 0.01 | 147 ± 0.9 | |
SLN9 1.0 wt.% Ferula assa-foetida L. extract | 0 | −35.23 ± 1.03 | 0.29 ± 0.02 | 206 ± 0.6 |
7 | −39.63 ± 0.68 | 0.24± 0.01 | 192 ± 1.7 | |
28 | −40.60 ± 0.90 | 0.23 ± 0.02 | 192 ± 0.2 | |
SLN12 3.0 wt.% Ferula assa-foetida L. extract | 0 | −25.70 ± 0.89 | 0.16 ± 0.00 | 153 ± 3.6 |
7 | −33.87 ± 0.76 | 0.16 ± 0.00 | 154 ± 1.8 | |
28 | −38.00 ± 1.12 | 0.16 ± 0.01 | 155 ± 1.1 | |
HPH, 500 bar, 6.0 wt.% Witepsol®H15, 3.0 wt.% Miranol Ultra | ||||
SLN without extract | 0 | −33.40 ± 0.52 | 0.21 ± 0.01 | 173 ± 1.8 |
7 | −44.37 ± 0.32 | 0.21 ± 0.02 | 185 ± 2.3 | |
28 | −47.10 ± 2.22 | 0.21 ± 0.02 | 175 ± 0.8 | |
SLN6 2.0 wt.% Ferula assa-foetida L. extract | 0 | −37.70 ± 1.31 | 0.23 ± 0.01 | 177 ± 1.3 |
7 | −43.67 ± 0.32 | 0.26 ± 0.01 | 179 ± 4.2 | |
28 | −41.90 ± 0.74 | 0.22 ± 0.01 | 181 ± 2.8 | |
HPH, 500 bar, 8.0 wt.% Witepsol®H15, 1.5 wt.% Miranol Ultra | ||||
SLN without extract | 0 | −49.10 ± 0.36 | 0.56 ± 0.02 | 311 ± 4.5 |
7 | −49.95 ± 1.14 | 0.85 ± 0.02 | 397 ± 8.2 | |
28 | −48.93 ± 0.46 | 0.53 ± 0.02 | 301 ± 4.2 | |
SLN15 2.0 wt.% Ferula assa-foetida L. | 0 | −40.20 ± 0.26 | 0.19 ± 0.01 | 170 ± 0.4 |
7 | −41.77 ± 1.10 | 0.18 ± 0.02 | 175 ± 0.6 | |
28 | −43.00 ± 0.70 | 0.20 ± 0.00 | 169 ± 1.0 | |
HIGH-SPEED HOMOGENIZATION 6.0 wt.% Witepsol®H15, 1.5 wt.% Miranol Ultra, 110s Ultra, 24 000 rpm | ||||
SLN1/HSH without extract | 0 | −63.43 ± 3.48 | 1.00 ± 0.00 | 4397 ± 874 |
7 | −55.50 ± 0.93 | 0.57 ± 0.03 | 6527 ± 441 | |
28 | delamination | delamination | delamination | |
SLN4/HSH 2.0 wt.% Ferula assa-foetida L. extract | 0 | −50.03 ± 1.07 | 0.39 ± 0.17 | 5913 ± 251 |
7 | delamination | delamination | delamination | |
28 | delamination | delamination | delamination |
Sample | Sample Composition | Ferulic Acid Content [mg/cm3] |
---|---|---|
SLN1 | S: 1.5%; E: 0.0%; L: 6.0% | 0.00 |
SLN2 | S: 0.5%; E: 2.0%; L: 6.0% | 0.11 |
SLN4 | S: 1.5%; E: 2.0%; L: 6.0% | 0.05 |
SLN6 | S: 3.0%; E: 2.0%; L: 6.0% | 0.07 |
SLN9 | S: 1.5%; E: 1.0%; L: 6.0% | 0.04 |
SLN12 | S: 1.5%; E: 3.0%; L: 6.0% | 0.15 |
Extract from Ferula assa-foetida L. | ----- | 18.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludek, S.; Wawrzyńczak, A.; Nowak, I.; Feliczak-Guzik, A. Synthesis of Lipid Nanoparticles Incorporated with Ferula assa-foetida L. Extract. Cosmetics 2022, 9, 129. https://doi.org/10.3390/cosmetics9060129
Ludek S, Wawrzyńczak A, Nowak I, Feliczak-Guzik A. Synthesis of Lipid Nanoparticles Incorporated with Ferula assa-foetida L. Extract. Cosmetics. 2022; 9(6):129. https://doi.org/10.3390/cosmetics9060129
Chicago/Turabian StyleLudek, Sylwia, Agata Wawrzyńczak, Izabela Nowak, and Agnieszka Feliczak-Guzik. 2022. "Synthesis of Lipid Nanoparticles Incorporated with Ferula assa-foetida L. Extract" Cosmetics 9, no. 6: 129. https://doi.org/10.3390/cosmetics9060129
APA StyleLudek, S., Wawrzyńczak, A., Nowak, I., & Feliczak-Guzik, A. (2022). Synthesis of Lipid Nanoparticles Incorporated with Ferula assa-foetida L. Extract. Cosmetics, 9(6), 129. https://doi.org/10.3390/cosmetics9060129