Application of Niosomes in Cosmetics: A Systematic Review
Abstract
:1. Introduction
2. Methodology
3. Niosomes Structure, Types, and Methods of Preparation
4. Niosomes in Cosmetics: How They Work on the Skin
5. Niosomes as a Delivery System
6. Niosomes for the Delivery of Antioxidant and Whitening Ingredients
7. Niosomes for the Delivery of Anti-Scarring Ingredients
8. Niosomes for the Delivery of Anti-Ageing Effect Ingredients
9. Application on the Hair
10. Miscellaneous Applications of the Cosmeceutical Niosomes
11. Future Prospects of Niosomes Application in Cosmetics
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Hanning, S.; Falconer, J.; Locke, M.; Wen, J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm. 2019, 144, 18–39. [Google Scholar] [CrossRef] [Green Version]
- Cerqueira-Coutinho, C.; dos Santos, E.P.; Mansur, C.R.E. Niosomes as nano-delivery systems in the pharmaceutical field. Crit. Rev. Ther. Drug Carr. Syst. 2016, 33, 195–212. [Google Scholar] [CrossRef]
- Saraswathi, T.S.; Mothilal, M.; Jaganathan, M.K. Niosomes as an emerging formulation tool for drug delivery—A review. Int. J. Appl. Pharm. 2019, 11, 7–15. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065293053&doi=10.22159%2Fijap.2019v11i2.30534&partnerID=40&md5=48a0fd10ea0f63087a3fe273a81a8d55 (accessed on 20 September 2022).
- Umbarkar, M.G. Niosome as a novel pharmaceutical drug delivery: A brief review highlighting formulation, types, composition and application. Indian J. Pharm. Educ. Res. 2021, 55, s11–s28. [Google Scholar] [CrossRef]
- Hatem, S.; El Hoffy, N.M.; Elezaby, R.S.; Nasr, M.; Kamel, A.O.; Elkheshen, S.A. Background and different treatment modalities for melasma: Conventional and nanotechnology-based approaches. J. Drug Deliv. Sci. Technol. 2020, 60, 101984. [Google Scholar] [CrossRef]
- Van Tran, V.; Moon, J.Y.; Lee, Y.C. Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. J. Control. Release 2019, 300, 114–140. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.; Santos, L. Delivery systems for cosmetics—From manufacturing to the skin of natural antioxidants. Powder Technol. 2017, 322, 402–416. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N. New insights on unique features and role of nanostructured materials in cosmetics. Cosmetics 2020, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Guy, R.H. Applications of nanoparticles in topical drug delivery and in cosmetics. J. Drug Deliv. Sci. Technol. 2009, 19, 371–384. [Google Scholar] [CrossRef] [Green Version]
- Alsabeelah, N.; Arshad, M.F.; Hashmi, S.; Khan, R.A.; Khan, S. Nanocosmeceuticals for the management of ageing: Rigors and Vigors. J. Drug Deliv. Sci. Technol. 2021, 63, 102448. [Google Scholar] [CrossRef]
- Desai, J.; Mallya, R. A review on novel topical formulations of vitamins. J. Rep. Pharm. Sci. 2021, 10, 159–170. [Google Scholar]
- Mohanty, D.; Jhansi, M.; Bakshi, V.; Haque, A.; Swapna, S.; Sahoo, C.K.; Upadhyay, A.K. Niosomes: A Novel Trend in Drug Delivery. Res. J. Pharm. Technol. 2018, 11, 5205–5211. [Google Scholar] [CrossRef]
- Abu Hajleh, M.N.; Abu-Huwaij, R.; AL-Samydai, A.; Al-Halaseh, L.K.; Al-Dujaili, E.A. The revolution of cosmeceuticals delivery by using nanotechnology: A narrative review of advantages and side effects. J. Cosmet. Dermatol. 2021, 20, 3818–3828. [Google Scholar] [CrossRef] [PubMed]
- Saraf, S.; Kaur, C.D.; Gupta, A.; Verma, N. Skin targeting approaches in cosmetics. Indian J. Pharm. Educ. Res. 2019, 53, 577–594. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.; Badhei, L.; Pal, A.; Panda, P. Novel cosmeceutical formulations: A better approach to photoprotection. Int. J. Appl. Pharm. 2022, 14, 9–17. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134419033&doi=10.22159%2Fijap.2022v14i4.44602&partnerID=40&md5=afa27a1e0bc83819077a649f4a6d9586 (accessed on 20 September 2022). [CrossRef]
- Kheilnezhad, B.; Hadjizadeh, A. Factors affecting the penetration of niosome into the skin, their laboratory measurements and dependency to the niosome composition: A review. Curr. Drug Deliv. 2021, 18, 555–569. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113665243&doi=10.2174%2F1567201817999200820161438&partnerID=40&md5=515c513aaee0f4489501215d455f3abd (accessed on 20 September 2022). [CrossRef]
- Zhou, H.; Luo, D.; Chen, D.; Tan, X.; Bai, X.; Liu, Z.; Yang, X.; Liu, W. Current advances of nanocarrier technology-based active cosmetic ingredients for beauty applications. Clin. Cosmet. Investig. Dermatol. 2021, 14, 867–887. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111013452&doi=10.2147%2FCCID.S313429&partnerID=40&md5=798349bea501dbbb3a166d2febb4b14b (accessed on 20 September 2022). [CrossRef]
- Chu, C.C.; Chew, S.C.; Nyam, K.L. Recent advances in encapsulation technologies of kenaf (Hibiscus cannabinus) leaves and seeds for cosmeceutical application. Food Bioprod. Process. 2021, 127, 99–113. [Google Scholar] [CrossRef]
- Dhapte-Pawar, V.; Kadam, S.; Saptarsi, S.; Kenjale, P.P. Nanocosmeceuticals: Facets and aspects. Future Sci. OA 2020, 6, FSO613. [Google Scholar] [CrossRef] [PubMed]
- Manosroi, A.; Chutoprapat, R.; Abe, M.; Manosroi, W.; Manosroi, J. Anti-aging efficacy of topical formulations containing niosomes entrapped with rice bran bioactive compounds. Pharm. Biol. 2012, 50, 208–224. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.C.; Rodrigues, D.; Sequeira, J.A.D.; Pereira, I.; Simões, A.; Costa, D.; Peixoto, D.; Costa, G.; Veiga, F. Nanotechnological breakthroughs in the development of topical phytocompounds-based formulations. Int. J. Pharm. 2019, 572, 118787. [Google Scholar] [CrossRef] [PubMed]
- Sarkis-Onofre, R.; Catalá-López, F.; Aromataris, E.; Lockwood, C. How to properly use the PRISMA Statement. Syst. Rev. 2021, 10, 117. Available online: https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-021-01671-z#citeas (accessed on 20 September 2022). [CrossRef]
- Rehman, Y. Difference between Quantitative and Qualitative Research Question-PICO vs. SPIDER. Am. Acad. Sci. Res. J. Eng. Technol. Sci. 2021, 77, 188–199. [Google Scholar]
- Aljuffali, I.; Hsu, C.Y.; Lin, Y.K.; Fang, J.Y. Cutaneous Delivery of Natural Antioxidants: The Enhancement Approaches. Curr. Pharm. Des. 2015, 21, 2745–2757. [Google Scholar] [CrossRef] [PubMed]
- Tavano, L.; Muzzalupo, R.; Picci, N.; De Cindio, B. Co-encapsulation of lipophilic antioxidants into niosomal carriers: Percutaneous permeation studies for cosmeceutical applications. Colloids Surf. B Biointerfaces 2014, 114, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Patel, N.; Shah, M.K.; Khatri, P.; Vora, N. Recent Advances in Lipid-Based Vesicles and Particulate Carriers for Topical and Transdermal Application. J. Pharm. Sci. 2017, 106, 423–445. [Google Scholar] [CrossRef]
- Ganesan, P.; Choi, D.K. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int. J. Nanomed. 2016, 11, 1987–2007. [Google Scholar] [CrossRef] [Green Version]
- Limphapayom, W.; Loylerd, K.; Leabwan, N.; Sukhasem, S. Encapsulation of alpha-mangostin in cosmetic production by using nanotechnology. Acta Hortic. 2017, 1186, 189–191. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039036183&doi=10.17660%2FActaHortic.2017.1186.29&partnerID=40&md5=1239f36f687973f91c20e59e20d5f782 (accessed on 20 September 2022). [CrossRef]
- D’Angelo, R.W.; Gonçalves, M.M.; Fachi, M.M.; Vilhena RD, O.; Pontarolo, R.; Maluf, D.F. UPLC–QToF-MS Characterization of Blackberry Extracts of Cultivars ‘Tupy’, ‘Guarani’, and ‘Xavante’: Development of Extract-Loaded Niosomes. Rev. Bras. Farmacogn. 2020, 30, 519–527. [Google Scholar] [CrossRef]
- Li, D.; Martini, N.; Wu, Z.; Chen, S.; Falconer, J.R.; Locke, M.; Zhang, Z.; Wen, J. Niosomal Nanocarriers for Enhanced Dermal Delivery of Epigallocatechin Gallate for Protection against Oxidative Stress of the Skin. Pharmaceutics 2022, 14, 726. [Google Scholar] [CrossRef]
- Manosroi, A.; Jantrawut, P.; Khositsuntiwong, N.; Manosroi, W.; Manosroi, J. Novel elastic nanovesicles for cosmeceutical and pharmaceutical applications. Chiang Mai J. Sci. 2009, 36, 168–178. [Google Scholar]
- Ab Aziz, N.A.; Salim, N.; Saari, N.; Md Yusoff, F.; Zarei, M. Jellyfish collagen hydrolysate-loaded niosome for topical application: Formulation development, antioxidant and antibacterial activities. J. Sustain. Sci. Manag. 2022, 17, 1–17. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130431516&doi=10.46754%2Fjssm.2022.02.001&partnerID=40&md5=b9a36ce342e312d730939e4f7aed0e83 (accessed on 20 September 2022). [CrossRef]
- Manosroi, A.; Boonpisuttinant, K.; Winitchai, S.; Manosroi, W.; Manosroi, J. Free Radical Scavenging and Tyrosinase Inhibition Activity of Physic Nut (Jatropha curcas Linn.) Seed Oil Entrapped in Niosomes. Curr. Nanosci. 2011, 7, 825–829. [Google Scholar] [CrossRef]
- Manosroi, A.; Chankhampan, C.; Manosroi, W.; Manosroi, J. Transdermal absorption enhancement of papain loaded in elastic niosomes incorporated in gel for scar treatment. Eur. J. Pharm. Sci. 2013, 48, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Mohamadi, N.; Soltanian, S.; Moeinzadeh, M.R.M.; Ohadi, M.; Sharifi, F.; Pardakhty, A.; Sharififar, F. Characteristics and in vitro anti skin aging activity and UV radiation protection of morin loaded in niosomes. J. Cosmet. Dermatol. 2022, 21, 81–82. [Google Scholar] [CrossRef]
- Chaikul, P.; Khat-udomkiri, N.; Iangthanarat, K.; Manosroi, J.; Manosroi, A. Characteristics and in vitro anti-skin aging activity of gallic acid loaded in cationic CTAB niosome. Eur. J. Pharm. Sci. 2019, 131, 39–49. [Google Scholar] [CrossRef]
- Manosroi, J.; Chankhampan, C.; Kitdamrongtham, W.; Zhang, J.; Abe, M.; Akihisa, T.; Manosroi, W.; Manosroi, A. In vivo anti-ageing activity of cream containing niosomes loaded with purple glutinous rice (Oryza sativa Linn.) extract. Int. J. Cosmet. Sci. 2020, 42, 622–631. [Google Scholar] [CrossRef]
- Tansathien, K.; Chareanputtakhun, P.; Ngawhirunpat, T.; Opanasopit, P.; Rangsimawong, W. Hair growth promoting effect of bioactive extract from deer antler velvet-loaded niosomes and microspicules serum. Int. J. Pharm. 2021, 597, 120352. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zhu, C.; Wang, X.; Kong, Q.; Guo, T.; He, Z.; He, Y.; Ruan, S.; Ruan, H.; Pei, L.; et al. Cholesterol and phospholipid-free multilamellar niosomes regulate transdermal permeation of a hydrophobic agent potentially administrated for treating diseases in deep hair follicles. J. Pharm. Sci. 2022, 111, 1785–1797. [Google Scholar] [CrossRef] [PubMed]
- Teeranachaideekul, V.; Parichatikanond, W.; Junyaprasert, V.B.; Morakul, B. Pumpkin Seed Oil-Loaded Niosomes for Topical Application: 5α-Reductase Inhibitory, Anti-Inflammatory, and In Vivo Anti-Hair Loss Effects. Pharmaceuticals 2022, 15, 930. [Google Scholar] [CrossRef]
- Kandil, S.M.; Soliman, I.I.; Diab, H.M.; Bedair, N.I.; Mahrous, M.H.; Abdou, E.M. Magnesium ascorbyl phosphate vesicular carriers for topical delivery; preparation, in-vitro and ex-vivo evaluation, factorial optimization and clinical assessment in melasma patients. Drug Deliv. 2022, 29, 534–547. [Google Scholar] [CrossRef] [PubMed]
- García-Manrique, P.; Matos, M.; Gutiérrez, G.; Estupiñán, O.R.; Blanco-López, M.C.; Pazos, C. Using Factorial Experimental Design to Prepare Size-Tuned Nanovesicles. Ind. Eng. Chem. Res. 2016, 55, 9164–9175. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, S.; Sakai, K.; Sakai, H. Preparation and properties of niosomes prepared with polyglycerol fatty acid esters using the supercritical carbon dioxide reverse phase evaporation method. In Engineering Sciences and Fundamentals 2016-Core Programming Area at the 2016 AIChE Annual Meeting; AIChE: New York, NY, USA, 2016; pp. 454–464. [Google Scholar]
- Panyosak, A.; Manosroi, J.; Rojanasakul, Y.; Manosroi, A. Safety assessment of azelaic acid and its derivatives entrapped in nanovesicles. Hum. Exp. Toxicol. 2009, 28, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Ataide, J.A.; Gérios, E.F.; Mazzola, P.G.; Souto, E.B. Bromelain-loaded nanoparticles: A comprehensive review of the state of the art. Adv. Colloid Interface Sci. 2018, 254, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Theansungnoen, T.; Daduang, J.; Priprem, A.; Boonsiri, P.; Daduang, S.; Klaynongsruang, S. ormulation and Evaluation of Niosomes Encapsulated with KT2 and RT2: Antimicrobial and Anticancer Peptides Derived from Crocodile Leukocyte Extract. Int. J. Pharm. Sci. Res. 2020, 11, 623–630. [Google Scholar]
- Marchianò, V.; Matos, M.; Serrano, E.; Álvarez, J.R.; Marcet, I.; Blanco-López, M.C.; Gutiérrez, G. Lyophilised nanovesicles loaded with vitamin B12. J. Mol. Liq. 2022, 365, 120129. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137166831&doi=10.1016%2Fj.molliq.2022.120129&partnerID=40&md5=6efff44d6e7e399aba7d4408fda3c3ae (accessed on 20 September 2022). [CrossRef]
- Aljuffali, I.A.; Lin, C.H.; Yang, S.C.; Alalaiwe, A.; Fang, J.Y. Nanoencapsulation of Tea Catechins for Enhancing Skin Absorption and Therapeutic Efficacy. AAPS PharmSciTech 2022, 23, 187. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133617338&doi=10.1208%2Fs12249-022-02344-3&partnerID=40&md5=927ece3f97963d5259f25082ee9bc6d6 (accessed on 20 September 2022). [CrossRef]
- Kashyap, N.; Kumari, A.; Raina, N.; Zakir, F.; Gupta, M. Prospects of essential oil loaded nanosystems for skincare. Phytomed. Plus 2022, 2, 100198. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125604896&doi=10.1016%2Fj.phyplu.2021.100198&partnerID=40&md5=e2e316086441a3ae8420bab19d487e01 (accessed on 20 September 2022). [CrossRef]
- Mandal, S.; De, S. Copper nanoparticles in membrane mimicking vesicles-synthesis and catalytic activity. J. Indian Chem. Soc. 2021, 98, 100061. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114205011&doi=10.1016%2Fj.jics.2021.100061&partnerID=40&md5=29e0e518989f59b6109379e215968ba3 (accessed on 20 September 2022). [CrossRef]
- Rajalakshmi, S.V.; Vinaya, O.G. Formulation development, evaluation and optimization of medicated lip rouge containing niosomal acyclovir for the management of recurrent herpes labialis. Int. J. Appl. Pharm. 2017, 9, 21–27. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034428692&doi=10.22159%2Fijap.2017v9i6.19349&partnerID=40&md5=7364ccabef7a74e100b88de5ff010188 (accessed on 20 September 2022).
- Laslau, C.; Gologan, D.; Ott, C.; Balanuca, B.; Stan, R. Niosomes loaded with ascorbic acid—Influence of surfactants on stability and morphology. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2020, 82, 101–112. [Google Scholar]
- Junyaprasert, V.B.; Singhsa, P.; Suksiriworapong, J.; Chantasart, D. Physicochemical properties and skin permeation of Span60/Tween 60 niosomes of ellagic acid. Int. J. Pharm. 2012, 423, 303–311. [Google Scholar] [CrossRef]
Letter | S | PI | D | E | R |
---|---|---|---|---|---|
Definition | Sample | Phenomenon of interest | Design | Evaluation | Research type |
Reflection in the above-created research question | Niosomes | Cosmeceutical | Nanoparticles | Applications | Qualitative review of research papers in Scopus and WoS |
Concept 1 | Concept 2 | Concept 3 | Concept 4 |
---|---|---|---|
Application of niosomes in cosmetics | Niosomes in cosmetics | Nonionic surfactants in cosmetics | Cosmeceutical niosomes |
Concept | Keyword | Number of Data Found | Total Inclusion | |
---|---|---|---|---|
WoS | Scopus | |||
1 | Application of niosomes in cosmetics | 37 | 38 | 46 |
2 | Niosomes in cosmetics | 58 | 64 | |
3 | Nonionic surfactants in cosmetics | 214 | 92 | |
4 | Cosmeceutical niosomes | 11 | 25 | |
Total | 320 | 219 |
No | Name of the Method | References |
---|---|---|
1 | Thin film hydration | [1,7] |
2 | Ether injection | [1,7] |
3 | Reverse phase evaporation | [1,7] |
4 | Trans-membrane pH gradient drug uptake process | [1,7] |
5 | Emulsion method | [1,7] |
6 | Lipid injection | [1,7] |
7 | Micelle solution and enzyme | [1,7] |
8 | Bubble method | [1,7] |
9 | Microfluidisation method | [1,7] |
10 | Formation of niosomes from proniosomes | [1,7] |
11 | Supercritical reverse phase evaporation | [1,7] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mawazi, S.M.; Ann, T.J.; Widodo, R.T. Application of Niosomes in Cosmetics: A Systematic Review. Cosmetics 2022, 9, 127. https://doi.org/10.3390/cosmetics9060127
Mawazi SM, Ann TJ, Widodo RT. Application of Niosomes in Cosmetics: A Systematic Review. Cosmetics. 2022; 9(6):127. https://doi.org/10.3390/cosmetics9060127
Chicago/Turabian StyleMawazi, Saeid Mezail, Tong Jo Ann, and Riyanto Teguh Widodo. 2022. "Application of Niosomes in Cosmetics: A Systematic Review" Cosmetics 9, no. 6: 127. https://doi.org/10.3390/cosmetics9060127
APA StyleMawazi, S. M., Ann, T. J., & Widodo, R. T. (2022). Application of Niosomes in Cosmetics: A Systematic Review. Cosmetics, 9(6), 127. https://doi.org/10.3390/cosmetics9060127