Developing Eco-Friendly Skin Care Formulations with Microemulsions of Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Construction of Pseudo-Ternary Phase Diagrams
2.3. Preparation of Naringin-Loaded Microemulsions and Microemulsion-Gel Formulations
2.4. Characterization of Naringin-Loaded Microemulsions and Microemulsion-Gel Formulations
2.4.1. Particle Size and Polydispersity Index
2.4.2. pH Measurements
2.4.3. Viscosity Measurement
2.4.4. Determination of Types of Microemulsion (via Dye Solubility and Conductivity Test)
2.5. High Performance Liquid Chromatography (HPLC) Assay of Naringin
2.6. Stability
2.7. In Vitro Release (Membrane Permeation) of Naringin
2.8. In Vitro Antioxidant Activity
2.9. In Vitro Antimicrobial Activity
3. Results
3.1. Pseudo-Ternary Phase Diagrams
3.2. Characterization of Naringin-Loaded Microemulsions and Microemulsion-Gel Formulations
3.3. Stability
3.4. In Vitro Release (Membrane Permeation) Studies
3.5. Antioxidant Activity
3.6. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bom, S.; Jorge, J.; Ribeiro, H.M.; Marto, J. A step forward on sustainability in the cosmetics industry: A review. J. Clean. Prod. 2019, 225, 270–290. [Google Scholar] [CrossRef]
- GreenPrint Survey Finds Consumers Want Eco-Friendly Products. Available online: https://www.convenience.org/Media/Daily/2021/Mar/23/6-GreenPrint-Survey-Finds-Consumers-Eco_Research (accessed on 15 January 2022).
- Research Shows Consumers Willing to Pay Up to 5% More for Environmentally Friendly Products. Available online: https://www.environmentalleader.com/2019/11/research-shows-consumers-willing-to-pay-up-to-5-more-for-environmentally-friendly-products/ (accessed on 15 January 2022).
- Das, S.; Lee, S.H.; Chow, P.S.; Macbeath, C. Microemulsion composed of combination of skin beneficial oils as vehicle: Development of resveratrol-loaded microemulsion based formulations for skin care applications. Colloids Surf. B Biointerfaces 2020, 194, 111161. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.; Santos, L. Delivery systems for cosmetics—From manufacturing to the skin of natural antioxidants. Powder Technol. 2017, 322, 402–416. [Google Scholar] [CrossRef]
- Benson, H.A.E.; Grice, J.E.; Mohammed, Y.; Namjoshi, S.; Roberts, M.S. Topical and transdermal drug delivery: From simple potions to smart technologies. Curr. Drug Deliv. 2019, 16, 444–460. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Murthy, R.S. Microemulsions: A potential drug delivery system. Curr. Drug Deliv. 2006, 3, 167–180. [Google Scholar] [CrossRef]
- Solans, C.; García-Celma, M.J. Chapter 29—Microemulsions and Nano-emulsions for Cosmetic Applications. In Cosmetic Science and Technology; Sakamoto, K., Lochhead, R.Y., Maibach, H.I., Yamashita, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 507–518. [Google Scholar]
- Roohinejad, S.; Oey, I.; Wen, J.; Lee, S.J.; Everett, D.W.; Burritt, D.J. Formulation of oil-in-water β-carotene microemulsions: Effect of oil type and fatty acid chain length. Food Chem. 2015, 174, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Mason, T.G.; Wilking, J.N.; Meleson, K.; Chang, C.B.; Graves, S.M. Nanoemulsions: Formation, structure, and physical properties. J. Phys. Condens. Matter 2006, 18, R635–R666. [Google Scholar] [CrossRef] [Green Version]
- Sakai, T.; Kamogawa, K.; Harusawa, F.; Momozawa, N.; Sakai, H.; Abe, M. Influence of oil droplet size on flocculation/coalescence in surfactant-free emulsion. Stud. Surf. Sci. Catal. Stud. Surf. Sci. Catal. 2001, 132, 157–160. [Google Scholar]
- Piorkowski, D.; McClements, D. Beverage emulsions: Recent developments in formulation, production, and applications. Food Hydrocoll. 2014, 42, 5–41. [Google Scholar] [CrossRef]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef]
- Shaaban, H.A.E.; El-Ghorab, A.H.; Shibamoto, T. Bioactivity of essential oils and their volatile aroma components: Review. J. Essent. Oil Res. 2012, 24, 203–212. [Google Scholar] [CrossRef]
- Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O.; et al. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef]
- Blamey, C. Case history of infected eczema treated with essential oils. Grand Rounds Altern. Ther. 2001, 1, 11–14. [Google Scholar]
- Samuelson, R.; Lobl, M.; Higgins, S.; Clarey, D.; Wysong, A. The effects of lavender essential oil on wound healing: A review of the current evidence. J. Altern. Complement. Med. 2020, 26, 680–690. [Google Scholar] [CrossRef] [PubMed]
- Dreger, M.; Wielgus, K. Application of essential oils as natural cosmetic preservatives. Herba Pol. J. 2013, 59, 142–156. [Google Scholar] [CrossRef] [Green Version]
- Leon-Méndez, G.; Osorio-Fortich, M.; Ortega-Toro, R.; Pajaro-Castro, N.; Torrenegra-Alarcón, M.; Herrera-Barros, A. Design of an Emulgel-Type Cosmetic with Antioxidant Activity Using Active Essential Oil Microcapsules of Thyme (Thymus vulgaris L.), Cinnamon (Cinnamomum verum J.), and Clove (Eugenia caryophyllata T.). Int. J. Polym. Sci. 2018, 2018, 2874391. [Google Scholar] [CrossRef] [Green Version]
- Panico, A.; Serio, F.; Bagordo, F.; Grassi, T.; Idolo, A.; De Giorgi, M.; Guido, M.; Congedo, M.; De Donno, A. Skin safety and health prevention: An overview of chemicals in cosmetic products. J. Prev. Med. Hyg. 2019, 60, E50–E57. [Google Scholar]
- Rastogi, S.C.; Schouten, A.; de Kruijf, N.; Weijland, J.W. Contents of methyl-, ethyl-, propyl-, butyl- and benzylparaben in cosmetic products. Contact Dermat. 1995, 32, 28–30. [Google Scholar] [CrossRef]
- Nemes, D.; Kovács, R.; Nagy, F.; Mező, M.; Poczok, N.; Ujhelyi, Z.; Pető, Á.; Fehér, P.; Fenyvesi, F.; Váradi, J.; et al. Interaction between Different Pharmaceutical Excipients in Liquid Dosage Forms-Assessment of Cytotoxicity and Antimicrobial Activity. Molecules 2018, 23, 1827. [Google Scholar] [CrossRef] [Green Version]
- Darbre, P.D.; Harvey, P.W. Paraben esters: Review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. J. Appl. Toxicol. 2008, 28, 561–578. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Yuan, C.; Tagmount, A.; Rudel, R.A.; Ackerman, J.M.; Yaswen, P.; Vulpe, C.D.; Leitman, D.C. Parabens and human epidermal growth factor receptor ligand cross-talk in breast cancer cells. Environ. Health Perspect. 2016, 124, 563–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lincho, J.; Martins, R.C.; Gomes, J. Paraben Compounds—Part I: An Overview of Their Characteristics, Detection, and Impacts. Appl. Sci. 2021, 11, 2307. [Google Scholar] [CrossRef]
- Byford, J.R.; Shaw, L.E.; Drew, M.G.; Pope, G.S.; Sauer, M.J.; Darbre, P.D. Oestrogenic activity of parabens in MCF7 human breast cancer cells. J. Steroid Biochem. Mol. Biol. 2002, 80, 49–60. [Google Scholar] [CrossRef]
- Yehye, W.A.; Rahman, N.A.; Ariffin, A.; Abd Hamid, S.B.; Alhadi, A.A.; Kadir, F.A.; Yaeghoobi, M. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. Eur. J. Med. Chem. 2015, 101, 295–312. [Google Scholar] [CrossRef]
- Bauer, A.K.; Dwyer-Nield, L.D.; Keil, K.; Koski, K.; Malkinson, A.M. Butylated hydroxytoluene (BHT) induction of pulmonary inflammation: A role in tumor promotion. Exp. Lung Res. 2001, 27, 197–216. [Google Scholar] [CrossRef]
- Faine, L.A.; Rodrigues, H.G.; Galhardi, C.M.; Ebaid, G.M.; Diniz, Y.S.; Fernandes, A.A.; Novelli, E.L. Butyl hydroxytoluene (BHT)-induced oxidative stress: Effects on serum lipids and cardiac energy metabolism in rats. Exp. Toxicol. Pathol. 2006, 57, 221–226. [Google Scholar] [CrossRef]
- Oikawa, S.; Nishino, K.; Oikawa, S.; Inoue, S.; Mizutani, T.; Kawanishi, S. Oxidative DNA damage and apoptosis induced by metabolites of butylated hydroxytoluene. Biochem. Pharm. 1998, 56, 361–370. [Google Scholar] [CrossRef]
- Andersen, F.A. Final amended report on the safety assessment of methylparaben, ethylparaben, propylparaben, isopropylparaben, butylparaben, isobutylparaben, and benzylparaben as used in cosmetic products. Int. J. Toxicol. 2008, 27, 1–82. [Google Scholar]
- Cherian, P.; Zhu, J.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; et al. Amended safety assessment of parabens as used in cosmetics. Int. J. Toxicol. 2020, 39, 5s–97s. [Google Scholar] [CrossRef]
- Lanigan, R.S.; Yamarik, T.A. Final report on the safety assessment of BHT(1). Int. J. Toxicol. 2002, 21 (Suppl. 2), 19–94. [Google Scholar] [PubMed]
- McHarek, N.; Hassen, I.; Hanchi, B.; Chevalier, Y. Contribution to the development of cosmetic products containing citrus flavonoids. Acta Hortic. 2013, 997, 185–194. [Google Scholar] [CrossRef]
- Bharti, S.; Rani, N.; Krishnamurthy, B.; Arya, D.S. Preclinical evidence for the pharmacological actions of naringin: A review. Planta Med. 2014, 80, 437–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Bhardwaj, P.; Arya, S.K. Naringin: A potential natural product in the field of biomedical applications. Carbohydr. Polym. Technol. Appl. 2021, 2, 100068. [Google Scholar] [CrossRef]
- Semenzato, A.; Costantini, A.; Meloni, M.; Maramaldi, G.; Meneghin, M.; Baratto, G. Formulating O/W Emulsions with Plant-Based Actives: A Stability Challenge for an Effective Product. Cosmetics 2018, 5, 59. [Google Scholar] [CrossRef] [Green Version]
- Glucosyl Naringin. Available online: https://www.nagase-personalcare.com/product/0000000045 (accessed on 15 January 2022).
- SIMULGELTM NS. Available online: https://www.seppic.com/en/simulgel-ns (accessed on 15 January 2022).
- Jian, C. Microemulsion-based anthocyanin systems: Effect of surfactants, cosurfactants, and its stability. Int. J. Food Prop. 2018, 21, 1152–1165. [Google Scholar]
- Sowmya, N.; Haraprasad, N.; Hema, B.P. Exploring the total flavonoid content of peels of Citrus auriantum, Citrus maxima and Citrus sinensis using different solvents and HPLC- analysis of flavonones—Naringin and Naringenin in peels of Citrus maxima. Pharma Innov. 2019, 8, 12–17. [Google Scholar]
- Hangun-Balkir, Y.; McKenney, M.L. Determination of antioxidant activities of berries and resveratrol. Green Chem. Lett. Rev. 2012, 5, 147–153. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.; Lee, S.; Kim, J.; Woo, P. Antioxidant and antimicrobial activity of peppermint oil products. J. Korea Soc. Plants People Environ. 2013, 16, 361–367. [Google Scholar] [CrossRef]
- Wells, R.; Truong, F.; Adal, A.M.; Sarker, L.S.; Mahmoud, S.S. Lavandula essential oils: A current review of applications in medicinal, food, and cosmetic industries of Lavender. Nat. Prod. Commun. 2018, 13, 1934578X1801301038. [Google Scholar] [CrossRef] [Green Version]
- Luís, Â.; Duarte, A.; Gominho, J.; Domingues, F.; Duarte, A.P. Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Ind. Crops Prod. 2016, 79, 274–282. [Google Scholar] [CrossRef]
- Schmidt, E.; Bail, S.; Buchbauer, G.; Stoilova, I.; Atanasova, T.; Stoyanova, A.; Krastanov, A.; Jirovetz, L. Chemical composition, olfactory evaluation and antioxidant effects of essential oil from Mentha x piperita. Nat. Prod. Commun. 2009, 4, 1107–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokajewicz, K.; Białoń, M.; Svydenko, L.; Fedin, R.; Hudz, N. Chemical Composition of the Essential Oil of the New Cultivars of Lavandula angustifolia Mill. Bred in Ukraine. Molecules 2021, 26, 5681. [Google Scholar] [CrossRef]
- Sebei, K.; Sakouhi, F.; Herchi, W.; Khouja, M.L.; Boukhchina, S. Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biol. Res. 2015, 48, 7. [Google Scholar] [CrossRef] [Green Version]
- Sindle, A.; Martin, K. Art of Prevention: Essential Oils—Natural Products Not Necessarily Safe. Int. J. Women’s Dermatol. 2021, 7, 304–308. [Google Scholar] [CrossRef] [PubMed]
- de Groot, A.C.; Schmidt, E. Essential Oils, Part IV: Contact Allergy. Dermatitis 2016, 27, 170–175. [Google Scholar] [CrossRef]
- Varma, R.K.; Kaushal, R.; Junnarkar, A.Y.; Thomas, G.P.; Naidu, M.U.; Singh, P.P.; Tripathi, R.M.; Shridhar, D.R. Polysorbate 80: A pharmacological study. Arzneimittelforschung 1985, 35, 804–808. [Google Scholar] [PubMed]
- Lachenmeier, D.W. Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity. J. Occup. Med. Toxicol. 2008, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Osborne, D.W. Diethylene glycol monoethyl ether: An emerging solvent in topical dermatology products. J. Cosmet. Dermatol. 2011, 10, 324–329. [Google Scholar] [CrossRef]
- Ganem-Quintanar, A.; Lafforgue, C.; Falson-Rieg, F.; Buri, P. Evaluation of the transepidermal permeation of diethylene glycol monoethyl ether and skin water loss. Int. J. Pharm. 1997, 147, 165–171. [Google Scholar] [CrossRef]
- Juškaitė, V.; Ramanauskienė, K.; Briedis, V. Design and Formulation of Optimized Microemulsions for Dermal Delivery of Resveratrol. Evid.-Based Complement. Altern. Med. 2015, 2015, 540916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteagudo, E.; Gándola, Y.; González, L.; Bregni, C.; Carlucci, A.M. Development, Characterization, and In Vitro Evaluation of Tamoxifen Microemulsions. J. Drug Deliv. 2012, 2012, 236713. [Google Scholar] [CrossRef] [PubMed]
- Lambers, H.; Piessens, S.; Bloem, A.; Pronk, H.; Finkel, P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci. 2006, 28, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Blaak, J.; Wohlfart, R.; Schürer, N.Y. Treatment of aged skin with a pH 4 skin care product normalizes increased skin surface pH and improves barrier function: Results of a pilot study. J. Cosmet. Dermatol. Sci. Appl. 2011, 1, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Lukić, M.; Pantelić, I.; Savić, S.D. Towards Optimal pH of the Skin and Topical Formulations: From the Current State of the Art to Tailored Products. Cosmetics 2021, 8, 69. [Google Scholar] [CrossRef]
- Podlogar, F.; Gasperlin, M.; Tomsic, M.; Jamnik, A.; Rogac, M.B. Structural characterisation of water-Tween 40/Imwitor 308-isopropyl myristate microemulsions using different experimental methods. Int. J. Pharm. 2004, 276, 115–128. [Google Scholar] [CrossRef]
- Binder, L.; Mazál, J.; Petz, R.; Klang, V.; Valenta, C. The role of viscosity on skin penetration from cellulose ether-based hydrogels. Ski. Res. Technol. 2019, 25, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Batheja, P.; Sheihet, L.; Kohn, J.; Singer, A.J.; Michniak-Kohn, B. Topical drug delivery by a polymeric nanosphere gel: Formulation optimization and in vitro and in vivo skin distribution studies. J. Control. Release 2011, 149, 159–167. [Google Scholar] [CrossRef]
- Garg, T.; Rath, G.; Goyal, A.K. Comprehensive review on additives of topical dosage forms for drug delivery. Drug Deliv. 2015, 22, 969–987. [Google Scholar] [CrossRef] [Green Version]
- Kryczyk-Poprawa, A.; Kwiecień, A.; Opoka, W. Photostability of Topical Agents Applied to the Skin: A Review. Pharmaceutics 2019, 12, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitsui, T. (Ed.) Stability of cosmetics. In New Cosmetic Science; Elsevier: Amsterdam, The Netherlands, 1997; pp. 191–198. [Google Scholar]
- Warisnoicharoen, W.; Lansley, A.B.; Lawrence, M.J. Nonionic oil-in-water microemulsions: The effect of oil type on phase behaviour. Int. J. Pharm. 2000, 198, 7–27. [Google Scholar] [CrossRef]
- Coneac, G.; Vlaia, V.; Olariu, I.; Muţ, A.M.; Anghel, D.F.; Ilie, C.; Popoiu, C.; Lupuleasa, D.; Vlaia, L. Development and evaluation of new microemulsion-based hydrogel formulations for topical delivery of fluconazole. AAPS PharmSciTech 2015, 16, 889–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supe, S.; Takudage, P. Methods for evaluating penetration of drug into the skin: A review. Ski. Res. Technol. 2021, 27, 299–308. [Google Scholar] [CrossRef]
- Flieger, J.; Flieger, M. The [DPPH●/DPPH-H]-HPLC-DAD Method on Tracking the Antioxidant Activity of Pure Antioxidants and Goutweed (Aegopodium podagraria L.) Hydroalcoholic Extracts. Molecules 2020, 25, 6005. [Google Scholar] [CrossRef]
- Halla, N.; Fernandes, I.P.; Heleno, S.A.; Costa, P.; Boucherit-Otmani, Z.; Boucherit, K.; Rodrigues, A.E.; Ferreira, I.; Barreiro, M.F. Cosmetics Preservation: A Review on Present Strategies. Molecules 2018, 23, 1571. [Google Scholar] [CrossRef] [Green Version]
- Lundov, M.D.; Moesby, L.; Zachariae, C.; Johansen, J.D. Contamination versus preservation of cosmetics: A review on legislation, usage, infections, and contact allergy. Contact Dermat. 2009, 60, 70–78. [Google Scholar] [CrossRef]
- Anand, S.P.; Sati, N. Artificial preservatives and their harmful effects: Looking toward nature for safer alternatives. Int. J. Pharm. Sci. Res. 2013, 4, 2496–2501. [Google Scholar]
- Al-Adham, I.; Khalil, E.; Al-Hmoud, N.D.; Kierans, M.; Collier, P. Microemulsions are membrane-active, antimicrobial, self-preserving systems. J. Appl. Microbiol. 2000, 89, 32–39. [Google Scholar] [CrossRef]
Phase | Formulation Ingredient | Ingredient Amount (% w/w) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Microemulsion (ME) | Microemulsion-Gel (MEG) | ||||||||||||
NME-1 | NME-2 | NME-3 | NME-4 | NME-5 | NME-6 | NMEG-1 | NMEG-2 | NMEG-3 | NMEG-4 | NMEG-5 | NMEG-6 | ||
Oil Phase | Peppermint oil | 7.0 | 7.0 | - | - | - | - | 7.0 | 7.0 | - | - | - | - |
Lavendar Oil | - | - | 7.0 | 7.0 | - | - | - | - | 7.0 | 7.0 | - | - | |
Eucalyptus Oil | - | - | - | - | 7.0 | 7.0 | - | - | - | - | 7.0 | 7.0 | |
Naringin | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
Surfactant Phase | Tween® 80 | 23.3 | 23.3 | 15.0 | 15.0 | 20.0 | 20.0 | 23.3 | 23.3 | 15.0 | 15.0 | 20.0 | 20.0 |
EtOH | 16.7 | - | 30.0 | - | 20.0 | - | 16.7 | - | 30.0 | - | 20.0 | - | |
DGME | - | 16.7 | - | 30.0 | - | 20.0 | - | 16.7 | - | 30.0 | - | 20.0 | |
Water Phase | Water | 52.0 | 52.0 | 47.0 | 47.0 | 52.0 | 52.0 | 50.0 | 50.0 | 45.0 | 44.0 | 50.0 | 50.0 |
Thickener | SimulgelTM NS | - | - | - | - | - | - | 2.0 | 2.0 | 2.0 | 3.0 | 2.0 | 2.0 |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Microemulsion | Area (%) | |
---|---|---|
Co-Surfactant | ||
EtOH | DGME | |
PMO/(Tween® 80 + co-surfactant)/water | ||
Smix = 1:1 | 40.5 | 37.3 |
Smix = 1:2 | 39.0 | 35.6 |
Smix = 2:1 | 41.2 | 37.1 |
LVO/(Tween® 80 + co-surfactant)/water | ||
Smix = 1:1 | 41.3 | 35.1 |
Smix = 1:2 | 42.6 | 35.6 |
Smix = 2:1 | 41.1 | 34.7 |
EUO/(Tween® 80 + co-surfactant)/water | ||
Smix = 1:1 | 45.3 | 44.9 |
Smix = 1:2 | 43.8 | 44.2 |
Smix = 2:1 | 42.9 | 40.9 |
Formulation | Drug Content (%) | Conductivity (µs/cm) | Viscosity (cP) | pH | Particle Size (nm) | PDl |
---|---|---|---|---|---|---|
NME-1 | 0.98 ± 0.01 | 87.90 ± 0.40 | 90.30 ± 0.72 | 4.25 ± 0.02 | 33.85 ± 0.38 | 0.50 ± 0.01 |
NME-2 | 1.07 ± 0.01 | 85.67 ± 0.45 | 95.43 ± 0.70 | 4.95 ± 0.05 | 34.53 ± 0.12 | 0.48 ± 0.00 |
NME-3 | 0.98 ± 0.02 | 62.40 ± 0.36 | 36.43 ± 0.55 | 5.62 ± 0.02 | 34.19 ± 0.05 | 0.35 ± 0.00 |
NME-4 | 1.08 ± 0.01 | 58.27 ± 0.21 | 75.27 ± 0.64 | 4.81 ± 0.06 | 38.92 ± 0.40 | 0.46 ± 0.00 |
NME-5 | 1.04 ± 0.00 | 70.13 ± 0.35 | 80.67 ± 0.76 | 5.58 ± 0.07 | 27.49 ± 0.35 | 0.42 ± 0.02 |
NME-6 | 0.97 ± 0.02 | 71.23 ± 0.64 | 85.83 ± 0.80 | 5.00 ± 0.04 | 26.75 ± 0.20 | 0.40 ± 0.00 |
Formulation | Drug Content (%) | Viscosity (cP) | pH |
---|---|---|---|
NMEG-1 | 1.02 ± 0.06 | 4175.67 ± 19.50 | 4.04 ± 0.01 |
NMEG-2 | 1.04 ± 0.02 | 4519.67 ± 40.10 | 4.77 ± 0.00 |
NMEG-3 | 1.00 ± 0.01 | 3796.33 ± 25.15 | 5.33 ± 0.01 |
NMEG-4 | 1.01 ± 0.06 | 3793.67 ± 29.37 | 4.68 ± 0.00 |
NMEG-5 | 1.05 ± 0.01 | 4017.67 ± 17.56 | 5.38 ± 0.02 |
NMEG-6 | 1.06 ± 0.01 | 4144.67 ± 22.37 | 4.98 ± 0.06 |
Naringin plain gel | 1.02 ± 0.01 | 3355.00 ± 13.22 | 6.90 ± 0.02 |
Formulation | % Naringin Remained | ||||||
---|---|---|---|---|---|---|---|
Microemulsion (ME) | Formulation | Microemulsion-Gel (MEG) | |||||
Refrigerated Conditions (40 °C/75% RH) | Ambient Conditions (25 °C/60% RH) | Accelerated Conditions (40 °C/75% RH) | Refrigerated Conditions (40 °C/75% RH) | Ambient Conditions (25 °C/60% RH) | Accelerated Conditions (40 °C/75% RH) | ||
NME-1 | 98.59 ± 0.26 | 98.25 ± 0.12 | 99.72 ± 0.21 | NMEG-1 | 97.73 ± 1.88 | 99.48 ± 0.42 | 99.89 ± 0.28 |
NME-2 | precipitation | 98.93 ± 0.70 | 99.87 ± 0.17 | NMEG-2 | 98.88 ± 0.21 | 98.74 ± 0.23 | 98.35 ± 0.16 |
NME-3 | 96.20 ± 0.21 | 96.78 ± 0.34 | 96.47 ± 0.17 | NMEG-3 | 99.22 ± 0.27 | 100.52 ± 0.18 | 100.40 ± 1.85 |
NME-4 | 97.90 ± 0.56 | 97.71 ± 0.12 | 94.38 ± 2.26 | NMEG-4 | 98.75 ± 0.89 | 97.63 ± 0.55 | 98.68 ± 0.92 |
NME-5 | 96.22 ± 0.40 | 96.73 ± 0.14 | 96.15 ± 0.72 | NMEG-5 | 96.43 ± 0.62 | 95.81 ± 0.36 | 96.33 ± 0.32 |
NME-6 | 101.36 ± 0.65 | 99.97 ± 1.47 | 100.41 ± 0.35 | NMEG-6 | 98.46 ± 0.49 | 99.32 ± 0.44 | 98.57 ± 0.24 |
Average Zone of Inhibition (mm) | ||
---|---|---|
E. coli | S. epidermidis | |
ME-1 (active-free) | 12.50 ± 0.71 | 15.00 ± 0.00 |
ME-2 (active-free) | 12.00 ± 0.00 | 16.00 ± 0.00 |
ME-3 (active-free) | 17.33 ± 0.12 | 18.00 ± 1.00 |
ME-4 (active-free) | 17.67 ± 2.31 | 17.50 ± 0.70 |
ME-5 (active-free) | 13.67 ± 1.41 | 13.70 ± 0.60 |
ME-6 (active-free) | 14.33 ± 0.58 | 12.00 ± 0.00 |
0.25 wt.% aqueous solution methyl paraben | 09.20 ± 0.58 | 10.00 ± 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.H.; Chow, P.S.; Yagnik, C.K. Developing Eco-Friendly Skin Care Formulations with Microemulsions of Essential Oil. Cosmetics 2022, 9, 30. https://doi.org/10.3390/cosmetics9020030
Lee SH, Chow PS, Yagnik CK. Developing Eco-Friendly Skin Care Formulations with Microemulsions of Essential Oil. Cosmetics. 2022; 9(2):30. https://doi.org/10.3390/cosmetics9020030
Chicago/Turabian StyleLee, Sie Huey, Pui Shan Chow, and Chetan Kantilal Yagnik. 2022. "Developing Eco-Friendly Skin Care Formulations with Microemulsions of Essential Oil" Cosmetics 9, no. 2: 30. https://doi.org/10.3390/cosmetics9020030
APA StyleLee, S. H., Chow, P. S., & Yagnik, C. K. (2022). Developing Eco-Friendly Skin Care Formulations with Microemulsions of Essential Oil. Cosmetics, 9(2), 30. https://doi.org/10.3390/cosmetics9020030