Controlled Release of Retinol in Cationic Co-Polymeric Nanoparticles for Topical Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MPs
2.3. Characterization of Nanoparticles
2.3.1. Size, Zeta, and Morphology
2.3.2. Encapsulation Yields
2.3.3. Drug Release from Nanoparticles
3. Results
3.1. Influence of Retinol Concentration
3.2. Encapsulation Efficiency
3.3. Drug Release
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gibbs, B.F.; Kermasha, S.; Alli, I.; Mulligan, C.N. Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 1999, 50, 213–224. [Google Scholar] [PubMed]
- del Gaudio, P.; Colombo, P.; Colombo, G.; Russo, P.; Sonvico, F. Mechanisms of formation and disintegration of alginate beads obtained by prilling. Int. J. Pharm. 2005, 302, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cilurzo, F.; Selmin, F.; Gennari, C.G.; Montanari, L.; Minghetti, P. Application of methyl methacrylate copolymers to the development of transdermal or loco-regional drug delivery systems. Expert Opin. Drug Deliv. 2014, 11, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.; Rosa, D.; Fernandes, A.; Baptista, P.V. Nanoparticle Drug Delivery Systems: Recent Patents and Applications in Nanomedicine. Recent Pat. Nanomed. 2014, 3, 105–118. [Google Scholar] [CrossRef]
- Casanova, F.; Santos, L. Encapsulation of cosmetic active ingredients for topical application—A review. J. Microencapsul. 2016, 33, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wijaya, M.W. Microencapsulation Strategies for Long Term Protection of Ascorbic Acid. Ph.D. Thesis, RMIT University, Melbourne, Australia, 2011. [Google Scholar]
- Montenegro, L. Nanocarriers for skin delivery of cosmetic antioxidants. J. Pharm. Pharmacogn. Res. 2014, 2, 73–92. [Google Scholar]
- Prow, T.W.; Grice, J.E.; Lin, L.L.; Faye, R.; Butler, M.; Becker, W.; Wurm, E.M.T.; Yoong, C.; Robertson, T.A.; Soyer, H.P.; et al. Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 470–491. [Google Scholar] [CrossRef]
- Shields, C.W.; White, J.P.; Osta, E.G.; Patel, J.; Rajkumar, S.; Kirby, N.; Therrien, J.P.; Zauscher, S. Encapsulation and controlled release of retinol from silicone particles for topical delivery. J. Control. Release 2018, 278, 37–48. [Google Scholar] [CrossRef]
- Lee, M.H.; Oh, S.G.; Moon, S.K.; Bae, S.Y. Preparation of silica particles encapsulating retinol using o/w/o multiple emulsions. J. Colloid Interface Sci. 2001, 240, 83–89. [Google Scholar] [CrossRef]
- Ghouchi-Eskandar, N.; Simovic, S.; Prestidge, C.A. Solid-state nanoparticle coated emulsions for encapsulation and improving the chemical stability of all-trans-retinol. Int. J. Pharm. 2012, 423, 384–391. [Google Scholar] [CrossRef]
- Jee, J.P.; Lim, S.J.; Park, J.S.; Kim, C.K. Stabilization of all-trans retinol by loading lipophilic antioxidants in solid lipid nanoparticles. Eur. J. Pharm. Biopharm. 2006, 63, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.-J.; Kim, C.-K. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int. J. Pharm. 2002, 243, 135–146. [Google Scholar] [CrossRef]
- Kim, D.G.; Jeong, Y.I.; Choi, C.; Roh, S.H.; Kang, S.K.; Jang, M.K.; Nah, J.W. Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int. J. Pharm. 2006, 319, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Thakral, S.; Thakral, N.K.; Majumdar, D.K. Eudragit®: A technology evaluation. Expert Opin. Drug Deliv. 2013, 10, 131–149. [Google Scholar] [CrossRef]
- Jana, U.; Mohanty, A.K.; Pal, S.L.; Manna, P.K.; Mohanta, G.P. Preparation and in vitro characterization of felodipine loaded eudragit® rs100 nanoparticles. Int. J. Pharm. Pharm. Sci. 2014, 6, 564–567. [Google Scholar]
- Joshi, M. Role of Eudragit in targeted drug delivery. Int. J. Curr. Pharm. Res. 2013, 5, 58–62. [Google Scholar]
- Cortesi, R.; Ravani, L.; Menegatti, E.; Esposito, E.; Ronconi, F. Eudragit® microparticles for the release of budesonide: A comparative study. Indian J. Pharm. Sci. 2012, 74, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Contri, R.V.; Fiel, L.A.; Alnasif, N.; Pohlmann, A.R.; Guterres, S.S.; Schäfer-Korting, M. Skin penetration and dermal tolerability of acrylic nanocapsules: Influence of the surface charge and a chitosan gel used as vehicle. Int. J. Pharm. 2016, 507, 12–20. [Google Scholar] [CrossRef]
- Wu, X.; Landfester, K.; Musyanovych, A.; Guy, R.H. Disposition of charged nanoparticles after their topical application to the skin. Ski. Pharmacol. Physiol. 2010, 23, 117–123. [Google Scholar] [CrossRef]
- Kane, M.A.; Folias, A.E.; Napoli, J.L. HPLC/UV quantitation of retinal, retinol, and retinyl esters in serum and tissues. Anal. Biochem. 2008, 378, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Aranyosi, P.; Csepregi, Z.; Rusznák, I.; Töke, L.; Víg, A. The light stability of azo dyes and azo dyeings. III. The effect of artificial perspiration on the light stability of reactive and non-reactive derivatives of two selected azo chromophores in aqueous solution. Dyes Pigment. 1998, 37, 33–45. [Google Scholar] [CrossRef]
- Li, M.; Rouaud, O.; Poncelet, D. Microencapsulation by solvent evaporation: State of the art for process engineering approaches. Int. J. Pharm. 2008, 363, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Gibaldi, M.; Perrier, D. Pharmacokinetics, 2nd ed.; Wiley-Blackwell: Oxford, UK, 1983; Volume 72. [Google Scholar]
- Hadjiioannou, T.; Christian, G.; Koupparis, M.; Macheras, P. Quantitative Calculations in Pharmaceutical Practice and Research; VCH Publishers Inc.: Weinheim, Germany, 1993; pp. 345–348. [Google Scholar]
- Higuchi, T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 1963, 52, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Ujimori, J.F.; Onemochi, E.Y.; Ukuoka, E.F.; Erada, K.T. Application of Eudragit RS to Thermo-Sensitive Drug Delivery Systems. I. Thermo-Sensitive Drug Release from Acetaminophen Matrix Tablets Consisting of Eudragit RS/PEG 400 Blend Polymers. Chem. Pharm. Bull. 2002, 50, 408–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eerikäinen, H.; Peltonen, L.; Raula, J.; Hirvonen, J.; Kauppinen, E.I. Nanoparticles containing ketoprofen and acrylic polymers prepared by an aerosol flow reactor method. AAPS PharmSciTech 2004, 5, e68. [Google Scholar] [CrossRef]
- Pignatello, R.; Ferro, M.; Puglisi, G. Preparation of solid dispersions of nonsteroidal anti-inflammatory drugs with acrylic polymers and studies on mechanisms of drug-polymer interactions. AAPS PharmSciTech 2002, 3, E10. [Google Scholar] [CrossRef] [Green Version]
Water | - |
Lactic Acid | 5 g/L |
Sodium Chloride | 5 g/L |
Sodium Hydrogenophosphate | 5 g/L |
Sodium D-pantothenate | 5 g/L |
Glucose | 5 g/L |
L-histidine Monohydrochloride | 0.5 g/L |
DL-aspartic Acid | 0.5 g/L |
Acetic Acid | To pH 3.5 |
N° | Retinol | RS 100 | Ethyl Acetate | Water 1 | Speed | Time | Water 2 | Speed | Time |
---|---|---|---|---|---|---|---|---|---|
(mg) | (mg) | (mL) | (mL) | (rpm) | (min) | (mL) | (rpm) | (min) | |
F-1 | 100 | 1500 | 20 | 50 | 13,500 | 15 | 150 | 500 | 180 |
F-2 | 200 | ||||||||
F-3 | 300 | ||||||||
F-4 | 400 | ||||||||
F-5 | 500 | ||||||||
F-6 | 600 | ||||||||
F-7 | 700 | ||||||||
F-8 | 800 | ||||||||
F-9 | 900 | ||||||||
F-10 | 1000 |
Formulation | F-1 | F-2 | F-3 | F-4 | F-5 | F-6 | F-7 | F-8 | F-9 | F-10 |
Size (nm) | 189 | 223 | 247 | 294 | 317 | 286 | 274 | 262 | 253 | 260 |
Zeta potential (mV) | 59.5 | 70.3 | 69.9 | 62.2 | 65.4 | 67.7 | 68.8 | 73.5 | 70.1 | 69.4 |
0 Order | First Order | Higuchi | ||||
---|---|---|---|---|---|---|
F-3 | 5.11 | 0.74 | 0.041 | 0.892 | 15.673 | 0.997 |
F-5 | 9.02 | 0.86 | 0.061 | 0.861 | 22.691 | 0.991 |
Time (week) | EE (%) |
---|---|
0 | 78 |
1 | 79 |
2 | 77 |
3 | 76 |
4 | 74 |
8 | 71 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goudon, F.; Clément, Y.; Ripoll, L. Controlled Release of Retinol in Cationic Co-Polymeric Nanoparticles for Topical Application. Cosmetics 2020, 7, 29. https://doi.org/10.3390/cosmetics7020029
Goudon F, Clément Y, Ripoll L. Controlled Release of Retinol in Cationic Co-Polymeric Nanoparticles for Topical Application. Cosmetics. 2020; 7(2):29. https://doi.org/10.3390/cosmetics7020029
Chicago/Turabian StyleGoudon, Fabien, Yohann Clément, and Lionel Ripoll. 2020. "Controlled Release of Retinol in Cationic Co-Polymeric Nanoparticles for Topical Application" Cosmetics 7, no. 2: 29. https://doi.org/10.3390/cosmetics7020029
APA StyleGoudon, F., Clément, Y., & Ripoll, L. (2020). Controlled Release of Retinol in Cationic Co-Polymeric Nanoparticles for Topical Application. Cosmetics, 7(2), 29. https://doi.org/10.3390/cosmetics7020029