Topical Minoxidil-Loaded Nanotechnology Strategies for Alopecia
Abstract
:1. Introduction
2. Minoxidil Topical Delivery Systems
2.1. Formulation Requirements for Topical Delivery of Minoxidil
2.2. Conventional Formulations for Topical Delivery of Minoxidil
2.3. Nanotechnology-Based Formulations for Topical Minoxidil Delivery
2.3.1. Lipid-Based Nanoparticles
Lipid Nanoparticles
Vesicular Nanoparticles
Liposomes
Niosomes
Ethosomes
Transferosomes
Cubosomes
2.3.2. Polymeric Nanoparticles
2.3.3. Metallic Nanoparticles
2.3.4. Cyclodextrins
3. Toxicity Issues
4. Regulatory Affairs
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lopedota, A.; Denora, N.; Laquintana, V.; Cutrignelli, A.; Lopalco, A.; Tricarico, D.; Maqoud, F.; Curci, A.; Mastrodonato, M.; la Forgia, F.; et al. Alginate-Based Hydrogel Containing Minoxidil/Hydroxypropyl-beta-Cyclodextrin Inclusion Complex for Topical Alopecia Treatment. J. Pharm. Sci. 2018, 107, 1046–1054. [Google Scholar] [CrossRef] [PubMed]
- Adil, A.; Godwin, M. The effectiveness of treatments for androgenetic alopecia: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2017, 77, 136–141.e5. [Google Scholar] [CrossRef]
- Santos, Z.; Avci, P.; Hamblin, M.R. Drug discovery for alopecia: Gone today, hair tomorrow. Expert Opin. Drug Discov. 2015, 10, 269–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, C.-L.; Aljuffali, I.A.; Li, Y.-C.; Fang, J.-Y. Delivery and targeting of nanoparticles into hair follicles. Ther. Deliv. 2014, 5, 991–1006. [Google Scholar] [CrossRef] [PubMed]
- Tsujimoto, H.; Hara, K.; Tsukada, Y.; Huang, C.C.; Kawashima, Y.; Araki, M.; Okayasu, H.; Minura, H.; Miwa, N. Evaluation of the permeability of hair growing ingredient encapsulated PLGA nanospheres to hair follicles and their hair growing effects. Bioorg. Med. Chem. Lett. 2007, 17, 4771–4777. [Google Scholar] [CrossRef]
- Tricarico, D.; Maqoud, F.; Curci, A.; Camerino, G.; Zizzo, N.; Denora, N.; Cutrignelli, A.; Laquintana, V.; Lopalco, A.; la Forgia, F. Characterization of minoxidil/hydroxypropyl-beta-cyclodextrin inclusion complex in aqueous alginate gel useful for alopecia management: Efficacy evaluation in male rat. Eur. J. Pharm. Biopharm. 2018, 122, 146–157. [Google Scholar] [CrossRef]
- Chandrashekar, B.S.; Nandhini, T.; Vasanth, V.; Sriram, R.; Navale, S. Topical minoxidil fortified with finasteride: An account of maintenance of hair density after replacing oral finasteride. Indian Dermatol. Online J. 2015, 6, 17–20. [Google Scholar] [CrossRef]
- Matos, B.N.; Reis, T.A.; Gratieri, T.; Gelfuso, G.M. Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles. Int. J. Biol. Macromol. 2015, 75, 225–229. [Google Scholar] [CrossRef]
- Li, M.; Marubayashi, A.; Nakaya, Y.; Fukui, K.; Arase, S. Minoxidil-Induced Hair Growth is Mediated by Adenosine in Cultured Dermal Papilla Cells: Possible Involvement of Sulfonylurea Receptor 2B as a Target of Minoxidil. J. Investig. Dermatol. 2001, 117, 1594–1600. [Google Scholar]
- Mali, N.; Darandale, S.; Vavia, P. Niosomes as a vesicular carrier for topical administration of minoxidil: Formulation and in vitro assessment. Drug Deliv. Transl. Res. 2013, 3, 587–592. [Google Scholar] [CrossRef]
- Lopedota, A.; Cutrignelli, A.; Denora, N.; Laquintana, V.; Lopalco, A.; Selva, S.; Ragni, L.; Tongiani, S.; Franco, M. New ethanol and propylene glycol free gel formulations containing a minoxidil-methyl-beta-cyclodextrin complex as promising tools for alopecia treatment. Drug Dev. Ind. Pharm. 2015, 41, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Vogt, A.; Wischke, C.; Neffe, A.T.; Ma, N.; Alexiev, U.; Lendlein, A. Nanocarriers for drug delivery into and through the skin—Do existing technologies match clinical challenges? J. Control. Release 2016, 242, 3–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyal, R.; Macri, L.K.; Kaplan, H.M.; Kohn, J. Nanoparticles and nanofibers for topical drug delivery. J. Control. Release 2016, 240, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, K.; Lochhead, R.; Maibach, H.; Yamashita, Y. Cosmetic Science and Technology: Theoretical Principles and Applications; Elsevier: Amsterdam, Netherlands, 2017; Volume 813. [Google Scholar]
- Hadgraft, J. Skin, the final frontier. J. Pharm. 2001, 224, 1–18. [Google Scholar] [CrossRef]
- Benson, H.A.E.; Watkinson, A.C. Topical and Transdermal Drug Delivery: Principles and Practice; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; Volume 448. [Google Scholar]
- Escobar-Chavez, J.; Díaz-Torres, R.; Rodríguez-Cruz, I.; Domínguez-Delgado, C.; Morales, R.; Ángeles-Anguiano, E.; Melgoza-Contreras, L. Nanocarriers for transdermal drug delivery. Res. Rep. Transdermal. Drug Deliv. 2012, 1, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Palmer, B.C.; DeLouise, L.A. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting. Molecules 2016, 21, 1719. [Google Scholar] [CrossRef] [PubMed]
- Glowka, E.; Wosicka-Frackowiak, H.; Hyla, K.; Stefanowska, J.; Jastrzebska, K.; Klapiszewski, L.; Jesionowski, T.; Cal, K. Polymeric nanoparticles-embedded organogel for roxithromycin delivery to hair follicles. Eur. J. Pharm. Biopharm. 2014, 88, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Hillery, A.M.; Lloyd, A.W.; Swarbrick, J. Drug Delivery and Targeting for Pharmacists and Phamaceutical Scientists; Francis, T., Ed.; Taylor & Francis: London, UK, 2001. [Google Scholar]
- Jayaneththi, V.R.; Aw, K.; Sharma, M.; Wen, J.; Svirskis, D.; McDaid, A.J. Controlled transdermal drug delivery using a wireless magnetic microneedle patch: Preclinical device development. Sens. Actuators B Chem. 2019, 297, 126708. [Google Scholar] [CrossRef]
- Suchonwanit, P.; Thammarucha, S.; Leerunyakul, K. Minoxidil and its use in hair disorders: A review. Drug Des. Devel. Ther. 2019, 13, 2777–2786. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, S.; Daniels, R.; Lunter, D. Methods for the determination of the substantivity of topical formulations. Pharm. Dev. Technol. 2017, 22, 487–491. [Google Scholar] [CrossRef]
- Bibi, N.; Ahmed, N.; Khan, G.M. Nanostructures in Transdermal drug Delivery Systems; Elsevier: Amsterdam, Netherlands, 2017; pp. 639–668. [Google Scholar]
- Gupta, S.; Bansal, R.; Gupta, S.; Jindal, N.; Jindal, A. Nanocarriers and nanoparticles for skin care and dermatological treatments. Indian Dermatol. Online J. 2013, 4, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Benson, H.A.E.; Mohammed, Y.; Grice, J.E.; Roberts, M.S. Formulation Effects on Topical Nanoparticle Penetration; Academic Press: Amsterdam, Netherlands, 2016; pp. 115–126. [Google Scholar]
- Padois, K.; Cantiéni, C.; Bertholle, V.; Bardel, C.; Pirot, F.; Falson, F. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil. Int. J. Pharm. 2011, 416, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, L.; Huang, X.; Shao, A. Preparation and Characterization of Minoxidil Loaded Nanostructured Lipid Carriers. AAPS PharmSciTech 2017, 18, 509–516. [Google Scholar] [CrossRef]
- Uprit, S.; Sahu, R.K.; Roy, A.; Pare, A. Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia. Saudi Pharm. J. 2013, 21, 379–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.C.; Santos, D.; Ferreira, D.C.; Souto, E.B. Minoxidil-loaded nanostructured lipid carriers (NLC): Characterization and rheological behaviour of topical formulations. Pharmazie 2009, 64, 177–182. [Google Scholar] [PubMed]
- Gomes, M.J.; Martins, S.; Ferreira, D.; Segundo, M.A.; Reis, S. Lipid nanoparticles for topical and transdermal application for alopecia treatment: Development, physicochemical characterization, and in vitro release and penetration studies. Int. J. Nanomed. 2014, 9, 1231–1242. [Google Scholar]
- Zhao, Y.; Brown, M.B.; Jones, S.A. The effects of particle properties on nanoparticle drug retention and release in dynamic minoxidil foams. Int. J. Pharm. 2010, 383, 277–284. [Google Scholar] [CrossRef]
- Aljuffali, I.A.; Sung, C.T.; Shen, F.-M.; Huang, C.-T.; Fanf, J.-Y. Squarticles as a lipid nanocarrier for delivering diphencyprone and minoxidil to hair follicles and human dermal papilla cells. AAPS J. 2014, 16, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Aljuffali, I.A.; Pan, T.-L.; Sung, C.T.; Chang, S.-H.; Fang, J.-Y. Anti-PDGF receptor beta antibody-conjugated squarticles loaded with minoxidil for alopecia treatment by targeting hair follicles and dermal papilla cells. Nanomedicine 2015, 11, 1321–1330. [Google Scholar] [CrossRef]
- Mura, S.; Pirot, F.; Manconi, M.; Falson, F.; Fadda, A.M. Liposomes and niosomes as potential carriers for dermal delivery of minoxidil. J. Drug Target. 2007, 15, 101–108. [Google Scholar] [CrossRef]
- Mura, S.; Manconi, M.; Sinico, C.; Valenti, D.; Fadda, A.M. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil. Int. J. Pharm. 2009, 380, 72–79. [Google Scholar] [CrossRef]
- Lopez-Pinto, J.M.; Gonzalez-Rodriguez, M.L.; Rabasco, A.M. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int. J. Pharm. 2005, 298, 1–12. [Google Scholar] [CrossRef]
- Hasanovic, A.; Hollick, C.; Fischinger, K.; Valenta, C. Improvement in physicochemical parameters of DPPC liposomes and increase in skin permeation of aciclovir and minoxidil by the addition of cationic polymers. Eur. J. Pharm. Biopharm. 2010, 75, 148–153. [Google Scholar] [CrossRef]
- Balakrishnan, P.; Shanmugam, S.; Lee, W.S.; Lee, W.M.; Kim, J.O.; Oh, D.H.; Kim, D.-D.; Kim, J.S.; Yoo, B.K.; Choi, H.-G.; et al. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int. J. Pharm. 2009, 377, 1–8. [Google Scholar] [CrossRef]
- Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes—Novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release 2000, 65, 403–418. [Google Scholar] [CrossRef]
- Jun-Bo, T.; Zhuang-Qun, Y.; Xi-Jing, H.; Ying, X.; Yong, S.; Zhe, X.; Tao, C. Effect of ethosomal minoxidil on dermal delivery and hair cycle of C57BL/6 mice. J. Dermatol. Sci. 2007, 45, 135–137. [Google Scholar] [CrossRef]
- Ramezani, V.; Honarvar, M.; Seyedabadi, M.; Karimollah, A.; Ranjbar, A.M.; Hashemi, M. Formulation and optimization of transfersome containing minoxidil and caffeine. J. Drug Deliv. Sci. Technol. 2018, 44, 129–135. [Google Scholar] [CrossRef]
- Shim, J.; Kang, H.S.; Park, W.-S.; Han, S.-H.; Kim, J.; Chang, I.-S. Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J. Control. Release 2004, 97, 477–484. [Google Scholar] [CrossRef]
- Takeuchi, I.; Hida, Y.; Makino, K. Minoxidil-encapsulated poly(L-lactide-co-glycolide) nanoparticles with hair follicle delivery properties prepared using W/O/W solvent evaporation and sonication. Biomed. Mater. Eng. 2018, 29, 217–228. [Google Scholar] [CrossRef]
- Nagai, N.; Iwai, Y.; Sakamoto, A.; Otake, H.; Oaku, Y.; Abe, A.; Nagahama, T. Drug Delivery System Based On Minoxidil Nanoparticles Promotes Hair Growth In C57BL/6 Mice. Int. J. Nanomed. 2019, 14, 7921–7931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, T.K.; Kim, J.C. In vitro skin permeation of monoolein nanoparticles containing hydroxypropyl beta-cyclodextrin/minoxidil complex. Int. J. Pharm. 2010, 392, 268–273. [Google Scholar] [CrossRef]
- Garces, A.; Amaral, M.H.; Lobo, J.M.S.; Silva, A.C. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur. J. Pharm. Sci. 2018, 112, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.S.; Mohammed, Y.; Pastore, M.N.; Namjoshi, S.; Yousef, S.; Alinaghi, A.; Haridass, I.N.; Abd, E.; Leite-Silva, V.R.; Benson, H.; et al. Topical and cutaneous delivery using nanosystems. J. Control. Release 2017, 247, 86–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, R.H.; Shegokar, R.; Keck, C.M. 20 Years of Lipid Nanoparticles (SLN & NLC): Present State of Development & Industrial Applications. Curr. Drug Discov. Technol. 2011, 8, 207–227. [Google Scholar] [PubMed]
- Charoenputtakun, P.; Pamornpathomkul, B.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. Terpene Composited Lipid Nanoparticles for Enhanced Dermal Delivery of All-trans-Retinoic Acids. Biol. Pharm. Bull. 2014, 37, 1139–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, P.; Narasimhan, B.; Wang, Q. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. Int. J. Pharm. 2019, 555, 49–62. [Google Scholar] [CrossRef]
- Muller, R.H.; Petersen, R.D.; Hommoss, A.; Pardeike, J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv. Drug Deliv. Rev. 2007, 59, 522–530. [Google Scholar] [CrossRef]
- Souto, E.B.; Baldim, I.; Oliveira, W.P.; Rao, R.; Yadav, N.; Gama, F.M.; Mahant, S. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin. Drug Deliv. 2020, 17, 357–377. [Google Scholar] [CrossRef]
- Modi, C.D.; Bharadia, P.D. Transfersomes: New Dominants for Transdermal Drug Delivery. Am. J. Pharm. Tech. Res. 2012, 2, 71–91. [Google Scholar]
- Muzzalupo, R.; Tavano, L.; Cassano, R.; Trombino, S.; Ferrarelli, T.; Picci, N. A new approach for the evaluation of niosomes as effective transdermal drug delivery systems. Eur. J. Pharm. Biopharm. 2011, 79, 28–35. [Google Scholar] [CrossRef]
- Choi, M.J.; Maibach, H.I. Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol. Physiol. 2005, 18, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mottaleb, M.M.A.; Try, C.; Pellequer, Y.; Lamprecht, A. Nanomedicine strategies for targeting skin inflamation. Nanomedicine 2014, 9, 1727–1743. [Google Scholar] [CrossRef] [PubMed]
- Barua, S.; Mitragotri, S. Challenges associated with Penetration of Nanoparticles across Cell and Tissue Barriers: A Review of Current Status and Future Prospects. Nano Today 2014, 9, 223–243. [Google Scholar] [CrossRef] [PubMed]
- Bakowsky, H.; Richter, T.; Kneuer, C.; Hoekstra, D.; Rothe, U.; Bendas, G.; Ehrhardt, C.; Bakowsky, U. Adhesion characteristics and stability assessment of lectin-modified liposomes for site-specific drug delivery. Biochim. Biophys. Acta 2008, 1778, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Toshimitsu, Y.; Florence, A.T. Vesicle (niosome)-in-water-in-oil (v/w/o) emulsions: An in vitro study. Int. J. Pharm. 1994, 1018, 117–123. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Tripathi, P.; Gupta, R.; Pandey, S. Niosomes: A review on niosomal research in the last decade. J. Drug Deliv. Sci. Technol. 2020, 56, 101581. [Google Scholar] [CrossRef]
- Moghassemi, S.; Hadjizadeh, A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Control. Release 2014, 185, 22–36. [Google Scholar] [CrossRef]
- Uchechi, O.; Ogbonna, J.D.N.; Attama, A.A. Nanoparticles for Dermal and Transdermal Drug Delivery. Appl. Nanotechnol. Drug Deliv. 2014, 4, 193–227. [Google Scholar]
- Rajera, R.; Nagpal, K.; Singh, S.K.; Mishra, D.N. Niosomes: A Controlled and Novel Drug Delivery System. Biol. Pharm. Bull. 2011, 34, 945–953. [Google Scholar] [CrossRef] [Green Version]
- Touitou, E.; Godin, B.; Weiss, C. Enhanced Delivery of Drugs Into and Across the Skin by Ethosomal Carriers. Drug Dev. Res. 2000, 50, 406–415. [Google Scholar] [CrossRef]
- Hua, S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front. Pharmacol. 2015, 6, 219. [Google Scholar] [CrossRef] [PubMed]
- Rajan, R.; Jose, S.; Mukung, V.P.B.; Vasudevan, D.T. Transferosomes—A vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Technol. Res. 2011, 2, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Patel, N.; Shah, M.K.; Khatri, P.; Vora, N. Recent Advances in Lipid-Based Vesicles and Particulate Carriers for Topical and Transdermal Application. J. Pharm. Sci. 2017, 106, 423–445. [Google Scholar] [CrossRef] [PubMed]
- Karami, Z.; Hamidi, M. Cubosomes: Remarkable drug delivery potential. Drug Discov. Today 2016, 21, 789–801. [Google Scholar] [CrossRef]
- Pan, X.; Han, K.; Peng, X.; Yang, Z.; Qin, L.; Zhu, C.; Huang, X.; Shi, X.; Dian, L.; Lu, M.; et al. Nanostructured cubosomes as advanced drug delivery system. Curr. Pharm. Des. 2013, 19, 6290–6297. [Google Scholar] [CrossRef]
- Alvarez-Roman, R.; Naik, A.; Kalia, Y.N.; Guy, R.H.; Fessi, H. Skin penetration and distribution of polymeric nanoparticles. J. Control. Release 2004, 99, 53–62. [Google Scholar] [CrossRef]
- Li, J.; Qiao, Y.; Wu, Z. Nanosystem trends in drug delivery using quality-by-design concept. J. Control. Release 2017, 256, 9–18. [Google Scholar] [CrossRef]
- Ramezanli, T.; Kilfoyle, B.E.; Zhang, Z.; Michniak-Kohn, B.B. Polymeric nanospheres for topical delivery of vitamin D3. Int. J. Pharm. 2017, 516, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Yu, S.; Sun, B.; Gao, S.; Guo, S.; Zhao, K. Biomedical Applications of Chitosan and Its Derivative Nanoparticles. Polymers (Basel) 2018, 10, 462. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Tang, Y.; Wang, Q.; Li, Y.; Yang, J.; Du, Y.; Kennedy, J.F. Rheological behaviour of chitin in NaOH/urea aqueous solution. Carbohydr. Polym. 2011, 83, 1128–1133. [Google Scholar] [CrossRef]
- Gutha, Y.; Pathak, J.L.; Zhang, W.; Zhang, Y.; Jiao, X. Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int. J. Biol. Macromol. 2017, 103, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tsai, P.-C.; Ramezanli, T.; Michniak-Kohn, B.B. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 205–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowska, S.; Brzoska, M.M. Metals in cosmetics: Implications for human health. J. Appl. Toxicol. 2015, 35, 551–572. [Google Scholar] [CrossRef]
- Arora, N.; Agarwal, S.; Murthy, R.S.R. Latest Technology Advances in Cosmaceuticals. Int. J. Pharm. Sci. Drug Res. 2012, 4, 168–182. [Google Scholar]
- Tarimci, N. Cyclodextrins in the Cosmetic Field, in Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications; Bilensoy, E., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Isigonis, P.; Hristozov, D.; Benighaus, C.; Giubilato, E.; Grieger, K.; Pizzol, L.; Semenzin, E.; Linkov, I.; Zabeo, A.; Marcomini, A. Risk Governance of Nanomaterials: Review of Criteria and Tools for Risk Communication, Evaluation, and Mitigation. Nanomaterials (Basel) 2019, 9, 696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, M.; Agrawal, U.; Vyas, S.P. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin. Drug Deliv. 2012, 9, 783–804. [Google Scholar] [CrossRef] [PubMed]
- Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311, 622–627. [Google Scholar] [CrossRef] [Green Version]
- Monteiro-Riviere, N.A.; Inman, A.O.; Zhang, L.W. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol. Appl. Pharmacol. 2009, 234, 222–235. [Google Scholar] [CrossRef]
- Pourmand, A.; Abdollahi, M. Current Opinion on Nanotoxicolog. Daru 2012, 20, 95–98. [Google Scholar] [CrossRef] [Green Version]
- Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of Nanoparticles and an Overview of Current Experimental Models. Iran. Biomed. J. 2016, 20, 1. [Google Scholar]
- Wang, S.; Su, R.; Nie, S.; Sun, M.; Zhang, J.; Wu, D.; Moustaid-Moussa, N. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J. Nutr. Biochem. 2014, 25, 363–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, C.L.; Xu, Z.Z.; Fan, M.X.; Liu, H.Y.; Xie, Y.H.; Zhu, T. Study on characteristics and harm of surfactants. J. Chem. Pharm. Res. 2014, 6, 2233–2237. [Google Scholar]
- Moustafalou, S.; Mohammadi, H.; Ramazani, A.; Abdollahi, M. Different biokinetics of nanomedicines linking to their toxicity; an overview. DARU J. Pharm. Sci. 2013, 21, 14–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, R.; Gaspar, R. Nanomedicine(s) under the microscope. Mol. Pharm. 2011, 8, 2101–2141. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization. ISO/TS 13830:2013—Guidance on Voluntary Labelling for Consumer Products Containing Manufactured Nano-Objects. 2013. Available online: https://www.iso.org/standard/54315.html (accessed on 21 November 2019).
- International Organization for Standardization. ISO 19007:2018—In vitro MTS Assay for Measuring the Cytotoxic Effect of Nanoparticles. 2018. Available online: https://www.iso.org/standard/63698.html (accessed on 21 November 2019).
- U. S. Food and Drug Administration. Drug Products, Including Biological Products, that Contain Nanomaterials—Draft Guidance for Industry; Office of Medical Products and Tobacco: Rockville, MD, USA, 2017. [Google Scholar]
- Hofmann-Amtenbrink, M.; Hofmann, H.; Hool, A.; Roubert, F. Nanotechnology in medicine: European research and its implications. Swiss Med. Wkly. 2014, 144, w14044. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B. Nanomedicines: Regulatory Challenges and Risks Ahead; Regulatory Affairs Pharma: London, UK, 2010. [Google Scholar]
- European Medicines Agency. European Medicines Agency’s Workshop on Nanomedicines. 2010. Available online: https://www.ema.europa.eu/en/events/european-medicines-agencys-workshop-nanomedicines (accessed on 21 November 2019).
- Beer, C. Nanotoxicology and Regulatory Affairs; Springer: New York, NY, USA, 2016; pp. 279–310. [Google Scholar]
- Patravale, V.; Dandekar, P.; Jain, R. Regulatory Aspects of Nanoparticulate Drug Delivery Systems; Elsevier: Amsterdam, Netherlands, 2012; pp. 157–190. [Google Scholar]
- European Parliament. EU Directive 2001/83/EC—Community Code Relating to Medicinal Products for human Use. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32001L0083 (accessed on 27 March 2020).
- European Council. EU Directive 93/42/EEC—Concerning Medical Devices. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31993L0042 (accessed on 27 March 2020).
Nanotechnology-Based Formulations | Composition | Preparation Method | PS (nm) | Zeta Potential (mV) | EE (%) | Stability | Ref. |
---|---|---|---|---|---|---|---|
SLNs | Semi-synthetic triglycerides; polysorbate and sorbitan oleate; phosphatidylcholine | Hot HPH | 190.00 ± 2.00 1 | −27.00 ± 2.00 1 | NA | NA | [27] |
NLCs | Oleic acid; stearic acid; Polysorbate 80; sorbitan monooleate | Hot HPH | 281.40 ± 7.40 | −32.90 ± 1.23 | 92.48 ± 0.31 | - Particle size and EE unaltered (3 months/4 °C or RT) | [28] |
Oleic acid, tristearin; cholesterol; soya lecithin; Polysorbate 80, 2-[4-(2,4,4-trimethylpentan-2-yl) phenoxy]ethanol; polyoxyethylene polyoxypropylene F-68 (Pluronic © F-68) | Melt dispersion ultrasonication | 280.40 | −42.40 | 86.09 | - Electrostatic stabilization | [29] | |
Stearic acid; oleic acid; polyoxyethylenepolyoxypropylene F-68 (Pluronic © F-68) | Hot HSH | 250 | NA | NA | - Particle size unaltered (6 months/25 °C) | [30] | |
Cetyl palmitate; oleic acid; Polysorbate 60 | Ultrasonication | ca. 180 | ca. −33 | 31.9 ± 2.5 | - Particle size and polydispersity index unaltered (28 days) | [31] | |
ca. 190 | ca. −37 | 22.2 ± 2.3 | |||||
Labrafac® WL 1349 (medium chain triglycerides); Lipoïd® S75-3 (soybean lecithin - 69% of phosphatidylcholine); Solutol® HS 15 (macrogol 15 hydroxystearate); sodium chloride | Phase inversion | 49.80 ± 0.60 | −3.20 ± 1.60 | 42.2 ± 2.0 | NA | [32] | |
Squarticles | NLC: squalene; glyceryl palmitostearate; hydrogenated soy phosphatidylcholine; polyoxyethylenepolyoxypropylene F-68 | HSH and ultrasonication | 177.00 ± 3.00 | −54.00 ± 0.20 | 63.30 ± 0.50 | NA | [33] |
NE: squalene; hydrogenated soy phosphatidylcholine; polyoxyethylene-polyoxypropylene F-68 | 193.00 ± 0.02 | −56.60 ± 1.10 | 63.50 ± 1.10 | ||||
NLC: squalene, hexadecyl palmitate; hydrogenated soy phosphatidylcholine; polyoxyethylenepolyoxypropylene F-68; deoxycholic acid | HSH and ultrasonication | 236.00 ± 3.30 | −43.80 ± 0.90 | 54.40 ± 1.80 | NA | [34] | |
194.50 ± 4.70 | −45.50 ± 0.60 | 49.20 ± 1.20 | |||||
Liposomes | PEVs: soy lecithin; 2-(2-Ethoxyethoxy) ethanol (Transcutol®) | Mechanical shake | 200 ± 5 | −70 ± 3 | 67.65 | - ↑ stability vs. control liposomes | [35] |
Soy lecithin; permeation enhancer (cineol); DCP | 144.00 ± 3.00 | −57.00 ± 1.00 | 71.3 ± 3.5 | - Stable (30 days/25 °C | [36] | ||
α-DPPC; cholesterol | Hydration | 520.00 ± 24.00 | NA | 66.10 ± 1.45 2 65.60 ± 1.23 3 | - Stable (4 weeks/4 °C); - ↓ stability for the liposomes vs. ethosomes. | [37] | |
Polymeric liposomes | DPPC | HPH | 84.41 ± 4.95 | 4.58 ± 0.32 | NA | - Unstable | [38] |
DPPC; chitosan | 94.97 ± 4.23 | 10.80 ± 1.37 | NA | - Stable (8 weeks/RT) | |||
DPPC; Eudragit EPO© | 94.65 ± 4.33 | 23.84 ± 5.77 | NA | - Stable (20 weeks/RT) | |||
Niosomes | Sorbitane monostearate; cholesterol | Ethanol injection | 470±27 | NA | 34.70±1.1 | - 40% of MXD remained inside the niosomes (90 days/4ºC) | [10] |
DCP; BrijTM 52 | Thin film-hydration | 1292.00 ± 64.002 | −27.96 ± 1.60 | 40.87 ± 2.202 | - Stable (3 months/ 4 °C) | [39] | |
DCP; BrijTM 76 | 905.00 ± 73.002 | −36.23 ± 0.70 | NA | ||||
DCP; SpanTM 20 | 289.00 ± 29.002 | −32.16 ± 1.20 | 5.90 ± 1.082 | ||||
DCP; SpanTM 40 | 498.00 ± 11.002 | −29.07 ± 1.20 | 19.40 ± 1.462 | ||||
DCP; SpanTM 60 | 1368.00 ± 39.002 | −26.73 ± 1.10 | 22.05 ± 1.382 | ||||
Ethosomes | α-DPPC; cholesterol; ethanol | Mechanical dispersion | 230.00 ± 27.00 | NA | 84.40 ± 4.523 84.50 ± 1. 884 | - Stable (4 weeks/4 °C) - ↑ stability for the ethosomes vs. liposomes (less particle size variation) | [37] |
Soybean phosphatidylcholine (Phospholipon 90); ethanol | 154.00 ± 4.00 | −4.30 ± 0.20 | 83.00 ± 6.00 | - Stable (2 years/RT) | [40] | ||
Phosphatidylcholine; ethanol | NA | 194.7 | NA | 90 ± 6% | NA | [41] | |
Transfersomes | Soybean phosphatidylcholine; polysorbate 80; polysorbate 20; caffeine | Thin film hydration | NA | NA | 13.62 to 48.82% | - Stable (28 days/25 °C) | [42] |
Polymeric nanoparticles | Poly(D,L-lactic acid) (PLA); Capryol® 90 (propylene glycol monocaprylate); poloxamer 188 | Solvent displacement | 258.80 ± 3.80 | −23.30 ± 0.40 | 20.4 ± 1.00 | NA | [32] |
Poly(ε-caprolactone)-block-poly(ethylene glycol) | Self-assembly followed by solvent evaporation | 40.00 | NA | NA | NA | [43] | |
Self-assembly followed by poly(ε-caprolactone) (PCL) addition and solvent evaporation | 130.00 | ||||||
Chitosan | Ion gelation | 235.50 ± 99.90 | 38.60 ± 6.00 | NA | NA | [8] | |
Poly(D,L-lactide-co-glycolide) (PLGA) | W/O/W emulsion solvent evaporation with sonication | 140.60 ± 47.10 | −1.20 ± 0.30 | NA | NA | [44] | |
Poly(L-lactide-co-glycolide) (PLLGA) | 118.90 ± 41.60 | −2.30 ± 1.70 | NA | ||||
Metallic nanoparticles | Methylcellulose; methyl p-hydroxybenzoate; propyl p-hydroxybenzoate; mannitol; zirconia beads | Crush bead mill method | 90.00–300.00 | −9.93 | NA | NA | [45] |
Cyclodextrin | Monoolein; hydroxypropyl β-cyclodextrin (HP-β-CD) | Molten monoolein hydration with the HPβCD/MNX complex solution | <100.00 (smaller population); 150.00-400.00 (larger population) | NA | NA | NA | [46] |
Methyl-β-cyclodextrin | Freeze-drying | NA | NA | NA | - Stable (48 h/25 °C) | [11] | |
Cyclodextrin 5 | Hydroxypropyl-b-cyclodextrin (HP-β-CD) (0.65 and 0.85 molar substitution degree) | NA | NA | NA | NA | - Stable (3 months/ 25 °C) | [1] |
Hydroxypropyl-β-cyclodextrin (HP-β-CD) (0.65 molar substitution degree) | Physical mixture Freeze-drying Kneading Spray-drying | NA | NA | NA | NA | [6] |
Nanotechnology-Based Formulations | In Vitro/Ex Vivo Study | In Vivo Study | Ref. | |||
---|---|---|---|---|---|---|
Model | Output | Animal Model | Outputs | |||
Efficacy | Safety | |||||
SLNs | Franz-type glass diffusion cells (skin punches from pig ears) | Ex vivo skin permeation studies: - Identical dermal and epidermal distribution of MXD (24 h) -Similar skin penetration vs. commercial products | NA | NA | NA | [27] |
Ex vivo skin corrosion studies: - non-corrosive - ↓ Adverse effects vs. commercial products | ||||||
NLCs | Franz diffusion cells | - Faster MXD release vs. SLNs | Healthy male rats (strain not specified) (skin irritation test) | NA | - No erythema - ↑ tolerability and patient acceptance | [28] |
Sprague–Dawley abdominal skin | - ↑ MXD skin retention vs. SLNs | |||||
Modified Franz diffusion cells | - Biphasic release pattern - Initial burst release - MXD sustained and prolonged release for 12 h | Albino mice (skin irritation test) | NA | - No edema - No erythema | [29] | |
Dialysis bag diffusion technique | - MXD sustained and prolonged release for 25 h | NA | NA | NA | [31] | |
Franz diffusion cells (pig ear skin) | -↓ MXD skin crossing after 24 h | |||||
Squarticles | Female nude mice (ICR-Foxn1nu) skin (Franz diffusion cell); Human hair dermal papilla cells | - Biphasic release pattern - Burst release within the first 8 h proceeded by plateau - ↑ MXD skin absorption - ↑ MXD follicle uptake and accumulation - ↑ MXD skin deposition - ↑ VEGF expression in dermal papilla cells | Female nude mice (ICR-Foxn1nu) | - Stratum corneum partitioning retards MXD absorption; - Distribution within the follicles and hair shafts | - Acceptable tolerance | [33] |
Franz diffusion cells (cellulose membrane, nude mice (ICR-Foxn1nu) skin and porcine skin) | - Biphasic release pattern - MXD sustained and prolonged release - ↑ MXD skin deposition - ↑ MXD skin accumulation | nude mice (ICR-Foxn1nu) and specific pathogen free pig | - ↑ MXD accumulation in hair shafts - ↑ MXD follicular deposition - ↑ MXD follicular uptake - ↑ MXD follicular uptake (↑↑PDGF squarticles) | NA | [34] | |
Human hair dermal papilla cells | - ↑ VEGF expression (PDGF squarticles > squarticles) - ↑ cell proliferation (PDGF squarticles > squarticles) - ↑ internalization by DPCs (PDGF squarticles > squarticles) | |||||
Liposomes | Franz diffusion cells (pig skin) | - ↑ fluidity vs. soy lecithin liposomes - ↑ epidermal and dermal accumulation - ↓ MXD deposition in stratum corneum - ↓ MXD skin delivery vs. soy lecithin liposomes | NA | NA | NA | [35] |
Franz diffusion cells (newborn Goland–Pietrain hybrid pig skin) | - MXD sustained and prolonged release - ↑ MXD accumulation in stratum corneum - ↑ MXD accumulation in dermis - ↑ MXD skin deposition vs. liposomes | NA | NA | NA | [36] | |
Franz diffusion cells (Wistar rats’ abdominal skin) | - ↑ MXD skin permeation | NA | NA | NA | [37] | |
Niosomes | Keshary–Chein diffusion cells (Wistar rat abdominal skin) | - ↑ MXD skin deposition - ↑ MXD skin accumulation | NA | NA | NA | [10] |
Franz diffusion cells (hairless mice skin) | - ↑ MXD skin permeation vs. commercial formulation - ↑ MXD skin bioavailability vs. commercial formulation | NA | NA | NA | [39] | |
Ethosomes | Franz diffusion cells (Wistar rats’ abdominal skin) | - ↑ MXD skin permeation | NA | NA | NA | [37] |
Valia–Chien diffusion cells (nude mice abdominal skin) | - ↑ MXD skin permeation | NA | NA | NA | [40] | |
NA | NA | C57BL/6 mouse | - ↑ size of hair follicles - ↑ melanocytes formation - ↑ hair growth | - No skin erythema or edema | [41] | |
Transfersomes | Franz diffusion cells (synthetic membrane) | - MXD release fits a 1st order kinetics | Wistar rats | - Uniform hair growth - ↑ hair growth (10 days) - ↑ MXD hair follicles delivery - ↑ MXD skin penetration | NA | [42] |
Lipid nanoparticles | Franz diffusion cells (polydimethylsiloxane membrane) | - Poor MXD membrane permeation | NA | NA | NA | [32] |
Polymeric nanoparticles | Franz diffusion cells (abdominal skin of Albino Hartley guinea pigs, IAF/HA-hrBR hairless guinea pigs and SKH1 hairless mice) | - Efficient MXD skin permeation (↑ MXD skin permeation with smaller size nanoparticles) - MXD skin permeation occurs through the follicular route - MXD skin permeation depends on the stratum corneum thickness | C57BL/6 mice | - MXD skin permeation (follicular route) - ↑ MXD retention during anagen phase - ↑ MXD skin permeation - MXD skin permeation depends on the stratum corneum thickness | NA | [43] |
Franz diffusion cells (cellulose acetate membrane) | - MXD sustained release | NA | NA | NA | [8] | |
Franz diffusion cells (porcine ear skin) | - ↑ MXD hair follicle accumulation - ↑ MXD skin penetration - MXD sustained release - ↑ MXD concentrations inside hair follicles - Prolonged MXD release into hair follicles - MXD targeted delivery to the hair follicles | NA | NA | NA | ||
NA | NA | C3H/He mouse | - 68% of MXD were release (8 h) -↑ MXD stratum corneum and hair follicles deliver | NA | [44] | |
Metallic nanoparticles | NA | NA | C57BL/6 mouse | - ↑ VEGF and IGF-1 protein and mRNA levels - Significant hair growth - ↑ MXD hair bulb retention - ↓ MXD skin retention | - No erythema or inflammation - No plasma detection | [45] |
Cyclodextrins | Franz diffusion cells (SKH mice) | - ↑ MXD skin permeation - ↓ MXD skin retention | NA | NA | NA | [46] |
Franz diffusion cells (artificial cellulose membrane) | - ↑↑ MXD release for the calcium alginate and carbopol Methyl-β-cyclodextrin/MXD hydrogel formulations | NA | NA | NA | [11] | |
Franz diffusion cells (pinna pig ear skin) | - ↑↑ MXD accumulation / retention for the calcium alginate methyl-β-cyclodextrin/MXD hydrogel formulation | |||||
Franz diffusion cells (artificial cellulose acetate membrane) | - ↓ MXD release vs. MXD solution | NA | NA | NA | [1] | |
Franz diffusion cells (pinna pig ear skin) | -↑ MXD skin permeation -↑ MXD skin accumulation | |||||
Dissolution studies (Varian VK 7010) | - ↑ MXD dissolution | Wistar rat | - ↑ AKT2 gene mRNA levels vs. conventional solution | - ↑ in vivo tolerability vs. conventional solution | [6] |
Key-Points | Toxicological Assessment Grounds | Ref. |
---|---|---|
Nanosize | Permeation through cellular membranes enables interaction with sensible organs, proteins or DNA, especially for nanoparticles of sizes < 10 nm, which may easily be treated as gases, inducing chemical distress. | [85,86] |
In vitro and in vivo studies | Studies using damaged or unhealthy skin are scarce and the nanoparticles’ pharmacokinetic and pharmacodynamic profiles may be different when applied to healthy skin. | [87] |
Surfactants | Nanoparticles have reduced loading and encapsulation ability, thus the ratio of surfactants present in formulation is high, which may induce adverse effects, such as erythema, edema, irritation or toxicity. | [88] |
Systemic bloodstream | Introduction of nanoparticles in the human body may promote their arrival into the systemic bloodstream, inducing disturbance in sensible organs, such as the brain, lungs or heart, which may result in the patient’s death. | [89] |
Long-term toxicity | Usually, studies regarding toxicity assess this parameter in the short term, highlighting the importance of assessing the long-term toxicity of nanoparticles, to predict the chronic exposure of nanotechnology-based formulations. | [90] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.C.; Pereira-Silva, M.; Guerra, C.; Costa, D.; Peixoto, D.; Pereira, I.; Pita, I.; Ribeiro, A.J.; Veiga, F. Topical Minoxidil-Loaded Nanotechnology Strategies for Alopecia. Cosmetics 2020, 7, 21. https://doi.org/10.3390/cosmetics7020021
Santos AC, Pereira-Silva M, Guerra C, Costa D, Peixoto D, Pereira I, Pita I, Ribeiro AJ, Veiga F. Topical Minoxidil-Loaded Nanotechnology Strategies for Alopecia. Cosmetics. 2020; 7(2):21. https://doi.org/10.3390/cosmetics7020021
Chicago/Turabian StyleSantos, Ana Cláudia, Miguel Pereira-Silva, Catarina Guerra, Diana Costa, Diana Peixoto, Irina Pereira, Inês Pita, António J. Ribeiro, and Francisco Veiga. 2020. "Topical Minoxidil-Loaded Nanotechnology Strategies for Alopecia" Cosmetics 7, no. 2: 21. https://doi.org/10.3390/cosmetics7020021
APA StyleSantos, A. C., Pereira-Silva, M., Guerra, C., Costa, D., Peixoto, D., Pereira, I., Pita, I., Ribeiro, A. J., & Veiga, F. (2020). Topical Minoxidil-Loaded Nanotechnology Strategies for Alopecia. Cosmetics, 7(2), 21. https://doi.org/10.3390/cosmetics7020021