Next Article in Journal
Methylglyoxal, the Major Antibacterial Factor in Manuka Honey: An Alternative to Preserve Natural Cosmetics?
Next Article in Special Issue
Bioactive Metabolites of the Stem Bark of Strychnos aff. darienensis and Evaluation of Their Antioxidant and UV Protection Activity in Human Skin Cell Cultures
Previous Article in Journal
Preparation and Characterization of Callus Extract from Pyrus pyrifolia and Investigation of Its Effects on Skin Regeneration
Previous Article in Special Issue
Anti-Aging Properties of Plant Stem Cell Extracts
Open AccessArticle

Novel Lipidized Derivatives of the Bioflavonoid Hesperidin: Dermatological, Cosmetic and Chemopreventive Applications

1
Department of Life science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
2
AMBROSIALAB srl, 44121 Ferrara, Italy
*
Author to whom correspondence should be addressed.
Cosmetics 2018, 5(4), 72; https://doi.org/10.3390/cosmetics5040072
Received: 9 November 2018 / Revised: 11 December 2018 / Accepted: 12 December 2018 / Published: 15 December 2018
(This article belongs to the Special Issue Anti-aging Properties of Natural Compounds)
Hesperidin is one of the most important natural flavonoids, known for its antioxidant, anti-inflammatory, anti-mutagenic, and anti-hypertensive properties. Despite its various biological activities, hesperidin is rarely used in the dermo-cosmetic field because of its poor solubility in both water and oil phases that makes difficult formulation, distribution and bioavailability through the skin layers. Moreover, hesperidin is still underestimated in skin care products, and literature data on its stability into a topical formulation are not yet available. In this paper we report the synthesis of five different derivatives of hesperidin and their evaluation in terms of antioxidant, antifungal, antiproliferative, and apoptotic effects on human leukemic K562 cells. Preliminary antiproliferative effects were considered since hyper-proliferation is involved in several cutaneous problems particularly in the case of photo-exposition and environmental pollution. Esp4 and Esp5 were found to be more active in inhibiting K562 cell growth than parent hesperidin. Esp3 exhibited different biological properties, i.e., antioxidant activity in the absence of antiproliferative effects. View Full-Text
Keywords: hesperidin; antioxidant; pro-apoptotic; antifungal; dermo-cosmetic hesperidin; antioxidant; pro-apoptotic; antifungal; dermo-cosmetic
Show Figures

Figure 1

MDPI and ACS Style

Bino, A.; Vicentini, C.B.; Vertuani, S.; Lampronti, I.; Gambari, R.; Durini, E.; Manfredini, S.; Baldisserotto, A. Novel Lipidized Derivatives of the Bioflavonoid Hesperidin: Dermatological, Cosmetic and Chemopreventive Applications. Cosmetics 2018, 5, 72.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop