Endocrine Disruption by Mixtures in Topical Consumer Products
Abstract
:1. Introduction
2. State of the Science and Regulatory Framework
3. Endocrine Disruptors and Human Health
4. Endocrine Disruption of Natural Ecosystems and Animal Reproduction
5. Endocrine Disruptors Testing: The OECD and US EPA Methods
6. Endocrine Disruptors in Cosmetics
6.1. Parabens
6.2. Other Preservatives/Antimicrobials
6.3. Fragrance Ingredients
6.4. Cyclic Siloxanes
6.5. Alkyphenols
6.6. UV Filters
6.7. Phytosterols
6.8. Skin Whitening Agents
6.9. Other Cosmetic Ingredients
6.10. Phthalates and Perfluorinated Chemicals
6.11. Bisphenol A
7. Discussion and Conclusions
Funding
Conflicts of Interest
References
- Bern, H.A.; Blair, P.; Brasseur, S.; Colborn, T.; Cunha, G.; Davis, W.; Dohler, K.D.; Fox, G.; Fry, M.; Gray, E.; et al. Statement from the Work Session on Chemically-Induced Alterations in Sexual Development: The Wildlife/Human Connection; Wingspread Conference Center: Racine, WI, USA, 1991. [Google Scholar]
- Colborn, T.; Clement, C. Chemically-Induced Alterations in Sexual Development: The Wildlife/Human Connection; Princeton Scientific Publishing Company: Princeton, NJ, USA, 1992. [Google Scholar]
- Kwiatkowski, C.F.; Bolden, A.L.; Liroff, R.A.; Rochester, J.R.; Vandenbergh, J.G. Twenty-Five Years of Endocrine Disruption Science: Remembering Theo Colborn. Environ. Health Perspect. 2016, 124, A151–A154. [Google Scholar] [CrossRef] [PubMed]
- Monneret, C. What is an Endocrine Disruptor? C. R. Biol. 2017, 340, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The Endocrine Society’s second scientific Statement on Endocrine Disrupting Chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [CrossRef] [PubMed]
- Nohynek, G.J.; Borgert, C.J.; Dietrich, D.; Rozman, K.K. Endocrine disruption: Fact or urban legend? Toxicol. Lett. 2013, 223, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Zoeller, R.T.; Bergman, Å.; Becher, G.; Bjerregaard, P.; Bornman, R.; Brandt, I.; Iguchi, T.; Jobling, S.; Kidd, K.A.; Kortenkamp, A.; et al. A path forward in the debate over health impacts of endocrine disrupting chemicals. Environ. Health 2014, 13, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Coster, S.; van Larebeke, N. Endocrine-disrupting chemicals: Associated disorders and mechanisms of action. J. Environ. Public Health 2012. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, K.M.; Udesky, J.O.; Rudel, R.A.; Brody, J.G. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. Environ. Res. 2018, 160, 152–182. [Google Scholar] [CrossRef] [PubMed]
- Balaguer, P.; Delfosse, V.; Grimaldi, M.; Bourguet, W. Structural and functional evidences for the interactions between nuclear hormone receptors and endocrine disruptors at low doses. C. R. Biol. 2017, 340, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Barouki, R. Endocrine disruptors: Revisiting concepts and dogma in toxicology. C. R. Biol. 2017, 340, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Slama, R.; Vernet, C.; Nassan, F.L.; Hauser, R.; Philippat, C. Characterizing the effect of endocrine disruptors on human health: The role of epidemiological cohorts. C. R. Biol. 2017, 340, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, V.; Fourré, S.; de Abreu, D.A.F.; Derieppe, M.; Remy, J.; Rassoulzadegan, M. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci. Rep. 2015, 5, 18193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, D.M.; Gore, A.C. Epigenetic impacts of endocrine disruptors in the brain. Front. Neuroendocrinol. 2017, 44, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Axelstad, M.; Christiansen, S.; Boberg, J.; Scholze, M.; Jacobsen, P.R.; Isling, L.K.; Kortenkamp, A.; Hass, U. Mixtures of endocrine-disrupting contaminants induce adverse developmental effects in preweaning rats. Reproduction 2014, 174, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Bois, F.Y.; Golbamaki-Bakhtyari, N.; Kovarich, S.; Tebby, C.; Gabb, H.A.; Lemazurier, E. High-Throughput Analysis of Ovarian Cycle Disruption by Mixtures of Aromatase Inhibitors. Environ. Health Perspect. 2017, 125, 077012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrini, E.; Diotel, N.; Vaillant-Capitaine, C.; Pérez Maria, R.; Gueguen, M.M.; Nasri, A.; Cano Nicolau, J.; Kah, O. Steroid modulation of neurogenesis: Focus on radial glial cells in zebrafish. J. Steroid. Biochem. Mol. Biol. 2016, 160, 27–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vested, A.; Giwercman, A.; Bonde, J.P.; Toft, G. Persistent organic pollutants and male reproductive health. Asian J. Androl. 2014, 16, 71–80. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Communication from the Commission to the European Parliament and the Council on Endocrine Disruptors and the Draft Commission Acts Setting out Scientific Criteria for Their Determination in the Context of the EU Legislation on Plant Protection Products and Biocidal Products; EU Commission: Luxembourg, 2016. [Google Scholar]
- European Chemical Agency (ECHA); European food Safety Authority (EFSA). Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA 2018, 16, 5311. [Google Scholar]
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fénichel, P.C.; hevalier, N. Environmental endocrine disruptors: New diabetogens? C. R. Biol. 2017, 340, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.R. Nanotoxicology and Metalloestrogens: Possible Involvement in Breast Cancer. Toxics 2015, 3, 390–413. [Google Scholar] [CrossRef] [PubMed]
- Dodson, R.E.; Nishioka, M.; Standley, L.J.; Perovich, L.J.; Brody, J.G.; Rudel, R.A. Endocrine Disruptors and Asthma-Associated Chemicals in Consumer Products. Environ. Health Perspect. 2012, 120, 935–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helm, J.S.; Nishioka, M.; Brody, J.G.; Rudel, R.A.; Dodson, R.E. Measurement of endocrine disrupting and asthma-associated chemicals in hair products used by Black women. Environ. Res. 2018, 165, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Burgio, E.; Piscitelli, P.; Colao, A. Environmental Carcinogenesis and Transgenerational Transmission of Carcinogenic Risk: From Genetics to Epigenetics. Int. J. Environ. Res. Public Health 2018, 15. [Google Scholar] [CrossRef] [PubMed]
- Marcoccia, D.; Pellegrini, M.; Fiocchetti, M.; Lorenzetti, S.; Marino, M. Food components and contaminants as (anti)androgenic molecules. Gene Nutr. 2017, 12. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Usman, Z.; Rehman, S.; AlDraihem, M.; Rehman, N.; Rehman, I.; Ahmad, G. Endocrine disrupting chemicals and impact on male reproductive Health. Transl. Androl. Urol. 2018, 7, 490–503. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.F.; Hasan, N.; Soto, A.M.; Sonnenschein, C. Environmental Endocrine Disruptors: Effects on the human male reproductive system. Rev. Endocr. Metab. Disord. 2015, 16, 341–357. [Google Scholar] [CrossRef] [PubMed]
- Ambruosi, B.; Uranio, M.F.; Sardanelli, A.M.; Pocar, P.; Martino, N.A.; Paternoster, M.S.; Amati, F.; Dell’Aquila, M.E. In Vitro Acute Exposure to DEHP Affects Oocyte Meiotic Maturation, Energy and Oxidative Stress Parameters in a Large Animal Model. PLoS ONE 2011, 6, e27452. [Google Scholar] [CrossRef]
- Cha, S.; Baek, J.W.; Ji, H.J.; Choi, J.H.; Kim, C.; Lee, M.Y.; Hwang, Y.J.; Yang, E.; Lee, Su.; Jung, H.; et al. Disturbing Effects of Chronic Low-dose 4-Nonylphenol exposing on Gonadal Weight and Reproductive Outcome over One-generation. Dev. Reprod. 2017, 21, 121–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mínguez-Alarcón, L.; Gaskins, A.J.; Chiu, Y.H.; Williams, P.L.; Ehrlich, S.; Chavarro, J.E.; Petrozza, J.C.; Ford, J.B.; Calafat, A.M.; Hauser, R.; EARTH Study Team. Urinary bisphenol A concentrations and association with in vitro fertilization outcomes among women from a fertility clinic. Hum. Reprod. 2015, 30, 2120–2128. [Google Scholar] [CrossRef] [PubMed]
- Mínguez-Alarcón, L.; Christou, G.; Messerlian, C.; Williams, P.L.; Carignan, C.C.; Souter, I.; Ford, J.B.; Calafat, A.M.; Hauser, R. Urinary triclosan concentrations and diminished ovarian reserve among women from a fertility clinic. Fertil. Steril. 2017, 108, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Vabre, P.; Gatimel, N.; Moreau, J.; Gayrard, V.; Picard-Hagen, N.; Parinaud, J.; Leandri, R.D. Environmental pollutants, a possible etiology for premature ovarian insufficiency: A narrative review of animal and human data. Environ. Health 2017, 16, 37. [Google Scholar] [CrossRef] [PubMed]
- Sosnovcová, J.; Rucki, M.; Bendová, H. Estrogen Receptor Binding Affinity of Food Contact Material Components Estimated by QSAR. Cent. Eur. J. Public Health 2016, 24, 241–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Politano, V.T.; Lewis, E.M.; Hoberman, A.M.; Diener, R.M.; Api, A.M.; Patel, A. Oral 1-Generation Rat Reproduction Study of Isobornyl Acetate: An Evaluation Through Sexual Maturity in the F1 Generation. Int. J. Toxicol. 2017, 36, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.; Zona, A.; Beccaloni, E.; Carere, M.; Comba, P. Incidence of Breast, Prostate, Testicular, and Thyroid Cancer in Italian Contaminated Sites with Presence of Substances with Endocrine Disrupting Properties. Int. J. Environ. Res. Public Health 2017, 14, 355. [Google Scholar] [CrossRef] [PubMed]
- Bonefeld-Jørgensen, E.C.; Long, M.; Fredslund, S.O.; Bossi, R.; Olsen, J. Breast cancer risk after exposure to perfluorinated compounds in Danish women: A case–control study nested in the Danish National Birth Cohort. Cancer Causes Control 2014, 25, 1439–1448. [Google Scholar] [CrossRef] [PubMed]
- Cohn, B.A.; Wolff, M.S.; Cirillo, P.M.; Sholtz, R.I. DDT and Breast Cancer in Young Women: New Data on the Significance of Age at Exposure. Environ. Health Perspect. 2007, 115, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Barriuso, R.; Fernández, M.F.; Castaño-Vinyals, G.; Whelan, D.; Pérez-Gómez, B.; Llorca, J.; Villanueva, C.M.; Guevara, M.; Molina-Molina, J.M.; Artacho-Cordón, F.; et al. Total Effective Xenoestrogen Burden in Serum Samples and Risk for Breast Cancer in a Population-Based Multicase–Control Study in Spain. Environ. Health Perspect. 2016, 124, 1575–1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warner, M.; Mocarelli, P.; Samuels, S.; Needham, L.; Brambilla, P.; Eskenazi, B. Dioxin Exposure and Cancer Risk in the Seveso Women’s Health Study. Environ. Health Perspect. 2011, 119, 1700–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonde, J.P.; Flachs, E.M.; Rimborg, S.; Glazer, C.H.; Giwercman, A.; Ramlau-Hansen, C.H.; Hougaard, K.S.; Høyer, B.B.; Hærvig, K.K.; Petersen, S.B.; et al. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: A systematic review and meta-analysis. Hum. Reprod. Update 2017, 23, 104–125. [Google Scholar] [CrossRef] [PubMed]
- Rochefort, H. Endocrine disruptors (EDs) and hormone-dependent cancers: Correlation or causal relationship? C. R. Biol. 2017, 340, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Kajta, M.; Wójtowicz, A.K. Impact of endocrine-disrupting chemicals on neural development and the onset of neurological disorders. Pharmacol. Rep. 2013, 65, 1632–1639. [Google Scholar] [CrossRef]
- Preciados, M.; Yoo, C.; Roy, D. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases. Int. J. Mol. Sci. 2016, 17, 2086. [Google Scholar] [CrossRef] [PubMed]
- Coumailleau, P.; Pellegrini, E.; Adrio, F.; Diotel, N.; Cano-Nicolau, J.; Nasri, A.; Vaillant, C.; Kah, O. Aromatase, estrogen receptors and brain development in fish and amphibians. Biochim. Biophys. Acta 2015, 1849, 152–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, D.A.; Opanashuk, L.; Zharkovsky, A.; Weiss, B. Gene-Chemical Interactions in the Developing Mammalian Nervous System: Effects on Proliferation, Neurogenesis and Differentiation. Neurotoxicology 2010, 31, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Kinch, C.D.; Ibhazehiebo, K.; Jeong, J.; Habibi, H.R.; Kurrasch, D.M. Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish. Proc. Natl. Acad. Sci. USA 2015, 112, 1475–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martini, M.; Calandreau, L.; Jouhanneau, M.; Mhaouty-Kodja, S.; Keller, M. Perinatal exposure to methoxychlor enhances adult cognitive responses and hippocampal neurogenesis in mice. Front. Behav. Neurosci. 2014, 8, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avecilla, A.; Doke, M.; Jovellanos, J.; Avecilla, V. Contribution of Inhibitor of Differentiation and Estrogenic Endocrine Disruptors to Neurocognitive Disorders. Med. Sci. 2018, 6, 61. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.M.; Muckle, G.; Arbuckle, T.; Bouchard, M.F.; Fraser, W.D.; Ouellet, E.; Séguin, J.R.; Oulhote, Y.; Webster, G.M.; Lanphear, B.P. Associations of Prenatal Urinary Bisphenol A Concentrations with Child Behaviors and Cognitive Abilities. Environ. Health Perspect. 2017, 125, 067008. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.; Bae, S.; Kim, Bu.; Shin, C.H.; Lee, Y.A.; Kim, J.I.; Hong, Y. Prenatal and postnatal bisphenol A exposure and social impairment in 4-year-old children. Environ. Health 2017, 16, 79. [Google Scholar] [CrossRef] [PubMed]
- Philippat, C.; Nakiwala, D.; Calafat, A.M.; Botton, J.; De Agostini, M.; Heude, B.; Slama, R. Prenatal Exposure to Nonpersistent Endocrine Disruptors and Behavior in Boys at 3 and 5Years. Environ. Health Perspect. 2017, 125, 097014. [Google Scholar] [CrossRef] [PubMed]
- Takeda, T. Molecular Mechanism Whereby Maternal Exposure to Dioxin Suppresses Sexual Maturation of the Offspring after Growing Up. Yakugaku Zasshi 2017, 37, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Weiss, B. Endocrine Disruptors as a Threat to Neurological Function. J. Neurol. Sci. 2011, 305, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Doke, M.; Avecilla, V.; Felty, Q. Inhibitor of Differentiation-3 and Estrogenic Endocrine Disruptors: Implications for Susceptibility to Obesity and Metabolic Disorders. Biomed. Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Nappi, F.; Barrea, L.; Di Somma, C.; Savanelli, M.C.; Muscogiuri, G.; Orio, F.; Savastano, S. Endocrine Aspects of Environmental “Obesogen” Pollutants. Int. J. Environ. Res. Public Health 2016, 13, 765. [Google Scholar] [CrossRef] [PubMed]
- Petrakis, D.; Vassilopoulou, L.; Mamoulakis, C.; Psycharakis, C.; Anifantaki, A.; Sifakis, S.; Docea, A.O.; Tsiaoussis, J.; Makrigiannakis, A.; Tsatsakis, A.M. Endocrine Disruptors Leading to Obesity and Related Diseases. Int. J. Environ. Res. Public Health 2017, 14, 1282. [Google Scholar] [CrossRef] [PubMed]
- Bodin, J.; Bølling, A.K.; Becher, R.; Kuper, F.; Løvik, M.; Nygaard, U.C. Transmaternal bisphenol A exposure accelerates diabetes type 1 development in NOD mice. Toxicol. Sci. 2014, 137, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Joint Research Centre (JRC). Screening Methodology to Identify Potential Endocrine Disruptors According to Different Options in the Context of an Impact Assessment; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Ding, D.; Xu, L.; Fang, H.; Hong, H.; Perkins, R.; Harris, S.; Bearden, E.D.; Shi, L.; Tong, W. The EDKB: An established knowledge base for endocrine disrupting chemicals. Bioinformatics 2010, 11, S5. [Google Scholar] [CrossRef] [PubMed]
- Buckley, J.P.; Doherty, B.T.; Keil, A.P.; Engel, S.M. Statistical Approaches for Estimating Sex-Specific Effects in Endocrine Disruptors Research. Environ. Health Perspect. 2017, 125, 067013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S. Fragrance compounds: The wolves in sheep’s clothings. Med. Hypotheses 2017, 102, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Marta-Sanchez, A.V.; Caldas, S.S.; Schneider, A.; Cardoso, S.M.V.S.; Primel, E.G. Trace analysis of parabens preservatives in drinking water treatment sludge, treated, and mineral water samples. Environ. Sci. Pollut. Res. 2018, 25, 14460–14470. [Google Scholar] [CrossRef] [PubMed]
- Darbre, P.D.; Harvey, P.W. Paraben esters: Review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. J. Appl. Toxicol. 2008, 28, 561–578. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Kennedy, R.C.; Chen, X.; Zhang, J.; Shen, C.-L.; Chen, J.; Zhao, L. Differential effects on adiposity and serum marker of bone formation by post-weaning exposure to methylparaben and butylparaben. Environ. Sci. Pollut. Res. 2016, 23, 21957–21968. [Google Scholar] [CrossRef] [PubMed]
- Pop, A.; Drugan, T.; Gutleb, A.C.; Lupu, D.; Cherfan, J.; Loghin, F.; Kiss, B. Individual and combined in vitro (anti)androgenic effects of certain food additives and cosmetic preservatives. Toxicology 2016, 32, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, S.; Shin, C.; Lee, J.; Kim, S.; Lee, A.; Park, J.; Kho, Y.; Moos, R.K.; Koch, H.M.; et al. Urinary parabens and triclosan concentrations and associated exposure characteristics in a Korean population-A comparison between night-time and first-morning urine. Int. J. Hyg. Environ. Health 2018, 221, 632–641. [Google Scholar] [CrossRef] [PubMed]
- MacIsaac, J.K.; Gerona, R.R.; Blanc, P.D.; Apatira, L.; Friesen, M.W.; Coppolino, M.; Janssen, S. Healthcare Worker Exposures to the Antibacterial Agent Triclosan. J. Occup. Environ. Med. 2015, 56, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ouyang, F.; Feng, L.; Wang, X.; Liu, Z.; Zhang, J. Maternal Urinary Triclosan Concentration in Relation to Maternal and Neonatal Thyroid Hormone Levels: A Prospective Study. Environ. Health Perspect. 2017, 125, 067017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalloo, G.; Calafat, A.M.; Chen, A.; Yolton, K.; Lanphear, B.P.; Braun, J.M. Early life Triclosan exposure and child adiposity at 8 Years of age: A prospective cohort study. Environ. Health 2018, 17, 24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yang, M.; Zeng, L.; Liu, C. P38/TRHr-Dependent Regulation of TPO in Thyroid Cells Contributes to the Hypothyroidism of Triclosan-Treated Rats. Cell. Physiol. Biochem. 2018, 45, 1303–1315. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, Y.; Chen, L.; Su, Y.; Li, X.; Jin, L.; Ge, R. Triclocarban and Triclosan Inhibit Human Aromatase via different Mechanisms. BioMed Res. Int. 2017, 2017, 8284097. [Google Scholar] [CrossRef] [PubMed]
- Mineo, H.; Ohdate, T.; Fukumura, K.; Katayama, T.; Onaga, T.; Kato, S.; Yanaihara, N. Effects of benzoic acid and its analogues on insulin and glucagon secretion in sheep. Eur. J. Pharmacol. 1995, 280, 149–154. [Google Scholar] [CrossRef]
- Ashby, J.; Lefevre, P.A.; Odum, J.; Tinwell, H.; Kennedy, S.J.; Beresford, N.; Sumpter, J.P. Failure to confirm estrogenic activity for benzoic acid and clofibrate: Implications for lists of endocrine-disrupting agents. Regul. Toxicol. Pharmacol. 1997, 26, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Scientific Committee on Cosmetic Products and Non-Food Products Intended for Consumers. Opinion Concerning a Clarification on the Formaldehyde and Para-Formaldehyde Entry in Directive 76/768/eec on Cosmetic Products; European Commission: Brussels, Belgium, 2002. [Google Scholar]
- Wang, H.-X.; Wang, X.-Y.; Zhou, D.-X.; Zheng, L.-R.; Zhang, J.; Huo, Y.-W.; Tian, H. Effects of low-dose, long-term formaldehyde exposure on the structure and functions of the ovary in rats. Toxicol. Ind. Health 2013, 29, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Han, S.-P.; Zhou, D.-X.; Lin, P.; Qin, Z.; An, L.; Zheng, L.-R.; Lei, L. Formaldehyde exposure induces autophagy in testicular tissues of adult male rats. Environ. Toxicol. 2015, 30, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Pidoux, G.; Gerbaud, P.; Guibourdenche, J.; Thérond, P.; Ferreira, F.; Simasotchi, C.; Evain-Brion, D.; Gi, S. Formaldehyde Crosses the Human Placenta and Affects Human Trophoblast Differentiation and Hormonal Functions. PLoS ONE 2015, 10, e0133506. [Google Scholar] [CrossRef] [PubMed]
- Scientific Committee on Consumer Safety. Opinion of the Scientific Committee on Consumer Safety (SCCS)—Revision of the opinion on o-Phenylphenol, Sodium o-phenylphenate and Potassium o-phenylphenate (OPP), in cosmetic products. Regul. Toxicol. Pharmacol. 2016, 79, 105. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.M.; Weisskopf, M.; Shine, J. Human exposure to nitro musks and the evaluation of their potential toxicity: An overview. Environ. Health 2014, 13, 13–14. [Google Scholar] [CrossRef] [PubMed]
- Bitsch, N.; Dudas, C.; Körner, W.; Failing, K.; Biselli, S.; Rimkus, G.; Brunn, H. Estrogenic activity of musk fragrances detected by the E-screen assay using human mcf-7 cells. Arch. Environ. Contam. Toxicol. 2002, 43, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, J.E.; Trought, K.; Mitchell, C.; Northcott, G.; Tremblay, L.A. Assessment of endocrine disruption and oxidative potential of bisphenol-A, triclosan, nonylphenol, diethylhexyl phthalate, galaxolide, and carbamazepine, common contaminants of municipal biosolids. Toxicol. In Vitro 2018, 48, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Schreurs, R.H.; Sonneveld, E.; Jansen, J.H.; Seinen, W.; van der Burg, B. Interaction of Polycyclic Musks and UV Filters with the Estrogen Receptor (ER), Androgen Receptor (AR), and Progesterone Receptor (PR) in Reporter Gene Bioassays. Toxicol. Sci. 2005, 83, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Schreurs, R.H.; Quaedackers, M.E.; Seinen, W.; van der Burg, B. Transcriptional activation of estrogen receptor ERalpha and ERbeta by polycyclic musks is cell type dependent. Toxicol. Appl. Pharmacol. 2002, 183, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E.A.; Siegel, E.L.; Eniola, F.; Herbstman, J.B.; Factor-Litvak, P. Effects of Polybrominated Diphenyl Ethers on Child Cognitive, Behavioral, and Motor Development. Environ. Res. Public Health 2018, 15, 1636. [Google Scholar] [CrossRef] [PubMed]
- Acir, I.H.; Guenther, K. Endocrine-disrupting metabolites of alkylphenol ethoxylates—A critical review of analytical methods, environmental occurrences, toxicity, and regulation. Sci. Total Environ. 2018, 635, 1530–1546. [Google Scholar] [CrossRef] [PubMed]
- Bechi, N.; Ietta, F.; Romagnoli, R.; Jantra, S.; Cencini, M.; Galassi, G.; Serchi, T.; Corsi, I.; Focardi, S.; Paulesu, L. Environmental levels of para-nonylphenol are able to affect cytokine secretion in human placenta. Environ. Health Perspect. 2010, 118, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Kudo, C.; Wada, K.; Masuda, T.; Yonemura, T.; Shibuya, A.; Fujimoto, Y.; Nakajima, A.; Niwa, H.; Kamisaki, Y. Nonylphenol induces the death of neural stem cells due to activation of the caspase cascade and regulation of the cell cycle. J. Neurochem. 2004, 88, 1416–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, F.; Wang, Y.; Zhou, Y.; Zhang, Q.; Ge, Y.; Chen, M.; Hong, J.; Wang, L. Exposure to TiO2 Nanoparticles Induces Immunological Dysfunction in Mouse Testitis. J. Agric. Food Chem. 2016, 64, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, H.; Nielsen, O.; Skakkebaek, N.E.; Juul, A.; Andersson, A.M. UV filters analyzed by isotope diluted TurboFlow-LC-MS/MS in urine from Danish children and adolescents. Int. J. Hyg. Environ. Health 2017, 220, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Fong, H.C.; Ho, J.C.; Cheung, A.H.; Lai, K.P.; Tse, W.K. Developmental toxicity of the common UV filter, benzophenone-2, in zebrafish embryos. Chemosphere 2016, 164, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Kinnberg, K.L.; Petersen, G.I.; Albrektsen, M.; Minghlani, M.; Awad, S.M.; Holbech, B.F.; Green, J.W.; Bjerregaard, P.; Holbech, H. Endocrine-disrupting effect of the ultraviolet filter benzophenone-3 in zebrafish, Danio rerio. Environ. Toxicol. Chem. 2015, 34, 2833–2840. [Google Scholar] [CrossRef] [PubMed]
- LaPlante, C.D.; Bansal, R.; Dunphy, K.A.; Jerry, D.J.; Vandenberg, L.N. Oxybenzone Alters Mammary Gland Morphology in Mice Exposed During Pregnancy and Lactation. J. Endocr. Soc. 2018, 2, 903–921. [Google Scholar] [CrossRef] [PubMed]
- Binder, A.M.; Corvalan, C.; Calafat, A.M.; Ye, X.; Mericq, V.; Pereira, A.; Michels, K.B. Childhood and adolescent phenol and phthalate exposure and the age of menarche in Latina girls. Environ. Health 2018, 17, 32. [Google Scholar] [CrossRef] [PubMed]
- Morrison, G.C.; Bekö, G.; Weschler, C.J.; Schripp, T.; Salthammer, T.; Hill, J.; Andersson, A.M.; Toftum, J.; Clausen, G.; Frederiksen, H. Dermal Uptake of Benzophenone-3 from Clothing. Environ. Sci. Technol. 2017, 51, 11371–11379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, M.; Frederiksen, H.; Sundberg, K.; Jørgensen, F.S.; Jensen, L.N.; Nørgaard, P.; Jørgensen, C.; Ertberg, P.; Petersen, J.H.; Feldt-Rasmussen, U.; et al. Maternal exposure to UV filters: Associations with maternal thyroid hormones, IGF-I/IGFBP3 and birth outcomes. Endocr. Connect. 2018, 7, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Gomez, E.; Pillon, A.; Fenet, H.; Rosain, D.; Duchesne, M.J.; Nicolas, J.C.; Balaguer, P.; Casellas, C. Estrogenic activity of cosmetic components in reporter cell lines: Parabens, UV screens, and musks. J. Toxicol. Environ. Health A 2005, 68, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Klann, A.; Levy, G.; Lutz, I.; Müller, C.; Kloas, W.; Hildebrandt, J.P. Estrogen-like effects of ultraviolet screen 3-(4-methylbenzylidene)-camphor (Eusolex 6300) on cell proliferation and gene induction in mammalian and amphibian cells. Environ. Res. 2005, 97, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Erol, M.; Çok, I.; Bostan Gayret, Ö.; Günes, P.; Yigit, Ö.; Sayman, E.; Günes, A.; Çelik, D.S.; Hamilçikan, S.; Altinay, S.; et al. Evaluation of the endocrine-disrupting effects of homosalate (HMS) and 2-ethylhexyl 4-dimethylaminobenzoate (OD-PABA) in rat pups during the prenatal, lactation, and early postnatal periods. Toxicol. Ind. Health 2017, 33, 775–791. [Google Scholar] [CrossRef] [PubMed]
- Schlumpf, M.L.; Durrer, S.; Faass, O.; Ehnes, C.; Fuetsch, M.; Gaille, C.; Henseler, M.; Hofkamp, L.; Maerkel, K.; Reolon, S. Developmental toxicity of UV filters and environmental exposure: A review. Int. J. Androl. 2008, 31, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Zin, S.R.M.; Omar, S.Z.; Khan, N.L.A.; Musameh, N.I.; Das, S.; Kassim, N.M. Effects of genistein on male sprague dawley rats reproductive development. Biomed. Res. 2014, 25, 391–400. [Google Scholar]
- Zin, S.R.M.; Omar, S.Z.; Khan, N.L.A.; Musameh, N.I.; Das, S.; Kassim, N.M. Effects of the phytoestrogen genistein on the development of the reproductive system of Sprague Dawley rats. Clinics 2013, 68, 253–262. [Google Scholar] [CrossRef]
- Delclos, K.B.; Bucci, T.J.; Lomax, L.G.; Latendresse, J.R.; Warbritton, A.; Weis, C.C.; Newbold, R.R. Effects of dietary genistein exposure during development on male and female CD (Sprague-Dawley) rats. Reprod. Toxicol. 2001, 15, 647–663. [Google Scholar] [CrossRef]
- Ball, E.R.; Caniglia, M.K.; Wilcox, J.L.; Overton, K.A.; Burr, M.J.; Wolfe, B.D.; Sanders, B.J.; Wisniewski, A.B.; Wrenn, C.C. Effects of genistein in the maternal diet on reproductive development and spatial learning in male rats. Horm. Behav. 2009, 57, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Patisaul, H.B. Endocrine disruption by dietary phyto-oestrogens: Impact on dimorphic sexual systems and behaviours. Proc. Nutr. Soc. 2017, 76, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Schiller, V.; Wichmann, A.; Kriehuber, R.; Muth-Köhne, E.; Giesy, J.P.; Hecker, M.; Fenske, M. Studying the effects of genistein on gene expression of fish embryos as an alternative testing approach for endocrine disruption. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2013, 57, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.; Ramasamy, S. An Update on Plant Derived Anti-Androgens. Int. J. Endocrinol. Metab. 2012, 10, 497–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higa, Y.; Ohkubo, A.; Kitajima, S.; Moriyasu, M.; Kariya, K. Effects of kojic acid on thyroidal functions in rats by single-dose administration and in cultured rat thyroid cells (FRTL-5 cells). J. Toxicol. Sci. 2002, 27, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Ota, Y.; Imai, T.; Onose, J.; Takami, S.; Cho, Y.M.; Hirose, M.; Nishikawa, A. A 55-week chronic toxicity study of dietary administered kojic acid (KA) in male F344 rats. J. Toxicol. Sci. 2009, 34, 305–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, M.; Zhang, L.; Li, M.; Zhang, B.; Zhou, N.; Ke, Y.; Feng, W.; Zheng, X. Estrogenic Effects of the Extracts from the Chinese Yam (Dioscorea opposite Thunb.) and Its Effective Compounds in Vitro and in Vivo. Moleculs 2018, 23, 11. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, S.; Pate, J.L.; Palmquist, D.L. Effects of propylene glycol drenching on energy balance, plasma glucose, plasma insulin, ovarian function and conception in dairy cows. Anim. Reprod. Sci. 2001, 68, 29–43. [Google Scholar] [CrossRef]
- Kassotis, C.D.; Tillitt, D.E.; Davis, J.W.; Hormann, A.M.; Nagel, S.C. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region. Endocrinology 2014, 155, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Pop, A.; Kiss, B.; Loghin, F. Endocrine disrupting effects of butylated hydroxyanisole (BHA—E320). Clujul Med. 2013, 86, 16–20. [Google Scholar] [PubMed]
- Pop, A.; Drugan, T.; Gutleb, A.C.; Lupu, D.; Cherfan, J.; Loghin, F.; Kiss, B. Estrogenic and anti-estrogenic activity of butylparaben, butylated hydroxyanisole, butylated hydroxytoluene and propyl gallate and their binary mixtures on two estrogen responsive cell lines (T47D-Kbluc, MCF-7). J. Appl. Toxicol. 2018, 38, 944–957. [Google Scholar] [CrossRef] [PubMed]
- Ghisari, M.; Bonefeld-Jorgensen, E.C. Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions. Toxicol. Lett. 2009, 189, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, R.H.; Hill, J.B.; Gaitan, E.; Cooksey, R.C.; Jolley, R.L. Antithyroid Effects of Coal Derived Pollutants. J. Toxicol. Environ. Health 1992, 37, 467–481. [Google Scholar] [CrossRef] [PubMed]
- Lynch, B.S.; Delzell, E.S.; Bechtel, D.H. Toxicology Review and Risk Assessment of Resorcinol: Thyroid Effects. Regul. Toxicol. Pharmacol. 2002, 36, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Orecchio, S.; Indelicato, R.; Barreca, S. Determination of Selected Phthalates by Gas Chromatography-Mass Spectrometry in Personal Perfumes. J. Toxicol. Environ. Health A 2015, 78, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Calsolaro, V.; Pasqualetti, G.; Niccolai, F.; Caraccio, N.; Monzani, F. Thyroid Disrupting Chemicals. Int. J. Mol. Sci. 2017, 18, 2583. [Google Scholar] [CrossRef] [PubMed]
- Nicolopoulou-Stamati, P.; Hens, L.; Sasco, A.J. Cosmetics as endocrine disruptors: Are they a health risk? Rev. Endocr. Metab. Disord. 2015, 16, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Hashemipour, M.; Kelishadi, R.; Amin, M.M.; Ebrahim, K. Is there any association between phthalate exposure and precocious puberty in girls? Environ. Sci. Pollut. Res. 2018, 25, 13589–13596. [Google Scholar] [CrossRef] [PubMed]
- Borman, E.D.; Vecchi, N.; Pollock, T.; deCatanzaro, D. Diethylhexyl phthalate magnifies deposition of 14 C-bisphenol A in reproductive tissues of mice. J. Appl. Toxicol. 2017, 37, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Trasande, L.; Attina, T.M. Association of exposure to di-2-ethylhexylphthalate replacements with increased blood pressure in children and adolescents. Hypertension 2015, 66, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, H.; Takeda, S.; Matsuo, S.; Matsumoto, M.; Furuta, E.; Kohro-Ikeda, E.; Aramaki, H. Inhibitory modulation of human estrogen receptor α and β activities by dicyclohexyl phthalate in human breast cancer cell lines. J. Toxicol. Sci. 2017, 42, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Aker, A.M.; Watkins, D.J.; Johns, L.E.; Ferguson, K.K.; Soldin, O.P.; Anzalota Del Toro, L.V.; Alshawabkeh, A.N.; Cordero, J.F.; Meeker, J.D. Phenols and parabens in relation to reproductive and thyroid hormones in pregnant women. Environ. Res. 2016, 151, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Giesbrecht, G.F.; Ejaredar, M.; Liu, J.; Thomas, J.; Letourneau, N.; Campbell, T.; Martin, J.W.; Dewey, D. Prenatal bisphenol a exposure and dysregulation of infant hypothalamicpituitary-adrenal axis function: Findings from the APrON cohort study. Environ. Health 2017, 16. [Google Scholar] [CrossRef] [PubMed]
- Stavreva, D.A.; Varticovski, L.; Levkova, L.; George, A.A.; Davis, L.; Pegoraro, G.; Blazer, V.; Iwanowicz, L.; Hager, G.L. Novel cell-based assay for detection of thyroid receptor beta-interacting environmental contaminants. Toxicology 2016, 368–369, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Kolatorova, L.; Vitku, J.; Hampl, R.; Adamcova, K.; Skodova, T.; Simkova, M.; Parizek, A.; Starka, L.; Duskova, M. Exposure to bisphenols and parabens during pregnancy and relations to steroid changes. Environ. Res. 2018, 163, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Bodin, J.; Bølling, A.K.; Samuelsen, M.; Becher, R.; Løvik, M.; Nygaard, U.C. Long-term bisphenol A exposure accelerates insulitis development in diabetes-prone NOD mice. Immunopharmacol. Immunotoxicol. 2013, 35, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Do, M.T.; Chang, V.C.; Mendez, M.A.; de Groh, M. Urinary bisphenol A and obesity in adults: Results from the Canadian Health Measures Survey. Health Promot. Chronic Dis. Prev. Can. 2017, 37, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Hossein Rashidi, B.; Amanlou, M.; Behrouzi Lak, T.; Ghazizadeh, M.; Haghollahi, F.; Bagheri, M.; Eslami, B. The Association between Bisphenol A and Polycystic Ovarian Syndrome—A Case-Control Study. Acta Med. Iran. 2017, 55, 759–764. [Google Scholar] [PubMed]
- Rehan, M.; Ahmad, E.; Sheikh, I.A.; Abuzenadah, A.M.; Damanhouri, G.A.; Bajouh, O.S.; AlBasri, S.F.; Assiri, M.M.; Beg, M.A. Androgen and Progesterone Receptors Are Targets for Bisphenol A (BPA), 4-Methyl-2,4-bis-(P-Hydroxyphenyl)Pent-1-Ene—A Potent Metabolite of BPA, and 4-Tert-Octylphenol: A Computational Insight. PLoS ONE 2015, 10, e0138438. [Google Scholar] [CrossRef] [PubMed]
- Solecki, R.; Kortenkamp, A.; Bergman, Å.; Chahoud, I.; Degen, G.H.; Dietrich, D.; Greim, H.; Håkansson, H.; Hass, U.; Husoy, T. Scientific principles for the identification of endocrine-disrupting chemicals: A consensus statement. Arch. Toxicol. 2017, 91, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.P.; Schuhmacher, M.; Kumar, V. Development of a human physiologically based pharmacokinetic (PBPK) model for phthalate (DEHP) and its metabolites: A bottom up modeling approach. Toxicol. Lett. 2018. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, I.A.; Abu-Elmagd, M.; Turki, R.F.; Damanhouri, G.A.; Beg, M.A.; Al-Qahtani, M. Endocrine disruption: In silico perspectives of interactions of di-(2-ethylhexyl)phthalate and its five major metabolites with progesterone receptor. BMC Struct. Biol. 2016, 16, 16. [Google Scholar] [CrossRef] [PubMed]
- Shioda, T.; Rosenthal, N.F.; Coser, K.R.; Suto, M.; Phatak, M.; Medvedovic, M.; Carey, V.J.; Isselbacher, K.J. Expressomal approach for comprehensive analysis and visualization of ligand sensitivities of xenoestrogen responsive genes. Proc. Natl. Acad. Sci. USA 2013, 110, 26508–26513. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ripamonti, E.; Allifranchini, E.; Todeschi, S.; Bocchietto, E. Endocrine Disruption by Mixtures in Topical Consumer Products. Cosmetics 2018, 5, 61. https://doi.org/10.3390/cosmetics5040061
Ripamonti E, Allifranchini E, Todeschi S, Bocchietto E. Endocrine Disruption by Mixtures in Topical Consumer Products. Cosmetics. 2018; 5(4):61. https://doi.org/10.3390/cosmetics5040061
Chicago/Turabian StyleRipamonti, Emiliano, Elena Allifranchini, Stefano Todeschi, and Elena Bocchietto. 2018. "Endocrine Disruption by Mixtures in Topical Consumer Products" Cosmetics 5, no. 4: 61. https://doi.org/10.3390/cosmetics5040061
APA StyleRipamonti, E., Allifranchini, E., Todeschi, S., & Bocchietto, E. (2018). Endocrine Disruption by Mixtures in Topical Consumer Products. Cosmetics, 5(4), 61. https://doi.org/10.3390/cosmetics5040061