The Effect of Select Personal Care Ingredients and Simple Formulations on the Attachment of Bacteria on Polystyrene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Personal Care Ingredients
2.2. Single Ingredient Preparation
2.3. Simplified Alcohol Based Formulations
2.4. Determining Attachment of Bacteria to a Surface Using Plate Counts
2.5. Zone of Inhibition for Antimicrobial Activity
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dethlefsen, L.; McFall-Ngai, M.; Relman, D.A. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 2007, 449, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Cogen, A.L.; Nizet, V.; Gallo, R.L. Skin microbiota: A source of disease or defence? Br. J. Dermatol. 2008, 158, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Byrd, A.L.; Park, M.; Kong, H.H.; Segre, J.A. Temporal stability of the human skin microbiome. Cell 2016, 165, 854–866. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.H.; Andersson, B.; Clavel, T.; Common, J.E.; Jackson, S.A.; Olson, N.D.; Segre, J.A.; Traidl-Hoffmann, C. Performing skin microbiome research: A method to the madness. J. Investig. Dermatol. 2017, 137, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Petrova, O.E.; Sauer, K. Sticky situations: Key components that control bacterial surface attachment. J. Bacteriol. 2012, 194, 2413–2425. [Google Scholar] [CrossRef] [PubMed]
- Garrett, T.R.; Bhakoo, M.; Zhang, Z. Bacterial adhesion and biofilms on surfaces. Prog. Natl. Sci. 2008, 18, 1049–1056. [Google Scholar] [CrossRef]
- Busscher, H.J.; Norde, W.; van der Mei, H.C. Specific molecular recognition and nonspecific contributions to bacterial interaction forces. Appl. Environ. Microbiol. 2008, 74, 2559–2564. [Google Scholar] [CrossRef] [PubMed]
- Damodaran, V.B.; Murthy, N.S. Bio-inspired strategies for designing antifouling biomaterials. Biomater. Res. 2016, 20. [Google Scholar] [CrossRef] [PubMed]
- Rosenhahn, A.; Soren, S.; Kreuzer, H.J.; Grunze, M. The role of “inert” surface chemistry in marine biofouling prevention. Phys. Chem. Chem. Phys. 2010, 12, 4275–4286. [Google Scholar] [CrossRef] [PubMed]
- Francolini, I.; Donelli, G.; Vuotto, C.; Baroncini, F.A.; Stoodley, P.; Taresco, V.; Martinelli, A.; D’Ilario, L.; Piozzi, A. Antifouling polyurethanes to fight device-related staphylococcal infections: Synthesis, characterization, and antibiofilm efficacy. Pathog. Dis. 2014, 70, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. J. Clin. Microbiol. 2018, 37, 1771–1776. [Google Scholar]
- Henriksson, A.; Szewzyk, R.; Conway, P.L. Characteristics of the adhesive determinants of Lactobacillus fermentum 104. Appl. Environ. Microbiol. 1991, 57, 499–502. [Google Scholar] [PubMed]
- Sonak, S.; Bhosle, N.B. A simple method to assess bacterial attachment to surfaces. Biofouling 2009. [Google Scholar] [CrossRef]
- Gaddy, J.A.; Actis, L.A. Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol. 2009, 4, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Palecek, S.P. EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot. Cell 2003, 2, 1266–1273. [Google Scholar] [CrossRef] [PubMed]
- Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, H.G.; Kim, M.J.; Upadhaya, S.D.; Ha, J.K.; Lee, S.S. Effects of methylcellulose on cellulolytic bacteria attachment and rice straw degradation in the in vitro rumen fermentation. Asian-Australas. J. Anim. Sci. 2013, 26, 1276–1281. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, L.; Zhao, C.; Zheng, J. Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer 2010, 51, 5283–5293. [Google Scholar] [CrossRef]
- Zapka, C.; Leff, J.; Henley, J.; Tittl, J.; De Nardo, E.; Butler, M.; Griggs, R.; Fierer, N.; Edmonds-Wilson, S. Comparison of standard culture-based method to culture-independent method for evaluation of hygiene effects on the hand microbiome. mBio 2017, 8, e00093-17. [Google Scholar] [CrossRef] [PubMed]
- Edmonds-Wilson, S.L.; Nurinova, N.I.; Zapka, C.A.; Fierer, N.; Wilson, M. Review of human hand microbiome research. J. Dermatol. Sci. 2015, 80, 3–12. [Google Scholar] [CrossRef] [PubMed]
Single Ingredient | Alcohol Based Formulation | |||||||
---|---|---|---|---|---|---|---|---|
INCI Name (Trade Name) | E. coli | S. aureus | E. coli | S. aureus | ||||
Change from Growth Controls | p-Value | Change from Growth Controls | p-Value | Change from Growth Controls | p-Value | Change from Growth Controls | p-Value | |
acrylates/steareth−20 methacrylate copolymer (AculynTM 22) | −1.6 | 0.00 | −0.2 | 0.20 | −1.7 | 0.00 | −1.0 | 0.01 |
acrylates/vinyl neodecanoate crosspolymer (AculynTM 38) | −0.7 | 0.00 | −0.2 | 0.10 | −0.6 | 0.01 | −0.6 | 0.06 |
ammonium acryloyldimethyltaurate/VP copolymer (Aristoflex® AVC) | −0.6 | 0.01 | −0.2 | 0.03 | −0.4 | 0.04 | −0.2 | 0.01 |
methylcellulose (BenecelTM A4C) | −1.4 | 0.00 | −1.1 | 0.00 | −1.8 | 0.00 | −1.6 | 0.00 |
hydroxypropyl methylcellulose (BenecelTM E-15) | −1.3 | 0.00 | −2.0 | 0.00 | −1.2 | 0.00 | −1.5 | 0.00 |
hydroxypropyl methylcellulose (BenecelTM K100 LV) | −1.0 | 0.00 | −0.1 | 0.25 | −0.9 | 0.00 | −0.0 | 0.35 |
cellulose gum (AqualonTM Cellulose Gum) | −0.8 | 0.04 | −1.0 | 0.00 | −1.9 | 0.00 | −1.3 | 0.00 |
acacia senegal gum 2 (TIC Prehydrated® Gum Arabic BEV-101 GR Powder) | −1.0 | 0.00 | −1.1 | 0.00 | −0.8 | 0.00 | −1.2 | 0.00 |
hydroxypropylcellulose (KlucelTM ECS) | −0.7 | 0.01 | −1.1 | 0.00 | −0.6 | 0.00 | −1.0 | 0.00 |
hydroxyethylcellulose (NatrosolTM 250 GR) | −0.7 | 0.00 | −0.9 | 0.00 | −0.5 | 0.08 | −0.2 | 0.04 |
hydroxyethylcellulose (NatrosolTM 250 LR) | −1.0 | 0.03 | −1.1 | 0.00 | −1.0 | 0.00 | −1.0 | 0.00 |
VP/dimethylaminoethylmethacrylate/polycarbamyl polyglycol ester (Pecogel® GC 310) | −0.8 | 0.00 | 0.1 | 0.26 | −1.1 | 0.00 | −1.2 | 0.00 |
VP/polycarbamyl polyglycol ester (Pecogel® HS-12) | −1.8 | 0.00 | −0.9 | 0.00 | −1.4 | 0.00 | −0.7 | 0.01 |
VP/dimethiconylacrylate/polycarbamyl/polyglycol ester and VP/polycarbamyl polyglycol ester (Pecogel® HS-501) | −0.3 | 0.09 | −0.3 | 0.01 | −0.3 | 0.02 | −1.1 | 0.00 |
propylene glycol alginate (Protanal® Ester BV-3750) | −0.8 | 0.00 | −0.7 | 0.00 | −0.9 | 0.00 | −0.6 | 0.01 |
glycerin; acrylates copolymer; VP/polycarbamyl polyglycol ester; hydrolyzed sesame protein PG-propyl methylsilanediol (SesaFlashTM) | −1.1 | 0.00 | −0.9 | 0.00 | −0.4 | 0.03 | −1.0 | 0.00 |
polyoxyethylene-polyoxypropylene block copolymer 2 (UCONTM TPEG-500) | −0.1 | 0.28 | −0.5 | 0.00 | −0.0 | 0.30 | −0.2 | 0.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Engelbrecht, K.C.; Mundschau, S.A.; Chaudhary, V.; Wenzel, S.W.; Koenig, D.W. The Effect of Select Personal Care Ingredients and Simple Formulations on the Attachment of Bacteria on Polystyrene. Cosmetics 2018, 5, 42. https://doi.org/10.3390/cosmetics5030042
Engelbrecht KC, Mundschau SA, Chaudhary V, Wenzel SW, Koenig DW. The Effect of Select Personal Care Ingredients and Simple Formulations on the Attachment of Bacteria on Polystyrene. Cosmetics. 2018; 5(3):42. https://doi.org/10.3390/cosmetics5030042
Chicago/Turabian StyleEngelbrecht, Kathleen C., Stacy A. Mundschau, Vinod Chaudhary, Scott W. Wenzel, and David W. Koenig. 2018. "The Effect of Select Personal Care Ingredients and Simple Formulations on the Attachment of Bacteria on Polystyrene" Cosmetics 5, no. 3: 42. https://doi.org/10.3390/cosmetics5030042
APA StyleEngelbrecht, K. C., Mundschau, S. A., Chaudhary, V., Wenzel, S. W., & Koenig, D. W. (2018). The Effect of Select Personal Care Ingredients and Simple Formulations on the Attachment of Bacteria on Polystyrene. Cosmetics, 5(3), 42. https://doi.org/10.3390/cosmetics5030042